JPS62167390A - Method for treating by-product gas - Google Patents

Method for treating by-product gas

Info

Publication number
JPS62167390A
JPS62167390A JP61006572A JP657286A JPS62167390A JP S62167390 A JPS62167390 A JP S62167390A JP 61006572 A JP61006572 A JP 61006572A JP 657286 A JP657286 A JP 657286A JP S62167390 A JPS62167390 A JP S62167390A
Authority
JP
Japan
Prior art keywords
gas
product gas
membrane
product
separate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61006572A
Other languages
Japanese (ja)
Inventor
Shiro Fujii
史朗 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61006572A priority Critical patent/JPS62167390A/en
Publication of JPS62167390A publication Critical patent/JPS62167390A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To obtain a high-calorie gas at low cost, by passing a by-product gas through gas permeable membranes at plural stages having CO/CO2 preferentially separating properties to separate and remove a CO2 component and moving the resultant gas through a gas absorbing column to give concentrated CO. CONSTITUTION:A by-product gas from which dust is removed by a filter 1 is passed through gas permeable membranes (e.g., dimethyl silicon membrane, fluorine-containing olefin siloxane copolymer membrane, polycarbonate/ polysiloxane membrane, etc.,) 2a and 2b at plural stages, having preferentially separating properties to separate and remove its CO2 component. Then, the resultant gas is moved through a gas absorbing column 3 to give concentrated CO.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製鉄所等において発生する副生ガスの処理方法
、詳細には副生ガスのカロリーアップを図ることができ
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for treating by-product gas generated in a steel mill or the like, and more particularly to a method for increasing the calorie content of the by-product gas.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

製鉄所ではコークス炉ガス、高炉ガス、転炉等、櫨々の
副生ガスが発生する。この種の副生ガスは、コークス炉
ガスを除きカロリーが比較的低く、特に高炉ガスについ
ては、N、 、 Co、成分が非常に多く、燃料等とし
ての利用価値が極めて低いという雑煮がある。
Steelworks generate byproduct gases such as coke oven gas, blast furnace gas, and converter furnace gas. This type of by-product gas, with the exception of coke oven gas, has a relatively low calorie, and blast furnace gas in particular has a very high content of N, Co, and other components, and has extremely low utility value as a fuel.

このような高炉ガス中のN、 、 co、は、所謂コソ
ーブ法等の湿式法により除去することができるが、湿式
法はコストが高く採算ベースに乗らないという問題があ
る。一方、乾式の方法として知られる所謂圧力変動式ガ
ス吸着法(以下、P8Aと称す)を用いることもできる
が、このPEAはCOとCOlを同時に分離する能力が
十分でなく、結局、2段階のPEA設備を設け、COl
をまず分離した後Coを濃縮するという方法か、湿式と
の組み合せで処理するという方法を採らざるを得ない。
Such N, , and co in blast furnace gas can be removed by a wet method such as the so-called Cosorb method, but the wet method has a problem in that it is expensive and unprofitable. On the other hand, it is also possible to use the so-called pressure fluctuation gas adsorption method (hereinafter referred to as P8A), which is known as a dry method, but this PEA does not have sufficient ability to simultaneously separate CO and COl, and in the end, a two-stage method is used. Equipped with PEA equipment, COl
There is no choice but to adopt a method of first separating Co and then concentrating Co, or a method of processing in combination with a wet method.

本発明はこのような従来の問題に鑑み、高炉ガス等の副
生ガス中のN、 、 Go、分を低コストで除去し、副
生ガスのカロリーアップを図ることができる方法を提供
せんとするものである。
In view of these conventional problems, the present invention aims to provide a method that can remove N, , Go, and other components from by-product gas such as blast furnace gas at low cost and increase the calorie content of the by-product gas. It is something to do.

〔問題を解決するための手段〕[Means to solve the problem]

このため本発明は、 Co、 /Coのガス選択分離性
を有するガス透過膜の存在に着目し、かかるガス透過膜
によるCQ、分離とガス吸着塔によるCo濃縮との組み
合せにより、高カロリーガスを効率的に得られる方法を
開発したものである。
Therefore, the present invention focuses on the existence of a gas permeable membrane that has a gas selective separation property of Co, /Co, and by combining the CQ and separation by such a gas permeable membrane and Co concentration by a gas adsorption tower, high calorie gas can be removed. We have developed a method that can be obtained efficiently.

すなわち本発明は、副生ガスを、Co、 /C0選択分
離性を有する複数段階のガス透過膜を通過せしめること
によりそのCo、成分を分離除去し、しかる後ガス吸着
塔を通過せしめ、濃縮されたCoを得るようにしたこと
をその基本的特徴とする。
That is, in the present invention, the by-product gas is passed through a multi-stage gas permeable membrane having a selective separation property of Co and /C0 to separate and remove its Co and components, and then passed through a gas adsorption tower to be concentrated. Its basic feature is that it obtains Co.

第1図は本発明法を行う設備の基本構成を示すものであ
る。
FIG. 1 shows the basic configuration of equipment for carrying out the method of the present invention.

転炉ガス、高炉ガス等の副生ガスは、フィルタ(1)で
ダストが除去された後、CO,/Co選択分離特性を有
するガス透過膜(2)を通され、そのCo、成分が分離
除去される。このガス透過膜は、ガス分子の拡散が膜を
通して行われることにより、特定のガス成分が選択的に
透過せしめられるもので、その分*特性は2つのガス成
分間での透過量の比たる選択分離係数(例えば、Co、
 /CO冨4)で表わされる。
By-product gases such as converter gas and blast furnace gas are passed through a gas permeable membrane (2) with CO, /Co selective separation characteristics after dust is removed by a filter (1), and their Co and other components are separated. removed. This gas permeable membrane allows specific gas components to permeate selectively by diffusing gas molecules through the membrane, and its characteristics are determined by the ratio of the amount of permeation between the two gas components. Separation factor (e.g. Co,
/CO 4).

この種のガス透過膜では、その分離特性が大きくなると
ガス透過係数が小さくなり処理効率が悪くなるという問
題があり、このため本発明では、比較的小さいCO2/
CO選択分離性のガス透過膜を複数段設け、副生ガスを
これらのガス透過膜を順次通過せしめることによりCO
,の効果的な分離とガス処理効果の確保とを図っている
。第1図では2段のガス透過膜(2a) (2b)が設
けられており、副生ガスは第1のガス透過& (2sL
)及び第2のガス透過膜(2b)を屓次通され、それぞ
れでCO!成分を除去される。
This type of gas permeable membrane has the problem that when its separation characteristics increase, the gas permeability coefficient decreases and the treatment efficiency deteriorates. Therefore, in the present invention, the relatively small CO2/
CO is removed by providing multiple stages of gas permeable membranes that selectively separate CO and allowing the by-product gas to pass through these gas permeable membranes in sequence.
, and to ensure effective separation of gas and gas treatment effects. In Figure 1, two stages of gas permeation membranes (2a) (2b) are provided, and by-product gas is passed through the first gas permeation & (2sL
) and the second gas permeable membrane (2b), and CO! components are removed.

ガス透過@(2)としては、例えばジメチル・シリコン
族、含フッソ・オレフィン・シロキサン共重合体膜、ポ
リカーボネート/ポリシロキサン展、塩化ビニール・液
晶フッ化炭素膜等が用いられる。(PαWψ−)・シリ
コン膜の分離特性は次の通りである。
As the gas permeation@(2), for example, a dimethyl silicone film, a fluorine-containing olefin-siloxane copolymer film, a polycarbonate/polysiloxane film, a vinyl chloride/liquid crystal fluorocarbon film, etc. are used. (PαWψ−)・The separation characteristics of the silicon film are as follows.

(ガス成分)/(ガス成分)  選択分離係数0、/N
、         2 Co、  /  H,4,9 Co、 /  Co         9.0以上のよ
うにしてCO,成分の大部分が除去された副生ガスはP
SA法等によるガス吸着塔(3)を通され、これにより
CO成分以外のガス成分、特1こN、が通過してCoが
吸着濃縮し、高CQ 9度のガスが得られる。このガス
吸着塔(3)及びこれ番こ使用される吸着剤は従来から
のものを用いることができる。この吸着剤としては通常
、合成ゼオライトが用いられる。第2図はこの種の吸着
剤のCo 、 N、分離特性(CO選択性冨(COの動
的吸着量)/((C0の動的吸着量〕+(Nsの動的吸
着量〕))を示すものである。
(Gas component) / (Gas component) Selective separation coefficient 0, /N
, 2 Co, / H, 4,9 Co, / Co 9.0 The by-product gas from which most of the CO components have been removed is P.
The gas is passed through a gas adsorption tower (3) using the SA method or the like, whereby gas components other than the CO component, especially N, pass through, where Co is adsorbed and concentrated, resulting in a gas with a high CQ of 9 degrees. The gas adsorption tower (3) and the adsorbent used here can be conventional ones. Synthetic zeolite is usually used as this adsorbent. Figure 2 shows the Co, N, and separation characteristics of this type of adsorbent (CO selectivity (dynamic adsorption amount of CO)/((dynamic adsorption amount of CO) + (dynamic adsorption amount of Ns))) This shows that.

なお−第1図1こおいて、ガス透過膜(2a) (zb
)を備えたCO,分離装置(4)の入側にはブロワ(5
)が、また出側には真空ポンプ(6) (7)が設けら
れ、またガス吸着塔(3)の入側にはコンプレッサ(8
)が設けられている。
Furthermore, in Fig. 1, the gas permeable membrane (2a) (zb
) and a blower (5) on the inlet side of the separator (4).
), vacuum pumps (6) (7) are installed on the outlet side, and a compressor (8) is installed on the inlet side of the gas adsorption tower (3).
) is provided.

〔実施例〕〔Example〕

人、転炉ガス 第1表は転炉ガスを第3図に示す設備で処理した際の図
中各位置(■、■〜■)でのガス組成及びガス量を示す
ものである。なお、第3図の設備では2段階のガス透過
膜(2m) (2b)にジメチル・シリコン膜を用いて
いる。また、(9)は触媒燃焼器である。
Converter gas Table 1 shows the gas composition and gas amount at each position (■, ■ to ■) in the figure when the converter gas is treated with the equipment shown in FIG. In the equipment shown in FIG. 3, a dimethyl silicone membrane is used for the two-stage gas permeable membrane (2m) (2b). Further, (9) is a catalytic combustor.

第  1  表 B、高炉ガス 第2表は高炉ガスを第3図に示す設備で処理した際の図
中各位置でのガス組成及びガス量を示すものである。な
お、この場合もガス透過a (21) (2b)として
ジメチル・シリコン膜を用いている。
Table 1 B and Blast Furnace Gas Table 2 show the gas composition and gas amount at each position in the figure when blast furnace gas was treated with the equipment shown in FIG. In this case as well, a dimethyl silicon film is used as the gas permeation a (21) (2b).

第2表 〔発明の効果〕 以上述べたように本発明によれば、所謂乾式法により0
01等のガス成分を適切に分離除去シ高カロリーのガス
を低コストで得ることができる効果がある。
Table 2 [Effects of the Invention] As described above, according to the present invention, the so-called dry method
This method has the effect of appropriately separating and removing gas components such as 01, etc., and obtaining high-calorie gas at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法を行う設備の基本構成を示す説明図で
ある。第2図は本発明で利用されるガス吸着剤のGo 
、 N、分離特性を示すものである。第3図は実施例に
供された処理設備を示す説明図である。 図において、(2a、)(2b)はガス透過膜、(3)
はガス吸着塔である。
FIG. 1 is an explanatory diagram showing the basic configuration of equipment for carrying out the method of the present invention. Figure 2 shows Go of the gas adsorbent used in the present invention.
, N indicates separation characteristics. FIG. 3 is an explanatory diagram showing the processing equipment used in the example. In the figure, (2a,) (2b) are gas permeable membranes, (3)
is a gas adsorption tower.

Claims (1)

【特許請求の範囲】[Claims] CO_2及びCOを含む副生ガスの処理方法において、
副生ガスを、CO_2/CO選択分離性を有する複数段
階のガス透過膜を通過せしめることによりそのCO_2
成分を分離除去し、しかる後ガス吸着塔を通過せしめ、
濃縮されたCOを得ることを特徴とする副生ガスの処理
方法。
In a method for processing by-product gas containing CO_2 and CO,
The CO_2 is removed by passing the by-product gas through a multi-stage gas permeable membrane with CO_2/CO selective separation.
The components are separated and removed, and then passed through a gas adsorption tower,
A method for processing by-product gas, characterized by obtaining concentrated CO.
JP61006572A 1986-01-17 1986-01-17 Method for treating by-product gas Pending JPS62167390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61006572A JPS62167390A (en) 1986-01-17 1986-01-17 Method for treating by-product gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61006572A JPS62167390A (en) 1986-01-17 1986-01-17 Method for treating by-product gas

Publications (1)

Publication Number Publication Date
JPS62167390A true JPS62167390A (en) 1987-07-23

Family

ID=11642047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006572A Pending JPS62167390A (en) 1986-01-17 1986-01-17 Method for treating by-product gas

Country Status (1)

Country Link
JP (1) JPS62167390A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863492A (en) * 1988-11-28 1989-09-05 Uop Integrated membrane/PSA process and system
US5482539A (en) * 1993-09-22 1996-01-09 Enerfex, Inc. Multiple stage semi-permeable membrane process and apparatus for gas separation
US6085549A (en) * 1998-04-08 2000-07-11 Messer Griesheim Industries, Inc. Membrane process for producing carbon dioxide
US6128919A (en) * 1998-04-08 2000-10-10 Messer Griesheim Industries, Inc. Process for separating natural gas and carbon dioxide
JP2007069209A (en) * 2005-09-07 2007-03-22 Boc Group Inc:The Gas purification method
JP2008157226A (en) * 2006-12-19 2008-07-10 General Electric Co <Ge> Method and system for using low btu fuel gas in gas turbine
US20090235723A1 (en) * 2008-03-18 2009-09-24 Areva Np Gmbh Sensor line for monitoring for and locating leaks and method for its production
WO2012153808A1 (en) * 2011-05-11 2012-11-15 日立造船株式会社 Carbon dioxide separation system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863492A (en) * 1988-11-28 1989-09-05 Uop Integrated membrane/PSA process and system
US5482539A (en) * 1993-09-22 1996-01-09 Enerfex, Inc. Multiple stage semi-permeable membrane process and apparatus for gas separation
US5873928A (en) * 1993-09-22 1999-02-23 Enerfex, Inc. Multiple stage semi-permeable membrane process and apparatus for gas separation
US6085549A (en) * 1998-04-08 2000-07-11 Messer Griesheim Industries, Inc. Membrane process for producing carbon dioxide
US6128919A (en) * 1998-04-08 2000-10-10 Messer Griesheim Industries, Inc. Process for separating natural gas and carbon dioxide
JP2007069209A (en) * 2005-09-07 2007-03-22 Boc Group Inc:The Gas purification method
JP2008157226A (en) * 2006-12-19 2008-07-10 General Electric Co <Ge> Method and system for using low btu fuel gas in gas turbine
KR101362603B1 (en) * 2006-12-19 2014-02-12 제너럴 일렉트릭 캄파니 Method and system for using low btu fuel gas in a gas turbine
US20090235723A1 (en) * 2008-03-18 2009-09-24 Areva Np Gmbh Sensor line for monitoring for and locating leaks and method for its production
US9103742B2 (en) * 2008-03-18 2015-08-11 Areva Gmbh Sensor line for monitoring for and locating leaks and method for its production
WO2012153808A1 (en) * 2011-05-11 2012-11-15 日立造船株式会社 Carbon dioxide separation system
US9205382B2 (en) 2011-05-11 2015-12-08 Hitachi Zosen Corporation Carbon dioxide separation system

Similar Documents

Publication Publication Date Title
KR960016945A (en) Variable pressure adsorption
JP3850030B2 (en) Gas separation process using semi-permeable membrane in multiple stages
JP3152389B2 (en) Separation and recovery method of fluorochemical by membrane
US3659400A (en) Carbon dioxide removal from breathable atmospheres
KR840005356A (en) How to remove nitrogen gas from N₂ and CO, or a mixture of N₂, CO and CO
JPS62167390A (en) Method for treating by-product gas
JP2009226257A (en) Process for separation of blast furnace gas, and system of separating blast furnace gas
US20140053565A1 (en) System and Method for Processing Greenhouse Gases
CA2186976A1 (en) Ozone enriching method
Vorotyntsev High purification of gases by diffusion through polymer membranes
CA2443233A1 (en) Method for treating a gas mixture by adsorption
CN110156016A (en) The combined recovery device and method of carbon dioxide in flue gas, nitrogen and oxygen
KR830008537A (en) Adsorption Separation Method of Mixed Gas
RU94034113A (en) Process for manufacturing incomplete oxidation hydrocarbon products
CA2205364A1 (en) Very high purity nitrogen by membrane separation
JP4480505B2 (en) Siloxane remover and siloxane removal method
JP4450944B2 (en) Perfluorocarbon recovery method and decomposition method
CN110127700A (en) The combined recovery device and method of carbon dioxide in flue gas, nitrogen and oxygen
KR850000358A (en) Air separation method
JPS62153389A (en) Concentration of methane
CN210150733U (en) Combined recovery device for carbon dioxide, nitrogen and oxygen in flue gas
CN210134073U (en) Comprehensive treatment device for blast furnace gas
JPH11100204A (en) Method for production of ultrapure inert gas and apparatus therefor
Wawrzyńczak et al. Effect of desorption pressure on CO2 separation from combustion gas by means of zeolite 13X and activated carbon
JPS62153390A (en) Concentration and separation of methane