JPS62166581A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS62166581A
JPS62166581A JP917386A JP917386A JPS62166581A JP S62166581 A JPS62166581 A JP S62166581A JP 917386 A JP917386 A JP 917386A JP 917386 A JP917386 A JP 917386A JP S62166581 A JPS62166581 A JP S62166581A
Authority
JP
Japan
Prior art keywords
layer
quantum well
parallel
well layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP917386A
Other languages
Japanese (ja)
Inventor
Katsuhiko Muto
勝彦 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP917386A priority Critical patent/JPS62166581A/en
Publication of JPS62166581A publication Critical patent/JPS62166581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To completely remove an adverse influence of a barrier layer of an MQW layer on an injecting current without limiting the degree of freedoms of designing an active layer by forming a P-N junction boundary perpendicularly to the inward direction of a multiplex quantum well layer and parallel to a laser light outputting direction, and further forming P- and N-electrodes parallel to the P-N junction boundary. CONSTITUTION:A P-N junction boundary is formed perpendicularly to the inward direction of a multiplex quantum well layer and parallel to a laser light outputting direction, and P- and N-electrodes are formed parallel to the P-N junction boundary. Thus, a current injected from the electrodes flows completely parallel to the surface of the well layer, and injected to the P-N junction boundary without influence of a barrier layer. A substrate is etched perpendicularly to provide vertical sidewalls 26, 27 for forming the P-N junction boundary and the electrodes. A mask for impurity diffusion or ion implantation is formed by emitting an oblique beam and depositing a thin film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信、光計測、光計算等、元利用の産業に
おいて広く用いられる半導体レーザ装置およびその製造
方法に関するもので、特に、MQW半導体レーザ装置の
特性面上等に多大なる効果をもたらす。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device and a manufacturing method thereof that are widely used in industries such as optical communication, optical measurement, and optical calculation. This has a great effect on the characteristics of the device.

従来の技術 現在、光通信、光計測、光計算等の分野で、その光源あ
るいは光機能素子として用いられる半導体レーザ装置の
開発が各方面で盛んに行なわれ、また、一部実用化段階
にある。このような中で。
2. Description of the Related Art Currently, semiconductor laser devices used as light sources or optical functional elements in fields such as optical communication, optical measurement, and optical calculation are actively being developed in various fields, and some of them are at the stage of practical application. . In such a situation.

半導体レーザ装置の低しきい値化、温度安定化。Lower threshold and temperature stabilization of semiconductor laser devices.

単色性の向上、光ガイドとしての低損失性、偏波面の選
択性等の効果が期待される。活性層に多重量子井戸層を
設けた。いわゆるivf Q W (Mu 1 t i
Qu a n t um W’e l lの略)半4体
レーザ装置の提案が行われ、開発が進められている。
It is expected to have effects such as improved monochromaticity, low loss as a light guide, and selectivity of the plane of polarization. A multiple quantum well layer was provided in the active layer. The so-called ivf Q W (Mu 1 t i
A half-four body laser device (abbreviation for Quan tum W'el l) has been proposed and development is progressing.

第3図に、典型的なMQW半導体レーザ装置の概略図(
同図(a))と活性層(MQW層)のエネルギーバンド
図(同図0)))の−例を示す〔例えば、「アプライド
 フィジックス レターズj(W、T。
Figure 3 shows a schematic diagram of a typical MQW semiconductor laser device (
The energy band diagram of the active layer (MQW layer (MQW layer) (0)) of the same figure is shown as an example.

Tsang、 et al、、Appl、 Phys、
 Lett、、39(10)。
Tsang, et al., Appl, Phys.
Lett, 39(10).

15、 November、 1981 、  p、7
86)を参照のこと〕。
15, November, 1981, p. 7
86)].

第3図(a)において、活性層(MQW層)1は、半導
体基板2上にクラッド層3を介して形成さね、その上に
一方のクラッド層4が形成され、上下に電極5.6が設
けられている。まだ、同図(b)では、障壁層7および
クラッド層8に囲まれた4つの量子井戸9により構成さ
れた活性層(MQW層)1のエネルギーバンド図が示さ
れており、横方向は活性層面に垂直な方向であり、縦方
向に価量子帯10、禁止帯11.伝導帯12がそれぞれ
示されている。
In FIG. 3(a), an active layer (MQW layer) 1 is formed on a semiconductor substrate 2 with a cladding layer 3 interposed therebetween, on which one cladding layer 4 is formed, and electrodes 5.6 are formed above and below. is provided. Still, in the same figure (b), an energy band diagram of an active layer (MQW layer) 1 composed of four quantum wells 9 surrounded by a barrier layer 7 and a cladding layer 8 is shown, and the lateral direction shows the active layer. The direction is perpendicular to the layer plane, and the valence band 10, the forbidden band 11. A conduction band 12 is shown in each case.

一般に、MQW半導体レーザ装置では、量子井戸9の深
さ並びに障壁層7の厚さを犬きぐ取ることにより、量子
井戸9間の結合を弱め、この結果として、理想的な量子
準位間遷移スペクトルに基づいたレーザ光に近いものを
得ることが出来る力ζこのような構造では、第3図に示
したように、電流注入方向が活性層面に垂直となる場合
においては、活性層(MQW層)1に注入されたキャリ
アは、高い障壁を越えて量子井戸9に注入されることに
なり、結果として素子抵抗の増加および注入効率の減少
を招く。
Generally, in an MQW semiconductor laser device, by carefully adjusting the depth of the quantum wells 9 and the thickness of the barrier layer 7, the coupling between the quantum wells 9 is weakened, and as a result, an ideal transition spectrum between quantum levels can be obtained. In such a structure, as shown in Figure 3, when the current injection direction is perpendicular to the active layer surface, the active layer (MQW layer) The carriers injected into quantum well 9 cross a high barrier and are injected into quantum well 9, resulting in an increase in device resistance and a decrease in injection efficiency.

上述の事実を反映して、MQW半導体レーザ装置に、電
流注入方向が活性層面と平行となるような構造、例えば
、いわゆるT 7 S (TransverseJun
etion 5tripe)構造を導入することが提案
されている。
Reflecting the above facts, an MQW semiconductor laser device has a structure in which the current injection direction is parallel to the active layer surface, for example, a so-called T 7 S (Transverse Jun
It has been proposed to introduce a 5tripe) structure.

第4図に、TTS構造を有する半導体レーザ装置の概略
図の一例を示す〔例えば、[ヘテロストラフチャー レ
ーザズJ (H,C,Ca5ey、 et al、。
FIG. 4 shows an example of a schematic diagram of a semiconductor laser device having a TTS structure [for example, [Heterostraft Lasers J (H, C, Ca5ey, et al.).

Heterogtructure La5ers、 p
artB、 1978゜p、230. Academi
c Press、 New York)を参照のこと〕
。この場合、電極5よシ注入された電流は、PN接合界
面13を通り、電極6に達する。
Heterogstructure La5ers, p
artB, 1978゜p, 230. Academy
c Press, New York)]
. In this case, the current injected through the electrode 5 passes through the PN junction interface 13 and reaches the electrode 6.

14は絶縁層、15は電流阻止層である。発光は、活性
層(MQW層)1とPN接合界面13とが交差する領域
付近で起こる。よって、このような構造の半導体レーザ
装置においては、第3図(a)に示した構造の半導体レ
ーザ装置に比較して、障壁層7に起因する素子抵抗の増
加、注入効率の減少等の現象を改善し得る。
14 is an insulating layer, and 15 is a current blocking layer. Light emission occurs near the region where the active layer (MQW layer) 1 and the PN junction interface 13 intersect. Therefore, in a semiconductor laser device having such a structure, phenomena such as an increase in element resistance and a decrease in injection efficiency due to the barrier layer 7 are more likely to occur than in a semiconductor laser device having a structure shown in FIG. 3(a). can be improved.

発明が解決しようとする問題点 前述のように、第3図(a)に示しだ構造の半導体レー
ザ装置では、活性層のMQW構造の設計に際してその自
由度が減り、量子準位間遷移に基づく特徴が最大限゛に
発揮出来ないため、第4図に示しだ構造の導入が提案さ
れているわけであるが、この場合でも、電流注入方向は
完全には活性層面と平行とはならず、また、電流通過経
路の変則性ゆえに、発光領域への効率的な電流注入とい
う観点からも問題が残る。また、絶縁層、電流阻止層の
導入等に起因する製造並びに装置構造の複雑さを誘発す
ることにもなる。
Problems to be Solved by the Invention As mentioned above, in the semiconductor laser device having the structure shown in FIG. 3(a), the degree of freedom in designing the MQW structure of the active layer is reduced, and Since the characteristics cannot be maximized, it has been proposed to introduce the structure shown in Figure 4, but even in this case, the current injection direction is not completely parallel to the active layer surface. Further, due to the irregularity of the current path, problems remain from the viewpoint of efficient current injection into the light emitting region. Furthermore, the manufacturing and device structure are complicated due to the introduction of insulating layers, current blocking layers, etc.

問題点を解決するだめの手段 上述の問題点を解決するため、本発明においては、PN
接合界面を多重量子井戸層面内方向に垂直かつレーザ光
取出し方向に平行に形成し、さらに、P電極、N電極を
ともにPN接合界面に平行に形成するごとき手段を講じ
、また、前記手段を講じた半導体レーザ装置の有効かつ
効率的な製造方法を与えるために、同一装置内にて、イ
オンビームエツチング、斜めビーム薄膜堆積を行なうこ
とにより、垂直エツチング側壁の一方から、不純物を導
入し、前記PN接合界面を与え、また、前記側壁の両側
に金属薄膜の堆積を行うことにより、前記P並びにN電
極を与える等の手段を講じた。
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, PN
Taking measures such as forming the bonding interface perpendicular to the in-plane direction of the multi-quantum well layer and parallel to the laser beam extraction direction, and further forming both the P electrode and the N electrode parallel to the PN bonding interface; In order to provide an effective and efficient manufacturing method for a semiconductor laser device, impurities are introduced from one sidewall of the vertical etching by performing ion beam etching and oblique beam thin film deposition in the same device. Measures were taken to provide a bonding interface and to provide the P and N electrodes by depositing metal thin films on both sides of the sidewalls.

作  用 PN接合界面を多重量子井戸層面内方向に垂直かつレー
ザ光取出方向に平行に形成し、さらに、P電極、N電極
をともにPN接合界面に平行に形成することにより、電
極より注入された電流は、多重量子井戸層面に完全に平
行な形で流れ、障壁層に影響されることなく、PN接合
界面に注入される。このため、活性層のMQW構造の設
計の自由度に制限を与えることがなく、まだ、無効電流
の低減1発光領域における均一な発光に寄与する。
Function By forming the PN junction interface perpendicular to the in-plane direction of the multi-quantum well layer and parallel to the laser beam extraction direction, and further forming both the P electrode and the N electrode parallel to the PN junction interface, the The current flows completely parallel to the plane of the multiple quantum well layer and is injected into the PN junction interface without being influenced by the barrier layer. Therefore, there is no restriction on the degree of freedom in designing the MQW structure of the active layer, and the reduction in reactive current still contributes to uniform light emission in the light emitting region.

さらに、電流方向制御のだめの絶縁層、電流阻止層等を
原則として必要としない。
Furthermore, in principle, there is no need for an insulating layer, a current blocking layer, etc. for current direction control.

半導体基板上に多重量子井戸層を形成した後、異方性エ
ツチング特性を有するイオンビームエッチング法により
垂直を用いて、多重量子井戸層を形成した前記基板を垂
直にエツチングすることによって、前記PN接合界面並
びに前記電極を形成するだめの垂直側壁を与えることが
出来る。まだ、垂直側壁の一方が影となるごとく斜めビ
ームを照射し、薄膜堆積を行うことによって、リングラ
フィ工程を経ることなしに、不純物拡散あるいはイオン
注入を行うだめのマスクを形成することが出来る。さら
に、上述エツチング並びに薄膜堆積は、ともにビームを
利用して行うことから、同一装置(名付けてイオンビー
ム加工装置)内で処理することが出来、逆に、このこと
が、製造工程の簡素化、堆積薄膜界面の清浄化等に寄与
する。
After forming a multiple quantum well layer on a semiconductor substrate, the substrate on which the multiple quantum well layer is formed is vertically etched using an ion beam etching method having anisotropic etching characteristics, thereby forming the PN junction. It is possible to provide vertical sidewalls forming the interface as well as the electrodes. However, it is possible to form a mask for impurity diffusion or ion implantation without going through a phosphorography process by irradiating an oblique beam with one of the vertical sidewalls in the shadow and depositing a thin film. Furthermore, since the above-mentioned etching and thin film deposition are both performed using a beam, they can be processed in the same device (named ion beam processing device), which in turn simplifies the manufacturing process. Contributes to cleaning the interface of the deposited thin film.

実施例 本発明の半導体レーザ装置の一実施例の概略図を第1図
に示す。同図においては、半絶縁性基板16上に無ドー
プエピタキシャル層17 、18に:挾まれた、活性層
(MQW層)19が形成され、活性層(MQW層)19
中の障壁層中にN型不純物をドーピングし、これより生
じた量子が量子井戸層の量子準位に蓄積され、結果とし
て活性層(MQW層)19中の量子井戸層がN型となる
ように構成されており、このような構成により、量子井
戸層におけるキャリアの再結合が不準物準位を介して行
なわれることを防ぎ、まだ、量子井戸中の量子の走行に
際し、不純物準位に起因する散乱を防ぐことが出来る。
Embodiment FIG. 1 shows a schematic diagram of an embodiment of the semiconductor laser device of the present invention. In the figure, an active layer (MQW layer) 19 is formed on a semi-insulating substrate 16 and sandwiched between undoped epitaxial layers 17 and 18.
The barrier layer in the active layer (MQW layer) 19 is doped with N-type impurities, and the resulting quanta are accumulated in the quantum level of the quantum well layer, so that as a result, the quantum well layer in the active layer (MQW layer) 19 becomes N-type. This structure prevents recombination of carriers in the quantum well layer from occurring via the impurity level, and still prevents carrier recombination in the quantum well layer from reaching the impurity level when traveling in the quantum well. It is possible to prevent the scattering caused by

さらに、エピタキシャル層17.18のエネルギーギャ
ップを、活性層(MQW層)19中の障壁層のそれより
大きく取ることにより、注入された電流は、効率的に量
子井戸中、多重量子井戸層に平行に流れるようになる。
Furthermore, by setting the energy gap of the epitaxial layers 17 and 18 to be larger than that of the barrier layer in the active layer (MQW layer) 19, the injected current is efficiently parallel to the multi-quantum well layer in the quantum well. It starts to flow.

斜線部の領域は、P型不純物拡散層2oであり、PN接
合界面21が活性層(MQW層)19面に垂直かつレー
ザ光取出し方向22に平行に形成され、P電極23並び
にN電極24が、ともに、PN接合界面21に平行に形
成されている。
The shaded area is a P-type impurity diffusion layer 2o, in which a PN junction interface 21 is formed perpendicular to the active layer (MQW layer) 19 surface and parallel to the laser beam extraction direction 22, and a P electrode 23 and an N electrode 24 are formed. , are both formed parallel to the PN junction interface 21.

次に、第2図に基づいて、本発明の製造方法の一実施例
について述べる。最初に、半絶縁性半導体基板17上に
、無ドープエピタキシャル層17゜活性層(MQW層)
19.無ドープエピタキシャル層18を順次エピタキシ
ャル成長させる(同図(a))。次に、レーザ光取出方
向に平行な任意の幅を有するストライプマスク25を設
け、前記マスク26を用いて、前記各層17.18.1
9を反応性イオンビームエッチング法により垂直により
、垂直エツチングを行ない垂直側壁26.27を得る(
同図(b))。反応性イオンビームエッチング法により
垂直を用いることによって、通常2元以上の混晶半導体
である前記各層17,18.19の、表面ストイキオメ
トリの良好な無損傷垂直エツチングが期待出来る。
Next, an embodiment of the manufacturing method of the present invention will be described based on FIG. First, an undoped epitaxial layer 17° active layer (MQW layer) is formed on a semi-insulating semiconductor substrate 17.
19. The undoped epitaxial layer 18 is epitaxially grown in sequence (FIG. 4(a)). Next, a stripe mask 25 having an arbitrary width parallel to the laser beam extraction direction is provided, and using the mask 26, each of the layers 17, 18, 1
9 is vertically etched using a reactive ion beam etching method to obtain vertical side walls 26 and 27 (
Figure (b)). By using a vertical reactive ion beam etching method, damage-free vertical etching with good surface stoichiometry of the layers 17, 18, and 19, which are usually binary or more mixed crystal semiconductors, can be expected.

次経同図(b)の工程で用いた同一装置(プラズマ発生
室とエツチング(あるいは堆積)室とを分離した形の、
通常イオンビーム加工装置と呼ばれる装置)内において
、垂直側壁26が、薄膜堆積のための入射ビーム28の
影となるごとく前記基板16を傾けて、薄膜堆積を行う
。すなわち、垂直側壁26を除く表面に薄膜29が形成
される(同図(C))。
The same equipment used in the process shown in Figure (b) (with the plasma generation chamber and etching (or deposition) chamber separated).
Thin film deposition is performed in an apparatus (commonly referred to as an ion beam processing apparatus) by tilting the substrate 16 so that the vertical sidewall 26 shadows the incident beam 28 for thin film deposition. That is, a thin film 29 is formed on the surface except for the vertical sidewalls 26 (FIG. 3(C)).

そして、前記薄膜29をマスクとして、P型不純物元素
の拡散を行い、PN接合界面21を形成する(同図(d
))。最後に、前記薄膜29をマスクとしてP電極23
を形成した後(同図(e))、前記薄膜29をはく離し
、前記薄膜と同様な方法で、新だなる薄膜30を形成し
、これをマスクとして、N電極24を形成する(同図(
f))。
Then, using the thin film 29 as a mask, a P-type impurity element is diffused to form a PN junction interface 21 ((d) in the same figure).
)). Finally, using the thin film 29 as a mask, the P electrode 23 is
((e) in the same figure), the thin film 29 is peeled off, and a new thin film 30 is formed in the same manner as the previous thin film, and using this as a mask, the N electrode 24 is formed ((e) in the same figure). (
f)).

以上のような製造方法により、第1図に示したような半
導体レーザ装置が実現する。まだ、以上述べた製造方法
は、基本的にリングラフィ工程。
By the manufacturing method described above, a semiconductor laser device as shown in FIG. 1 is realized. However, the manufacturing method described above is basically a phosphorography process.

湿式1程を必要としない簡素なものであり、さらに、す
べて真空中のビーム応用プロセスで対応出来ることから
、製造工程をすべて真空一貫工程で大気中にさらすこと
のないようにすることが出来ので、特に、前記半導体レ
ーザ装置内の各種界面の清浄化が計れる等の利点を有す
る。
It is a simple product that does not require as much as wet method 1, and furthermore, it can be handled entirely by a beam application process in a vacuum, making it possible to conduct the entire manufacturing process in a vacuum without exposing it to the atmosphere. In particular, it has the advantage that various interfaces within the semiconductor laser device can be cleaned.

一方、本発明は、P、N両電極とも基板上に構成されて
いること、前記垂直側壁を形成する際、同時に7アプリ
・ペロ共振器端面をも形成出来ること等の事実より、光
量子集積回路への対応にも適しているものである。
On the other hand, the present invention provides a photonic integrated circuit due to the fact that both the P and N electrodes are formed on the substrate, and that when forming the vertical sidewalls, it is also possible to form the end faces of the 7-application-Perot resonator at the same time. It is also suitable for responding to

発明の詳細 な説明して来たように、本発明は、活性層(MQW層)
の設計の自由度を制限せず(換言すれば、MQW構造の
特徴を最大限に発揮し得る設計を許し)、かつ、MQW
層の障壁層が注入電流に及ぼす悪影響(例えば、素子抵
抗の増加、注入電流の減少等)を完全に除去し得る構造
の、MQW半導体レーザ装置を提供し、まだ、前記半導
体レーザ装置の、簡素化され、かつ、清浄な各種界面を
与えることの出来る製造方法を提供する等、大きな具体
的効果をもたらすものである。
As described in detail, the present invention has an active layer (MQW layer).
(in other words, allows a design that maximizes the characteristics of the MQW structure), and
Provided is an MQW semiconductor laser device having a structure that can completely eliminate the adverse effects of a barrier layer on injection current (for example, an increase in device resistance, a decrease in injection current, etc.), and yet still improves the simplicity of the semiconductor laser device. This brings about great concrete effects, such as providing a manufacturing method that can provide various interfaces that are clean and clean.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の半導体レーザ装置概略図、
第2図は本発明の製造方法の一実施例を示す工程図、第
3図および第4図は従来例の半導体レーザ装置を示す概
略図である。 1.19・・・・・活性層(MQW層)、7・・・・・
・障壁層、9・・・・・・量子井戸、13.21・・・
・・・PN接合界面、14・・・・・・絶縁層、15・
・・・・・電流阻止層、20・・・・・・P型不純物拡
散層、22・・・・・・レーザ光取出方向、23・・・
・・・P電極、24・・・・・・N電極、26.27・
・・・・・垂直側壁。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ??Z/ 第2図 第2(3) 第3図
FIG. 1 is a schematic diagram of a semiconductor laser device according to an embodiment of the present invention;
FIG. 2 is a process diagram showing an embodiment of the manufacturing method of the present invention, and FIGS. 3 and 4 are schematic diagrams showing a conventional semiconductor laser device. 1.19... Active layer (MQW layer), 7...
・Barrier layer, 9...Quantum well, 13.21...
...PN junction interface, 14...Insulating layer, 15.
... Current blocking layer, 20 ... P-type impurity diffusion layer, 22 ... Laser light extraction direction, 23 ...
...P electrode, 24...N electrode, 26.27.
...Vertical side wall. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure? ? Z/ Figure 2 2 (3) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)活性層が多重量子井戸層から成る、いわゆるMQ
W構成であって、PN接合界面が多重量子井戸層面内方
向に垂直かつレーザ光取出方向に平行に形成され、P電
極、N電極界面がともにPN接合界面に平行に形成され
ていることを特徴とする半導体レーザ装置。
(1) The active layer consists of a multiple quantum well layer, so-called MQ
W configuration, characterized in that the PN junction interface is formed perpendicular to the in-plane direction of the multi-quantum well layer and parallel to the laser beam extraction direction, and the P electrode and N electrode interfaces are both formed parallel to the PN junction interface. Semiconductor laser device.
(2)半導体基板上に多重量子井戸層を形成した後、レ
ーザ光取出方向に平行な任意の幅を有するストライプマ
スクを用いて、前記多重量子井戸層をイオンビームエッ
チング法により垂直にエッチングした後、前記エッチン
グに用いた同装置内にて、垂直エッチングされた側壁の
一方が影となるごとく斜めビームを照射し、薄膜堆積を
行い、これをマスクとして、不純物拡散法あるいはイオ
ン注入法により、PN接合界面を多重量子井戸層面内方
向に垂直かつレーザ光取出方向に形成する工程、並びに
、垂直エッチング側壁のそれぞれにP電極、N電極を形
成する工程とを備えたことを特徴とする半導体レーザ装
置の製造法。
(2) After forming a multiple quantum well layer on a semiconductor substrate, the multiple quantum well layer is vertically etched by ion beam etching using a stripe mask having an arbitrary width parallel to the laser beam extraction direction. In the same equipment used for the etching, a thin film is deposited by irradiating an oblique beam so that one of the vertically etched sidewalls is in the shadow, and using this as a mask, PN is deposited by impurity diffusion or ion implantation. A semiconductor laser device comprising the steps of forming a bonding interface perpendicular to the in-plane direction of the multiple quantum well layer and in the laser light extraction direction, and forming a P electrode and an N electrode on each of the vertically etched side walls. manufacturing method.
JP917386A 1986-01-20 1986-01-20 Semiconductor laser device and manufacture thereof Pending JPS62166581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP917386A JPS62166581A (en) 1986-01-20 1986-01-20 Semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP917386A JPS62166581A (en) 1986-01-20 1986-01-20 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62166581A true JPS62166581A (en) 1987-07-23

Family

ID=11713188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP917386A Pending JPS62166581A (en) 1986-01-20 1986-01-20 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62166581A (en)

Similar Documents

Publication Publication Date Title
US4639275A (en) Forming disordered layer by controlled diffusion in heterojunction III-V semiconductor
US5469457A (en) Semiconductor laser with COD preventing disordered regions
KR100763708B1 (en) Semiconductor laminated substrate, semiconductor crystal substrate and semiconductor device and method of manufacturing the same
JP2686764B2 (en) Method for manufacturing optical semiconductor device
US3961996A (en) Process of producing semiconductor laser device
JPH09129974A (en) Semiconductor laser device
JPH07183618A (en) Semiconductor laser device, and manufacture of semiconductor laser device, and integrated semiconductor laser device
EP0293000B1 (en) Light emitting device
JP4011640B2 (en) Semiconductor laser and method for manufacturing semiconductor laser
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
US5770471A (en) Method of making semiconductor laser with aluminum-free etch stopping layer
EP0205338B1 (en) Semiconductor laser device
JPS62166581A (en) Semiconductor laser device and manufacture thereof
JPH0834338B2 (en) Semiconductor laser
JP3792003B2 (en) Semiconductor light emitting device
JPH11354886A (en) Semiconductor laser and its manufacturing method
JPH0537084A (en) Semiconductor laser device
JPS62173788A (en) Semiconductor laser
JPS58118184A (en) Buried hetero structural semiconductor laser
JPS6244440B2 (en)
JPH10510102A (en) Ridge laser in channel
JPS61148893A (en) Semiconductor laser
KR950006987B1 (en) Semiconductor laser diode manufacturing method
JPH0878775A (en) Semiconductor laser device and its manufacture
JPS61166192A (en) Semiconductor laser and manufacture thereof