JPS62166757A - Field magnet - Google Patents

Field magnet

Info

Publication number
JPS62166757A
JPS62166757A JP910286A JP910286A JPS62166757A JP S62166757 A JPS62166757 A JP S62166757A JP 910286 A JP910286 A JP 910286A JP 910286 A JP910286 A JP 910286A JP S62166757 A JPS62166757 A JP S62166757A
Authority
JP
Japan
Prior art keywords
magnet
magnetization
field magnet
theta
cogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP910286A
Other languages
Japanese (ja)
Inventor
Tomomitsu Nanbu
南部 伴充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP910286A priority Critical patent/JPS62166757A/en
Publication of JPS62166757A publication Critical patent/JPS62166757A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cogging quantity by widely cutting out and removing the angles of four (4) corners of a circular arc field magnet using an anisotropic magnet and by making the above-mentioned field magnet rhombic. CONSTITUTION:The four (4) corners of a circular arc-shaped field magnet is cut out into a rhomboid as shown in the figure. Thus the magnetic waveform is as shown in the figure. Usually its characteristic is as given by a, and it is possible to make it b by controlling magnetization, but with greatly scattering results. Nevertheless, suppose the field magnet is shaped as above-mentioned, the magnetization can be implemented in full magnetization without the control of magnetization. Particularly, when the removing angle a is theta/4-theta/3 and m is theta/4-theta/3, a good result is obtainable and the cogging quantity can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は直流モータ等の回転機におけるコギングを最小
にし、回転を滑らかにするだめの、界磁磁石に関するら
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a field magnet for minimizing cogging and smoothing rotation in a rotating machine such as a DC motor.

従来の技術 近年、直流モータはあらゆる分野に機構の駆動源として
使用されており、特に小型化、高性能化、回転の円滑さ
、大出力化の要望が強くなってきている。
BACKGROUND OF THE INVENTION In recent years, DC motors have been used as drive sources for mechanisms in all fields, and there has been an increasing demand for smaller size, higher performance, smoother rotation, and higher output.

以下図面を参照しながら、上述した従来の界磁磁石の一
例について説明する。
An example of the above-mentioned conventional field magnet will be described below with reference to the drawings.

永久磁石式回転機の一例につき、その横断面図を第5図
、第7図として示しである。第5図、第7図において、
1は電機子巻線を巻装する電機子鉄心および整流子から
構成される回転子で、エンドブラケットに軸受を介して
回転自在に保持される。2はフレームであり、界磁磁石
3,4を保持するものである。
A cross-sectional view of an example of a permanent magnet type rotating machine is shown in FIGS. 5 and 7. In Figures 5 and 7,
A rotor 1 is composed of an armature core around which an armature winding is wound and a commutator, and is rotatably held by an end bracket via a bearing. A frame 2 holds the field magnets 3 and 4.

従来この種回転機においては、磁界を発生させるために
界磁磁石を使用していたが、ただ単に回転力を得るため
だけに使われており、そのためより大きな磁束が得られ
るように、より強力な界磁磁石を使用している。
Conventionally, this type of rotating machine used a field magnet to generate a magnetic field, but it was used only to obtain rotational force, so a stronger magnet was used to generate a larger magnetic flux. A field magnet is used.

発明が解決しようとする問題点 しかしながら上記の様な構成では、ただ単に回転力を得
るだけなので、滑らかに回転するというモータの重要な
目的を達成する事が不可能であった。そこで従来、なめ
らかな回転力を得るために、等方性のリング磁石を使い
、着磁操作を行って、着磁波形を滑らかにし、コギング
を減らしていた。
Problems to be Solved by the Invention However, with the above-mentioned configuration, it is impossible to achieve the important purpose of a motor, which is to rotate smoothly, because it merely obtains rotational force. Conventionally, in order to obtain a smooth rotational force, an isotropic ring magnet was used and the magnetization operation was performed to smooth the magnetization waveform and reduce cogging.

ところが、等方性磁石の場合、異方性磁石に比較して磁
力が弱く、より高出力のものが必要となってきた昨今の
機器については、等方性磁石の採用は、その磁力の弱さ
のために採用が困難になってきている。それ故に、より
強力な磁力をもつ異方性磁石が必要となってきた。とこ
ろが、異方性磁石は、等方性磁石に比較して着磁操作が
困難であり、従来は、磁石のもつ磁力を弱めるような着
磁を行うか、第7図、第8図に示す如(磁石を偏肉化し
て着磁を行ってきた。
However, in the case of isotropic magnets, the magnetic force is weaker than that of anisotropic magnets, and for modern devices that require higher output, isotropic magnets are used because of their weaker magnetic force. This makes it difficult to recruit. Therefore, anisotropic magnets with stronger magnetic force have become necessary. However, anisotropic magnets are more difficult to magnetize than isotropic magnets, and conventionally, magnetization has been done in a way that weakens the magnetic force of the magnet, or as shown in Figures 7 and 8. (Magnetization has been done by making magnets with uneven thickness.

しかし、上記方法では、研摩のバラツキ及び着磁操作の
バラツキにより品質の安定化が得られなかった。
However, with the above method, the quality could not be stabilized due to variations in polishing and magnetization operations.

上記方法の前者の着磁操作のバラツキを少なくする目的
で、着磁操作することなくフル着磁全容値の着磁エネル
ギーを供給することにて行う事が出来る様にしたものが
後者の偏肉化した磁石である。この方法に於いても、内
径研摩のバラツキの影響が無視できず、昨今の様に機器
の小型化に伴って、必然的に界磁磁石も、小さく、薄(
なってきているが、あまり薄くなりすぎると、後者の偏
肉化にも限界があり不可能である。
In order to reduce the variation in the magnetization operation in the former method of the above, the latter method can be performed by supplying magnetization energy of the full magnetization value without performing the magnetization operation. It is a magnet that has become a magnet. Even in this method, the influence of variations in internal diameter polishing cannot be ignored, and with the recent miniaturization of equipment, field magnets have also become smaller and thinner (
However, if it becomes too thin, there is a limit to the uneven thickness of the latter and it is impossible.

特に偏肉化は、第7図の偏肉になる0寸法をできるだけ
太き(とることが望ましい。例えば、最大磁石厚みが、
1m〜1 、5 mm程度になると、磁石がフェライト
であるという材料の問題で研摩加工が困難となり、偏肉
させることができず、コギングを減少させる事が困難で
あった。
In particular, for uneven thickness, it is desirable to make the 0 dimension that causes uneven thickness as shown in Figure 7 as thick as possible. For example, if the maximum magnet thickness is
When the thickness is about 1 m to 1.5 mm, polishing becomes difficult due to the problem of the material of the magnet being ferrite, making it impossible to create uneven thickness and making it difficult to reduce cogging.

本発明は上記問題点に鑑み、界磁磁石の形状によってコ
ギングを最小にし、滑らかな回転を提供するものである
In view of the above problems, the present invention minimizes cogging by changing the shape of the field magnet and provides smooth rotation.

問題点を解決するための手段 上記問題点を解決するために本発明の界磁磁石は、異方
性磁石を用いた円弧状の界磁用磁石の四隅の角を太き(
切り取り除去し、菱形形状とするという構成を備えたも
のである。
Means for Solving the Problems In order to solve the above-mentioned problems, the field magnet of the present invention has an arc-shaped field magnet using an anisotropic magnet, with the four corners thickened (
It has a structure in which it is cut out and removed to form a diamond shape.

作用 本発明は上記した構成によって、着磁操作をすることな
(フル着磁で着磁を行う事が出来、かつ薄物磁石におい
ても、偏肉化する事な(、偏肉と同等の効果が得られ、
研摩加工も容易で、コギングの少ない滑らかな回転をす
る磁石が容易に得られるものである。
Effect The present invention has the above-mentioned configuration, so that magnetization can be performed without performing a magnetization operation (full magnetization), and even in a thin magnet, it can be magnetized without uneven thickness (the same effect as uneven thickness). obtained,
Polishing is easy, and a magnet that rotates smoothly with little cogging can be easily obtained.

実施例 以下本発明の一実施例の効果について図面を参照しなが
ら説明する。
EXAMPLE Hereinafter, effects of an example of the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例における磁石形状の外観
図を示すものである。第1図において、1は電機子巻線
を巻装する電機子鉄心および整流子から構成される回転
子で、エンドブラケットに軸受を介して保持されている
。2はフレームであり、界磁磁石3,4を保持するもの
である。第2図は、界磁磁石を示したものである。
FIG. 1 shows an external view of a magnet shape in a first embodiment of the present invention. In FIG. 1, a rotor 1 is composed of an armature core around which an armature winding is wound and a commutator, and is held by an end bracket via a bearing. A frame 2 holds the field magnets 3 and 4. FIG. 2 shows a field magnet.

以上の様に構成された磁石について、第1図、第2図を
用いて、その詳細を説明する。
The details of the magnet configured as described above will be explained with reference to FIGS. 1 and 2.

第1図は、モータの電機子と磁石の相対関係を示すもの
であって、第2図の磁石の四つの隅を切り取り除去する
事によって、磁気波形は第9図すの様になる。通常はa
の特性であり、着磁操作をする事によってbにする事も
可能であるが、非常にバラツキが多くなっている。第2
図の形状であれば、着磁操作をする事なく、フル着磁に
て着磁を行う事ができる。特に除去角度aをθ/4〜θ
/3及びmをe/4〜e/3にした場合良好な効果が得
られ、第10図すに示す様にコギング量も大きく減少さ
せる事が可能である。
FIG. 1 shows the relative relationship between the armature of the motor and the magnets. By cutting and removing the four corners of the magnet in FIG. 2, the magnetic waveform becomes as shown in FIG. 9. Usually a
Although it is possible to change the characteristic to b by performing a magnetization operation, there is a large amount of variation. Second
With the shape shown in the figure, full magnetization can be performed without any magnetization operation. In particular, the removal angle a is θ/4 to θ
Good effects can be obtained when /3 and m are set to e/4 to e/3, and the amount of cogging can be greatly reduced as shown in FIG.

特に偏肉化できない厚みの薄い磁石には効果があり、1
 mm〜1.511+mという偏肉不可のものに適して
いる。この切り取り除去手段は金型にて成形可能であり
、研摩は通常工程のみて充分である。
It is especially effective for thin magnets that cannot be unevenly thickened.
Suitable for things with thickness of mm to 1.511+m that do not allow uneven thickness. This cutting and removing means can be molded using a mold, and polishing is sufficient in a normal process.

以上の様に本実施例によれば、磁石の四つの隅を切り取
り除去し菱形化する事によって、コギング量を減少させ
る事ができ、回転を滑らかにすることが可能となる。
As described above, according to this embodiment, by cutting and removing the four corners of the magnet to form a diamond shape, the amount of cogging can be reduced and rotation can be made smoother.

以下本発明の第2の実施例について、図面を参照しなが
ら説明する。
A second embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明の第2の実施例における磁石形状の外観
図を示すものであり、第4図は界磁磁石を示したもので
ある。以上は第1の実施例の構成と同様なものであるが
、異なるのは界磁磁石がイ14肉化されている点である
FIG. 3 shows an external view of a magnet shape in a second embodiment of the present invention, and FIG. 4 shows a field magnet. The above structure is similar to that of the first embodiment, but the difference is that the field magnet is made into a 14-thick piece.

上記の様に構成された磁石形状について、以下その詳細
を説明する。
The details of the magnet shape configured as described above will be explained below.

第1の実施例では、偏肉化が期待できない磁石の場合に
効力を発揮するが、第2の実施例では、偏肉化可能な磁
石について効果が得られ、第9図のC及び第10図のC
の様な効果がある。つまり、第1の実施例の効果に加え
て偏肉化した効果がイア。
The first embodiment is effective for magnets that cannot be expected to have uneven thickness, but the second embodiment is effective for magnets that can have uneven thickness. C in the diagram
There are effects like. In other words, in addition to the effects of the first embodiment, there is an effect of uneven thickness.

加されるものである。It is added.

発明の効果 以上の様に本発明は、異方性磁石を用いた円弧状の界磁
用磁石において、前記磁石の四つの隅を菱形形状にする
ことによって、コギング量を小さくし、回転をより滑ら
かにする効果を得る事ができる。
Effects of the Invention As described above, the present invention reduces the amount of cogging and improves rotation by making the four corners of the magnet into a rhombus shape in an arc-shaped field magnet using an anisotropic magnet. You can get a smoothing effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における平面図、第2図
は第1図の磁石の斜視図、第3図は本発明の第2の実施
例における平面図、第4図は第3図の磁石の斜視図、第
5図は従来例の平面図、第6図は第5図の磁石の斜視図
、第7図は他の従来例の平面図、第8図は第7図の磁石
の斜視図、第9図は磁石の磁束分布を示す図、第10図
はコギングの変化を示す図である。 2・・・・・・フレーム、3,4・・・・・・界磁磁石
。 代理人の氏名 弁理士 中尾敏力 はか1名第1図 1−一一一口−7 第2図 第 31?J θ 第4図 第5図 5,36図 第7図 第8図 第9図 第10図
1 is a plan view of the first embodiment of the present invention, FIG. 2 is a perspective view of the magnet of FIG. 1, FIG. 3 is a plan view of the second embodiment of the invention, and FIG. 4 is a perspective view of the magnet of FIG. Figure 3 is a perspective view of the magnet, Figure 5 is a plan view of the conventional example, Figure 6 is a perspective view of the magnet in Figure 5, Figure 7 is a plan view of another conventional example, and Figure 8 is Figure 7. FIG. 9 is a diagram showing the magnetic flux distribution of the magnet, and FIG. 10 is a diagram showing changes in cogging. 2...Frame, 3, 4...Field magnet. Name of agent Patent attorney Toshiki Nakao 1 person Figure 1 1-11-7 Figure 2 Figure 31? J θ Figure 4 Figure 5 Figure 5, Figure 36 Figure 7 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] モータハウジングに固定される異方性磁石を用いた円弧
状の界磁用磁石において、前記磁石の四隅の角を大きく
切り取り、菱形形状にした界磁用磁石。
An arc-shaped field magnet using an anisotropic magnet fixed to a motor housing, in which the four corners of the magnet are largely cut off to form a diamond shape.
JP910286A 1986-01-20 1986-01-20 Field magnet Pending JPS62166757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP910286A JPS62166757A (en) 1986-01-20 1986-01-20 Field magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP910286A JPS62166757A (en) 1986-01-20 1986-01-20 Field magnet

Publications (1)

Publication Number Publication Date
JPS62166757A true JPS62166757A (en) 1987-07-23

Family

ID=11711262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP910286A Pending JPS62166757A (en) 1986-01-20 1986-01-20 Field magnet

Country Status (1)

Country Link
JP (1) JPS62166757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249347U (en) * 1988-09-27 1990-04-05
JPH0340869U (en) * 1989-08-29 1991-04-19
EP1271751A1 (en) 2001-06-29 2003-01-02 Asmo Co., Ltd. Electric machine having rhombic permanent magnets

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249347U (en) * 1988-09-27 1990-04-05
JPH0340869U (en) * 1989-08-29 1991-04-19
US5162684A (en) * 1989-08-29 1992-11-10 Mabuchi Motor Co., Ltd. Field magnet for miniature motors
EP1271751A1 (en) 2001-06-29 2003-01-02 Asmo Co., Ltd. Electric machine having rhombic permanent magnets
US6710493B2 (en) 2001-06-29 2004-03-23 Asmo Co., Ltd. Dynamo-electric machine having tapered magnets secured to yoke
KR100554599B1 (en) * 2001-06-29 2006-03-03 아스모 가부시키가이샤 Dynamo-electric machine having tapered magnets secured to yoke

Similar Documents

Publication Publication Date Title
JPH069578Y2 (en) Field magnet for small motors
JPS5950760A (en) Self-starting dc motor with permanent magnet varying in magnetic intensity
JPS62166757A (en) Field magnet
JP2587608B2 (en) Motor
JP2783546B2 (en) Brushless motor
JPH0550223B2 (en)
JPS59113753A (en) Permanent magnet rotary machine
JPS6158456A (en) Motor
JPS6323523A (en) Electrically driven motor with integrated coil having magnetic material injection-molded yoke
JPH03128653A (en) Brushless motor
JPH0649104Y2 (en) Carrying drive step motor
JPH0746657B2 (en) Magnetization method
JPH0475440A (en) Miniature motor
JPS6158455A (en) Motor
JPS60102853A (en) Permanent magnet rotor of motor
JPH01253216A (en) Magnetizer
JPS62126848A (en) Dc motor
JPS6248246A (en) Rotary machine of permanent magnet
JPH0397206A (en) Magnetization magnet and its manufacture
JP2000278894A (en) Motor
JPS645981Y2 (en)
JPS59216458A (en) Dc motor
JPH0410655Y2 (en)
JPH01113572U (en)
JPH01255462A (en) Motor