JPS6216748A - Apparatus for ultrasonic diagnosis of body cavity - Google Patents

Apparatus for ultrasonic diagnosis of body cavity

Info

Publication number
JPS6216748A
JPS6216748A JP17629286A JP17629286A JPS6216748A JP S6216748 A JPS6216748 A JP S6216748A JP 17629286 A JP17629286 A JP 17629286A JP 17629286 A JP17629286 A JP 17629286A JP S6216748 A JPS6216748 A JP S6216748A
Authority
JP
Japan
Prior art keywords
ultrasonic
transducer
optical system
endoscope
body cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17629286A
Other languages
Japanese (ja)
Other versions
JPS639861B2 (en
Inventor
洲脇 利孝
安東 欧太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP17629286A priority Critical patent/JPS6216748A/en
Publication of JPS6216748A publication Critical patent/JPS6216748A/en
Publication of JPS639861B2 publication Critical patent/JPS639861B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は超音波振動子を体腔内に挿入し、体腔内より生
体諸器管の像を造影する体腔内超音波診断装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intrabody cavity ultrasonic diagnostic apparatus for inserting an ultrasonic transducer into a body cavity and imaging various organs of a living body from within the body cavity.

近年超音波造影技術の進歩により超音波走査によるエコ
ー像が医学分野で広く使用されるようになった。
In recent years, with advances in ultrasonic contrast technology, echo images obtained by ultrasonic scanning have come to be widely used in the medical field.

超音波造影技術は医学分野で古くから使用されてきてい
るX線造影に比し、生体に無害、生体軟組織像が造影剤
なしに造影できる、結石・癌組織に敏感である、装置価
格が安い等の利点が評価され、急速に普及しつつある。
Compared to X-ray contrast, which has been used in the medical field for a long time, ultrasound contrast technology is harmless to living bodies, can image soft tissues of living bodies without contrast agents, is sensitive to stones and cancerous tissue, and is inexpensive. It is rapidly gaining popularity due to its merits such as:

しかし、従来の超音波診断装置は生体表面がら生体内部
の諸器管像を造影しているため、みようとする器管まで
距離があり、且つその間に脂肪層のような不均質な層を
超音波が通過するため、エコー信号のS/Nが低下した
り、又途中に気体層が存在すると超音波エネルギーは吸
収され減衰して造影が困難になる場合もある。
However, because conventional ultrasonic diagnostic equipment images images of organs inside the living body from the surface of the living body, there is a distance to the organs to be viewed, and in the meantime, inhomogeneous layers such as fat layers must be crossed. Because the sound waves pass through, the S/N of the echo signal may decrease, and if there is a gas layer in the middle, the ultrasound energy may be absorbed and attenuated, making imaging difficult.

更に、骨の陰にある器管は骨による超音波エネルギーの
吸収により超音波エネルギーが減衰して造影不可能とな
る。
Furthermore, the ultrasonic energy of organs located behind bones is attenuated due to absorption of the ultrasonic energy by the bones, making imaging impossible.

本発明の目的は上記の欠点を解決したところの解像力の
良い鮮明な像を造影することができると共に、挿入部・
先端部における構成が簡単となる体腔内超音波診断装置
を提供することである。
The purpose of the present invention is to solve the above-mentioned drawbacks, to be able to image a clear image with good resolution, and to
It is an object of the present invention to provide an intrabody cavity ultrasonic diagnostic device whose distal end portion has a simple configuration.

以下、本発明の実施例を図面に基いて説明する。まず本
発明の詳細な説明に先立ち体腔内の超音波診断装置の一
例を説明する。
Embodiments of the present invention will be described below with reference to the drawings. First, prior to a detailed description of the present invention, an example of an intracorporeal ultrasound diagnostic apparatus will be described.

内視鏡(1)は観察用光学系(2)・照明用光学系(3
)及び流体などを導入する通路(図示してない)を少な
くとも具備しており、更に先端部には上記観察用光学系
(2)・照明用光学系(3)の観察・照明方向に開口し
ている収納部(4)が形成しである。超音波送受波振動
子(5)は例えばPZT、ニオブ酸すチュム等の圧電材
料及びダンパー材等から構成し、支持部材(6)を一体
部に設けて回転軸(7)により内視鏡の長軸方向に回転
できるように上記内視鏡(1)の収納部(4)に配設し
である。上記超音波送受波振動子(5)を駆動する駆動
手段である可撓性を有し摺動するワイヤ(8)は内視鏡
(1)の先端部と操作部(図示してない)の間に配設し
である可撓性を有するチューブ(9)内を摺動できるよ
うに挿入されており、摺動ワイヤ(8)の先端(10)
は上記超音波送受波振動子(5)の支持部材(6)に取
付けてあり、他端は内視鏡(1)の操作部に操作できる
ように導いである。上記超音波送受波振動子(5)の回
転角度位置を検出する手段であるリニア型のポテンショ
ンメータ(11)の出入軸(12)の先端は上記超音波
送受波振動子(5)の支持部材(6)に当接するように
配設しである。
The endoscope (1) has an observation optical system (2) and an illumination optical system (3).
) and a passageway (not shown) for introducing fluid, etc., and furthermore, the distal end has an opening in the observation/illumination direction of the observation optical system (2) and the illumination optical system (3). A storage section (4) is formed therein. The ultrasonic wave transmitting/receiving transducer (5) is made of a piezoelectric material such as PZT or niobium oxide, and a damper material, etc., and a support member (6) is provided as an integral part, and the endoscope is rotated by a rotating shaft (7). It is arranged in the storage section (4) of the endoscope (1) so as to be rotatable in the longitudinal direction. A flexible and sliding wire (8), which is a driving means for driving the ultrasonic wave transmitting/receiving transducer (5), connects the tip of the endoscope (1) and the operating section (not shown). The tip (10) of the sliding wire (8) is inserted so as to be able to slide inside a flexible tube (9) disposed between the ends of the sliding wire (8).
is attached to the support member (6) of the ultrasonic wave transmitting/receiving transducer (5), and the other end is guided so that it can be operated by the operating section of the endoscope (1). The tip of the input/output shaft (12) of a linear potentiometer (11), which is a means for detecting the rotational angular position of the ultrasonic transducer (5), supports the ultrasonic transducer (5). It is arranged so as to be in contact with the member (6).

又、ポテンションメータ(11)の機能としては上記超
音波送受波振動子(5)の回転角度に対応してSinα
又はCosαに比例した抵抗曲線をもつものを用いて第
11図の画像表示部(13)に用いるCRTのXY走査
情報を直接得ることができる。
Furthermore, the function of the potentiometer (11) is to adjust the sin α
Alternatively, by using one having a resistance curve proportional to Cos α, it is possible to directly obtain the XY scanning information of the CRT used in the image display section (13) in FIG.

第2図は他の発案例で、内視鏡(1)の先端部には観察
用光学系(2)・照明用光学系(3)の観察・照明方向
に開口している収納部(4)が形成しである。超音波送
受波振動子(5)は一体部に支持部材(6)を設け、回
転軸(7)により内視鏡(1)の長軸方向を横切って回
転できるように上記収納部(4)に配設しである。上記
回転軸(7)は、一端が回転型のポテンションメータ(
14)に取付けてあり、他端は回転ワイヤ(15)に取
付けである。
Figure 2 shows another example of the invention, in which the distal end of the endoscope (1) has a storage section (4) that opens in the observation and illumination direction for the observation optical system (2) and the illumination optical system (3). ) is formed. The ultrasonic wave transmitting/receiving transducer (5) is provided with a support member (6) as an integral part, and is attached to the housing part (4) so that it can be rotated across the long axis direction of the endoscope (1) by a rotating shaft (7). It is located in. The rotating shaft (7) has one end equipped with a rotary potentiometer (
The other end is attached to the rotating wire (15).

上記のような装置の場合、駆動用のワイヤ(8)あるい
は(15)が必要となり、超音波振動子(5)の回動の
ための機構が複雑化している。これに対して第3図に示
す本発明の一実施例のものは挿入部の先端部における構
成が簡単化されている。
In the case of the above-mentioned device, a driving wire (8) or (15) is required, and the mechanism for rotating the ultrasonic transducer (5) is complicated. In contrast, the embodiment of the present invention shown in FIG. 3 has a simplified structure at the distal end of the insertion section.

すなわち、第3図は本発明の一実施例で、超音波送受波
振動子(5)は一体部に軟磁性材料からなる支持部材(
6)を設け、回転軸(7)により回転できるように、図
示してないが上記と同様の内視鏡(1)の収納部(4)
に配設してあり、通常はバネ(21)により、ある位置
に保持されている。」二記超音波送受波振動子(5)を
駆動する駆動手段である電磁石(22)及び(23)を
上記軟磁性材料からなる支持部材(6)の回転方向に対
向して配設しである。上記電磁石(22)及び(23)
の励磁電流を変えることにより磁性材料からなる支持部
材(6)は吸引力を受け、超音波送受波振動子(5)は
いずれかの方向へ回転する。なお、回転角度位置検出手
段として、上記電磁石(22)及び(23)の励磁電流
から検出してもよいし、又別個に第2図のようにポテン
ションメータ(14)を設けてもよい。
That is, FIG. 3 shows an embodiment of the present invention, in which the ultrasonic wave transmitting/receiving transducer (5) is integrally formed with a support member (
Although not shown, a storage section (4) for the endoscope (1) similar to the above is provided so that it can be rotated by the rotation axis (7).
It is usually held in place by a spring (21). Electromagnets (22) and (23), which are driving means for driving the ultrasonic wave transmitting/receiving transducer (5), are arranged opposite to each other in the rotational direction of the support member (6) made of the soft magnetic material. be. The above electromagnets (22) and (23)
By changing the excitation current, the support member (6) made of a magnetic material receives an attractive force, and the ultrasonic transducer (5) rotates in either direction. The rotation angle position detection means may be detected from the excitation current of the electromagnets (22) and (23), or a potentiometer (14) may be separately provided as shown in FIG.

第4図は本発明の回転角度位置検出手段の一実施例で、
回転軸(7)に取付けた遮光板(24)を挟んでLED
等からなる発光素子(25)とフォトダイオード等から
なる受光素子(26)が配設しである。上記回転軸(7
)は直接又は適当な減速機構を介して、上記の超音波送
受波振動子(5)の回転軸(7)に関連させる。
FIG. 4 shows an embodiment of the rotation angle position detection means of the present invention.
The LED is placed across the light shielding plate (24) attached to the rotating shaft (7).
A light emitting element (25) consisting of a photodiode or the like and a light receiving element (26) consisting of a photodiode or the like are provided. The above rotating shaft (7
) is related to the rotating shaft (7) of the ultrasonic wave transmitting/receiving transducer (5), either directly or via a suitable speed reduction mechanism.

したがって、超音波送受波振動子(5)が回転すると、
それに対応して遮光板(24)が移動し7て、受光素子
(26)の受光量が変化して超音波送受波振動子(5)
の回転角度位置を検出することができる。この際、遮光
板(24)のエツジ部(27)を図のような直線状では
なく適当な曲線状に設定することにより超音波送受波振
動子(5)の回転角度をαとした場合、受光素子(27
)にSinα又はCosαに比例した検出電圧を得るこ
とが可能になる。
Therefore, when the ultrasonic wave transmitting/receiving transducer (5) rotates,
Correspondingly, the light shielding plate (24) moves 7, and the amount of light received by the light receiving element (26) changes, causing the ultrasonic wave transmitting/receiving transducer (5) to change.
The rotational angular position of the can be detected. At this time, if the rotation angle of the ultrasonic transducer (5) is set to α by setting the edge portion (27) of the light shielding plate (24) not in a straight line as shown in the figure but in an appropriate curved shape, Light receiving element (27
), it becomes possible to obtain a detection voltage proportional to Sinα or Cosα.

第5図は回転角度位置検出手段の他の実施例で、超音波
送受波振動子(5)の回転角度位置検出手段として、ロ
ータリーエンコーダ(28)を用い、光学的に透明な円
板(29)はその外周部に多数の格子(30)を刻み回
転軸(7)に取付けである。円板(29)を挾んで発光
素子(25)と受光素子(26)が対向して配設してあ
り、円板(29)が回転した場合に通過した格子(30
)の数を検出する。
FIG. 5 shows another embodiment of the rotational angular position detection means, in which a rotary encoder (28) is used as the rotational angular position detection means of the ultrasonic wave transmitting/receiving transducer (5), and an optically transparent disc (29) is used. ) has a large number of gratings (30) carved on its outer periphery and is attached to a rotating shaft (7). A light-emitting element (25) and a light-receiving element (26) are arranged facing each other with the disc (29) in between, and when the disc (29) rotates, the grid (30
) to detect the number of

したがって、回転軸(7)を超音波送受波振動子(5〉
の回転軸(7)に直接又はより高い分解能を得るために
適当な歯車機構を介して関連することにより、」二記超
音波送受波振動子(5)の回転角度に比例したパルスが
受光素子(26)から得られ回転角度の検出が可能にな
る。
Therefore, the rotation axis (7) is connected to the ultrasonic transceiver transducer (5>
The pulse proportional to the rotation angle of the ultrasonic transmitting/receiving transducer (5) is transmitted directly to the rotation axis (7) of the light-receiving element or by being connected to the rotation axis (7) of (26), it becomes possible to detect the rotation angle.

又、受光素子(27)により得られた回転角度位置検出
パルスにより超音波パルスを発生ずるための送信回路を
l・リガすれば一定の角度毎の走査線を有するセクタス
キャン断層像を得ることができる。
Furthermore, by triggering the transmitting circuit for generating ultrasonic pulses using the rotational angle position detection pulse obtained by the light receiving element (27), it is possible to obtain a sector scan tomographic image having scanning lines for each fixed angle. can.

又、このようなロータリーエンコーダ(28)のかわり
に第1図のような機構においては回転角度位置検出手段
としてリニアエンコーダを用いることが可能である。
Furthermore, instead of such a rotary encoder (28), a linear encoder can be used as the rotation angle position detecting means in the mechanism shown in FIG.

なお、上記超音波送受波振動子(5)としては表面を平
面状の振動子としたものの他に、振動子の表面を第7図
の如く凹面状(31)にすることにより超音波ビームを
収束することができる。
In addition to the ultrasonic transducer (5) having a planar surface, the ultrasonic wave transmitting/receiving transducer (5) may have a concave surface (31) as shown in Fig. 7 to transmit the ultrasonic beam. can converge.

又、第8図の如く超音波送受波振動子(5)の表面に片
面を凹状に加工した音響レンズ(32)を接合すること
により超音波ビームを収束することができる。
Further, as shown in FIG. 8, the ultrasonic beam can be focused by bonding an acoustic lens (32) having one side concavely processed to the surface of the ultrasonic transmitting/receiving transducer (5).

このように収束させて焦点をもつ振動子を用いることに
より診断部位での超音波ビームは鋭くなり得られた断層
像の方位分解能を向上することができる。
By using a vibrator having a convergent focus in this manner, the ultrasound beam at the diagnostic site becomes sharp, and the lateral resolution of the obtained tomographic image can be improved.

第9図は直視形内視鏡の実施例で、(2)は観察用光学
系、(3)は照明用光学系、(4)は収納部、(5)は
超音波送受波振動子、(7)は回転軸である。
FIG. 9 shows an example of a direct-view endoscope, in which (2) is an observation optical system, (3) is an illumination optical system, (4) is a storage section, (5) is an ultrasonic wave transmitting/receiving transducer, (7) is the rotation axis.

又、上記実施例においても、内視鏡(1)の先端部の開
口(33)を第2図に示したように可視性を有する氷袋
(34)で密閉した状態に構成し、内視鏡(1)の流体
等を導入する通路(図示してない)から脱気水を導入し
て用いることもできる。
Also in the above embodiment, the opening (33) at the tip of the endoscope (1) is sealed with a visible ice bag (34) as shown in FIG. Degassed water can also be introduced from a channel (not shown) for introducing fluid etc. in the mirror (1).

次に本発明に係わる超音波診断装置による超音波断層像
形成プロセスは第10図にブロック線=9− 図で示したように角度測定手段(35)よりの角度情報
によりパルス発生器(36)よりパルスを超音波送受波
振動子(5)に印加し超音波を体腔壁に発射し、体内各
組織の音響インピーダンス(ある部分の音響インピーダ
ンスをZとし、その密度をρ、音速をCとすると、Z−
ρC)の差に起因する反射波を超音波送受波振動子(5
)で受け、その反射信号を受信増幅部(37)で増幅し
、画像表示部(13)の輝度を変調すると同時に角度情
報より画像表示部(13)のxy偏向信号を作りパルス
発生器(36)と同期させて掃引信号を画像表示部(1
3)に印可し、第11図に示すように超音波送受波振動
子(5)を回転軸(7)を中心にθ回転させることによ
り体腔内のセクタースキャン超音波断層像を体外の画像
表示部(13)上に形成することができるものである。
Next, the ultrasonic tomographic image forming process by the ultrasonic diagnostic apparatus according to the present invention is shown in FIG. A pulse is applied to the ultrasonic transmitting/receiving transducer (5) to emit ultrasonic waves to the body cavity wall, and the acoustic impedance of each tissue in the body (where Z is the acoustic impedance of a certain part, ρ is the density, and C is the speed of sound) , Z-
The reflected waves caused by the difference in
), the reflected signal is amplified by the reception amplification section (37), modulates the brightness of the image display section (13), and at the same time generates an xy deflection signal for the image display section (13) based on the angle information. ), the sweep signal is sent to the image display section (1
3) and rotate the ultrasonic transducer (5) by θ around the rotation axis (7) as shown in Fig. 11 to display the sector scan ultrasonic tomogram inside the body cavity as an image outside the body. (13).

よって、本発明に係わる体腔内超音波診断装置は体腔内
へ超音波送受波振動子を挿入し超音波断層像を造影する
ことにより造影しようとする諸器管までの距離が比較的
近くなるため生体&II織による超音波エネルギーの吸
収の影響を受けにくく、5MH,〜IOMH,という高
い周波数(波長が短くなる)を使用した造影が可能とな
り像の解像度をあげることができる。
Therefore, the intrabody cavity ultrasound diagnostic apparatus according to the present invention inserts an ultrasound transducer into the body cavity and contrasts an ultrasound tomographic image, so that the distance to the various organs to be contrasted becomes relatively short. It is less susceptible to the absorption of ultrasonic energy by the tissue of the living body, and it is possible to perform contrast imaging using a high frequency (shorter wavelength) of 5MH to IOMH, thereby increasing the resolution of the image.

又、体腔内より超音波を送受するため、不均質な皮下脂
肪層や骨等の障害となる部分を通ることなく比較的均質
な組織を通して見ようとする諸器管を造影することがで
きるためS/Nの良い超音波像を得ることができる。
In addition, since ultrasound is transmitted and received from within the body cavity, it is possible to image various organs through relatively homogeneous tissues without passing through obstructive areas such as heterogeneous subcutaneous fat layers and bones. /N good ultrasound images can be obtained.

又、膵臓のように解剖学的な位置が体表からの診断に不
適な臓器を胃壁を通し容易に造影できる。
Furthermore, an organ such as the pancreas whose anatomical location is inappropriate for diagnosis from the body surface can be imaged easily through the stomach wall.

さらに、挿入部先端部における構成が簡単となり、挿入
が容易となると共に、患者に与える苦痛も軽減される。
Furthermore, the configuration at the distal end of the insertion portion is simplified, making insertion easier and reducing pain to the patient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は装置の一例を示した断面図、第2図は装置の他
の一例を示した断面図、第3図は本発明の一実施例を示
した正面図、第4図は本発明に用いられる回転角度位置
検出手段の一実施例を示した斜視図、第5図は本発明に
用いられる回転角度位置検出手段の他の実施例を示した
斜視図、第6図は第5図の円板部分の拡大図、第7図は
本発明に用いられる超音波送受波振動子の他の実施例を
示した正面図、第8図は本発明に用いる超音波送受波振
動子の他の実施例を示した正面図、第9図は直視形内視
鏡に実施した状態を示した先端側面図、第10図は超音
波断層像形成プロセスを示したブロック線図、第11図
は表示状態を示した図である。 1・=−・−・−・内視鏡、2−−−−−−−−−一観
察用光学系、3−・−・−照明用光学系、4・−・・−
収納部、5−・−・超音波送受波振動子、7−・−・−
・−回転軸、8・15・17・22・23−・−・駆動
手段、11・14・24・25・26・28−・一回転
角度位置検出手段。 ワt 第5図      第6図 第7N     第8区 第10図
Fig. 1 is a sectional view showing one example of the device, Fig. 2 is a sectional view showing another example of the device, Fig. 3 is a front view showing an embodiment of the present invention, and Fig. 4 is a sectional view showing an example of the device. FIG. 5 is a perspective view showing another embodiment of the rotational angular position detection means used in the present invention, and FIG. 6 is a perspective view showing another embodiment of the rotational angular position detection means used in the present invention. Fig. 7 is a front view showing another embodiment of the ultrasonic transducer used in the present invention, and Fig. 8 is an enlarged view of the disc portion of the ultrasonic transducer used in the present invention. FIG. 9 is a front view showing an embodiment of the present invention, FIG. 9 is a side view of the distal end showing the state implemented in a direct view endoscope, FIG. 10 is a block diagram showing the ultrasonic tomographic image forming process, and FIG. 11 is a It is a figure showing a display state. 1・=−・−・−・Endoscope, 2−−−−−−−−1 observation optical system, 3−・−・−illumination optical system, 4・−・・−
Storage part, 5-・-・Ultrasonic wave transmitting/receiving transducer, 7-・-・-
- Rotating shaft, 8, 15, 17, 22, 23 - - Drive means, 11, 14, 24, 25, 26, 28 - One rotation angle position detection means. Figure 5 Figure 6 Figure 7N Section 8 Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも収納部を有する休腔内挿入部と、上記
収納部に回転可能に取付けた超音波送受波振動子と、上
記超音波送受波振動子を回転させる電磁石と、上記超音
波送受波振動子を所定の位置に保持させるバネ部材とを
具備したことを特徴とする体腔内超音波診断装置。
(1) An intraluminal insertion section having at least a storage section, an ultrasonic transceiver transducer rotatably attached to the storage section, an electromagnet for rotating the ultrasonic transceiver transducer, and an ultrasonic transceiver transducer. An intrabody cavity ultrasound diagnostic apparatus comprising a spring member for holding a transducer in a predetermined position.
(2)上記超音波送受波振動子の回転角度位置検出手段
が上記超音波送受波振動子の近傍に設けられていること
を特徴とする特許請求の範囲第1項記載の体腔内超音波
診断装置。
(2) Intrabody cavity ultrasound diagnosis according to claim 1, characterized in that the rotational angle position detection means of the ultrasonic transducer is provided near the ultrasonic transducer. Device.
(3)上記体腔内挿入部は、少なくとも観察用光学系、
照明用光学系を有する内視鏡であることを特徴とする特
許請求の範囲第1項記載の体腔内超音波診断装置。
(3) The body cavity insertion section includes at least an observation optical system,
The intrabody cavity ultrasound diagnostic apparatus according to claim 1, which is an endoscope having an illumination optical system.
JP17629286A 1986-07-26 1986-07-26 Apparatus for ultrasonic diagnosis of body cavity Granted JPS6216748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17629286A JPS6216748A (en) 1986-07-26 1986-07-26 Apparatus for ultrasonic diagnosis of body cavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17629286A JPS6216748A (en) 1986-07-26 1986-07-26 Apparatus for ultrasonic diagnosis of body cavity

Publications (2)

Publication Number Publication Date
JPS6216748A true JPS6216748A (en) 1987-01-24
JPS639861B2 JPS639861B2 (en) 1988-03-02

Family

ID=16011035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17629286A Granted JPS6216748A (en) 1986-07-26 1986-07-26 Apparatus for ultrasonic diagnosis of body cavity

Country Status (1)

Country Link
JP (1) JPS6216748A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137844U (en) * 1989-04-17 1990-11-16
JP6984098B2 (en) 2017-10-26 2021-12-17 日立造船株式会社 Gas generator and gas generation method

Also Published As

Publication number Publication date
JPS639861B2 (en) 1988-03-02

Similar Documents

Publication Publication Date Title
US10105062B2 (en) Miniaturized photoacoustic imaging apparatus including a rotatable reflector
US5176141A (en) Disposable intra-luminal ultrasonic instrument
KR101517252B1 (en) Scanning mechanisms for imaging probe
US4546771A (en) Acoustic microscope
EP2298175B1 (en) Three-dimensional probe apparatus
KR20110137829A (en) Universal multiple aperture medical ultrasound probe
JPH03280939A (en) Ultrasonic probe
JPH0419860B2 (en)
JPH06189958A (en) Ultrasonic wave type cavity diagnostic device and method thereof
JP2010068923A (en) Ultrasonic diagnostic apparatus
GB1591687A (en) Apparatus for generating ultrasonic scanning beam
Bhargava Principles and practice of ultrasonography
JPS624131B2 (en)
JPS6240018B2 (en)
CN206303873U (en) Optoacoustic bimodulus endoscope probe
JPS6216748A (en) Apparatus for ultrasonic diagnosis of body cavity
JPH0919431A (en) Ultrasonic wave transducer
JPH023607B2 (en)
JPH0556978A (en) Ultrasonic diagnostic device
JPS6137943B2 (en)
JP2002336258A (en) Ultrasonic probe
JPS6137942B2 (en)
JP3394564B2 (en) Catheter type ultrasound probe
JP3225526B2 (en) Ultrasound therapy equipment
Nishina et al. Principles and practice of endoscopic ultrasound