JPS62166561A - Image sensor - Google Patents

Image sensor

Info

Publication number
JPS62166561A
JPS62166561A JP61009147A JP914786A JPS62166561A JP S62166561 A JPS62166561 A JP S62166561A JP 61009147 A JP61009147 A JP 61009147A JP 914786 A JP914786 A JP 914786A JP S62166561 A JPS62166561 A JP S62166561A
Authority
JP
Japan
Prior art keywords
optical signal
base layer
hfe
base
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61009147A
Other languages
Japanese (ja)
Inventor
Yasunaga Yamamoto
泰永 山本
Takahiko Murata
隆彦 村田
Kazufumi Yamaguchi
山口 和文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61009147A priority Critical patent/JPS62166561A/en
Publication of JPS62166561A publication Critical patent/JPS62166561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14679Junction field effect transistor [JFET] imagers; static induction transistor [SIT] imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a photodetector or an image sensor which is controlled constantly in its optical sensitivity by combining a lateral bipolar transistor with photodiodes to amplify an optical signal current obtained from the photodiode newly as an optical signal current from each picture element unit. CONSTITUTION:An optical signal current amplified due to a variation in a base potential is obtained from an optically excited carrier generated by a light incident to the vicinity of a boundary between a collector region 2 and a base forming epitaxial layer 3 and an electric field present region, and the degree of this amplification is represented by hFE. The hFE is determined by the impurity density profile of a base layer and near the boundary of the base layer and the thickness of the base layer. In case of a lateral bipolar transistor, the regions 1 and 2 are formed in one masking step. Thus, since the controllability of the thickness of a base layer and an impurity density profile near a base layer boundary, the irregularity in the hFE is small and uniform hFE is provided not only in one wafer but in one lot.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は横方向トランジスタ(ラテラルトランジスタ)
を利用した受光素子を複数個配列したイメージセンサに
関するものである。
[Detailed description of the invention] Industrial application field The present invention is directed to a lateral transistor (lateral transistor).
This invention relates to an image sensor in which a plurality of light-receiving elements are arranged.

従来の技術 イメージセンサに於いては受光素子として専ら°フォト
ダイオードが用いられている。ここで高感度化を図ろう
としてフォトトランジスタを使用する、又は受光素子た
るフォトダイオード各々に対してバイポーラトランジス
タを付加して光信号電流を増幅使用する、といった事は
通常行われていない。従って各画素での光信号電流は小
さい。
In conventional image sensors, photodiodes are exclusively used as light receiving elements. Here, in order to increase the sensitivity, it is not usual to use a phototransistor or to add a bipolar transistor to each photodiode as a light receiving element to amplify the optical signal current. Therefore, the optical signal current in each pixel is small.

発明が解決しようとする問題点 各画素毎の光信号が大きい事が望ましいにも拘らずフォ
トトランジスタや増幅用ノ\イボーラトランジスタを備
えたフォトダイオードが受光素子として用いられていな
い理由は、増幅作用を持つノ\イポーラトランジスタそ
れぞれの有するエミ・ツタ接地小信号電流増幅率(以下
hFCと記述)がイメージセンサ全体に亘って一様であ
る事が比較的少ない、という事にある。
Problems to be Solved by the Invention Although it is desirable that the optical signal for each pixel be large, the reason why photodiodes equipped with phototransistors or amplifying nobolar transistors are not used as light-receiving elements is because of the lack of amplification. The reason is that the emitter-grounded small signal current amplification factor (hereinafter referred to as hFC) of each polar transistor having the function is relatively rarely uniform over the entire image sensor.

問題点を解決するための手段 本発明は上記問題点を解決するために、ラテラル型バイ
ポーラトランジスタを光信号電流増幅の為に、各フォ)
ダイオードと組合わせて該フォトダイオードより得る光
信号電流を増幅して改めて各画素単位からの光信号電流
とする、又はラテラル型バイポーラトランジスタの逆バ
イアスを印加して使用するPn接合にのみ関与している
端子側(コレクタ側)を受光部として得られるラテラル
型フォトトランジスタを受光素子とすることで増幅され
た光信号電流を得る、というものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses lateral bipolar transistors for optical signal current amplification.
In combination with a diode, the optical signal current obtained from the photodiode is amplified and converted into an optical signal current from each pixel unit, or it is involved only in the Pn junction used by applying reverse bias of a lateral bipolar transistor. The amplified optical signal current is obtained by using a lateral phototransistor, whose terminal side (collector side) is a light receiving element, as a light receiving element.

作用 本発明は上記した構成により、ラテラル構造のバイポー
ラトランジスタを光信号電流増幅の為に使用するので、
ラテラル構造のバイポーラトランジスタはIC用マスク
1枚による1工程にてベース領域中に同時にコレクタ及
びエミッタ領域を形成するのでhFP、の均一性が良好
である。従って第4図(alに示す受光素子配列のライ
ンイメージセンサや第4図(blに示す受光素子配列の
エリアイメージセンサ(30,31とも個々の受光素子
)を上記の構成よりなる受光素子で作成したとき、セン
サ全域に於いて光感度の高さと共にその一様性を持つイ
メージセンサを実現できる。またこの際製造プロセスの
複雑化も、受光部の分光感度スペクトルの変更もない。
Function The present invention uses a lateral structure bipolar transistor for optical signal current amplification with the above-described configuration.
In a lateral structure bipolar transistor, the collector and emitter regions are simultaneously formed in the base region in one process using one IC mask, so the uniformity of the hFP is good. Therefore, a line image sensor with the light receiving element array shown in Figure 4 (al) and an area image sensor with the light receiving element array shown in Figure 4 (bl) (both 30 and 31 are individual light receiving elements) are created using the light receiving element having the above configuration. When this is done, it is possible to realize an image sensor that has both high and uniform photosensitivity over the entire sensor area.In addition, there is no complication of the manufacturing process and no change in the spectral sensitivity spectrum of the light receiving section.

実施例 第1図は例えば第4図[a)及び(blのような受光素
子配列を基本構成とする本発明の実施例のイメージセン
サに用いるべきラテラル型フォトトランジスタであり、
(alは断面図、(blは平面図である。1はP型(又
はn型)エミッタ領域、2はP型(又はn型)コレクタ
領域、3はベースを形成するn型(又はP型)エピタキ
シャル層であり、エミッタ領域1とコレクタ領域2に挟
まれた領域14がベース領域となる。4,5.6はベー
ス領域形成エピタキシャル層3と同型半導体がらなり、
4は低抵抗埋込層、5はベース端子下低砥抗域、6はベ
ース電極接触用低抵抗域であり、これらは皆、主にベー
ス電極10を取出す為のものであり木質的には、ベース
電極10も含めて、無くともがまわない。7は素子分離
層であり、ベース形成エピタキシャル層3とは異なる型
の半導体よりなり、本図では基板半導体と同型半導体よ
りなっている。
Embodiment FIG. 1 shows a lateral phototransistor to be used in an image sensor according to an embodiment of the present invention, which has a basic configuration of a light-receiving element arrangement as shown in FIGS. 4 (a) and (bl).
(Al is a cross-sectional view, (bl is a plan view. 1 is a P-type (or n-type) emitter region, 2 is a P-type (or n-type) collector region, 3 is an n-type (or P-type) forming the base. ) It is an epitaxial layer, and the region 14 sandwiched between the emitter region 1 and the collector region 2 becomes the base region. 4, 5.6 consists of the same type of semiconductor as the base region forming epitaxial layer 3,
4 is a low resistance buried layer, 5 is a low abrasive resistance area under the base terminal, and 6 is a low resistance area for contacting the base electrode, all of which are mainly used to take out the base electrode 10, and in terms of wood quality. , including the base electrode 10. Reference numeral 7 denotes an element isolation layer, which is made of a semiconductor of a different type from that of the base forming epitaxial layer 3, and in this figure is made of the same type of semiconductor as the substrate semiconductor.

コレクタ領域2とベース形成エピタキシャル層3との界
面付近及び電界存在域に入射した光によって生じる光励
起キャリヤがベース電位に変化を生じて増幅した光信号
電流を得るがこの増幅の程度はhFEで表わされる。h
FEはベース層及びベース層境界付近の不純物濃度プロ
ファイル及びベース層の厚みによって決まってくる。ラ
テラル型バイポーラトランジスタの場合には、エミッタ
領域lとコレクタ領域2とが1つのマスク工程で形成で
きる為にベース層厚とベース層境界付近の不純物濃度プ
ロファイルの制御性が良いのでhFF:のばらつきが小
さく1ウエーハ内は勿論10・7ト内でも一様なhFE
値をもつ。一方、通常の縦形バイポーラフォトトランジ
スタを第2図に示す。
Photoexcited carriers generated by light incident near the interface between the collector region 2 and the base-forming epitaxial layer 3 and in the electric field region change the base potential to obtain an amplified optical signal current, and the degree of amplification is expressed by hFE. . h
FE is determined by the base layer, the impurity concentration profile near the base layer boundary, and the thickness of the base layer. In the case of a lateral bipolar transistor, since the emitter region 1 and the collector region 2 can be formed in one mask process, it is possible to control the base layer thickness and the impurity concentration profile near the base layer boundary with good controllability, which reduces the variation in hFF:. Small and uniform hFE not only within one wafer but also within 10.7 wafers
has value. On the other hand, a typical vertical bipolar phototransistor is shown in FIG.

コレクタ領域16とベース領域17との界面29付近及
び電界存在域への入射光によって生成される励起キャリ
ヤによるベース電位変動が光信号電流の増幅を与えるの
は第1図の場合と同様だが、hFE値を決めるベース層
厚とベース層境界付近の渾純物濃度プロファイルとがベ
ース領域17の形成時の工程とエミッタ領域15の形成
時の工程との2工程に大きく依存する、従ってhFE値
の制御性が悪い。受光部としては、青色側感度を上げる
為に界面29が出来るだけ表面より浅い所にあるべきで
あり、バイポーラICプロセスを複雑化する事も避けた
い。これらの事がより一層hF11:値を一定に制御す
ることを難しくしている。
As in the case of FIG. 1, the fluctuation of the base potential due to the excited carriers generated by the incident light near the interface 29 between the collector region 16 and the base region 17 and into the electric field existing region amplifies the optical signal current. The base layer thickness and the concentration profile near the base layer boundary, which determine the hFE value, greatly depend on the two steps of forming the base region 17 and forming the emitter region 15. Therefore, it is difficult to control the hFE value. Bad sex. As for the light receiving section, the interface 29 should be as shallow as possible from the surface in order to increase sensitivity on the blue side, and it is also desirable to avoid complicating the bipolar IC process. These things make it even more difficult to control the hF11 value to a constant value.

従ってバイポーラICプロセスで直ぐ実現できるラテラ
ル型バイポーラトランジスタによる光信号電流の増幅は
青色感度の低下やバイポーラICプロセスの複雑化を招
くことがなく、イメージセンサ内において最適である。
Therefore, the amplification of the optical signal current by a lateral bipolar transistor, which can be easily realized in a bipolar IC process, does not cause a decrease in blue sensitivity or complicate the bipolar IC process, and is optimal in an image sensor.

このことはラテラル型バイポーラトランジスタをフォト
トランジスタとした場合も、フォトダイオードの信号を
ラテラル型バイポーラトランジスタで増幅する場合も変
わりはないが、前者の方が素子集積度向上のうえでは望
ましい。
This is the same whether the lateral bipolar transistor is used as a phototransistor or the photodiode signal is amplified by the lateral bipolar transistor, but the former is preferable in terms of improving device integration.

第3図において池の実施例を示す。第3図(alはフォ
トダイオード26とラテラルnpn)ランジスタ27と
の接続によりnpnフォトトランジスタと同等の機能を
得る例である。第3図tC)も第3図(a+と同様であ
るがフォトダイオード26のカソードとラテラルnpn
)ランジスタ27のコレクタが同電位で使用されない場
合の例である。第3図(blはフォトダイオード26と
ラテラル!n+) )ランジスタ28との接続によりp
npフォトトランジスタと等しい機能を得た例である。
FIG. 3 shows an example of a pond. FIG. 3 (al indicates a photodiode 26 and a lateral npn transistor) is an example in which a function equivalent to that of an npn phototransistor is obtained by connecting a transistor 27. Figure 3 tC) is similar to Figure 3 (a+), but the cathode of the photodiode 26 and the lateral npn
) This is an example where the collector of the transistor 27 is not used at the same potential. Figure 3 (bl is photodiode 26 and lateral!n+)) By connecting to transistor 28, p
This is an example of obtaining the same function as an np phototransistor.

第3図(dlも第3図(blと同様であるがフォトダイ
オード26のアノードとラテラルII)nl))ランジ
スタ28のコレクタとが同電位では使用されない場合の
例である。
FIG. 3 (dl is also the same as bl, but the anode of the photodiode 26 and the collector of the transistor 28 are not used at the same potential).

これらは全てラテラル型バイポーラトランジスタを使用
しておりhFE値の制御性が良いので、バイポーラIC
プロセスを複雑にすることなく、且つ光感度分光特性を
変える事なく浅いpn接合を保った青色感度の低下を招
かない受光素子ひいてはイメージセンサを与える。
These all use lateral type bipolar transistors and have good controllability of the hFE value, so bipolar ICs
To provide a light-receiving element and eventually an image sensor that maintains a shallow pn junction without complicating the process and changing the photosensitivity spectral characteristics and does not cause a decrease in blue sensitivity.

発明の効果 以上述べてきた様に、本発明によれば、バイポーラIC
の複雑化なく、且つ分光感度特性の青色感度の低下なく
、光感度が個々の微妙な製造条件・ の影響を受けずに
一定に制御された受光素子又はイメージセンサを作るこ
とができる。
Effects of the Invention As described above, according to the present invention, bipolar IC
It is possible to produce a light-receiving element or image sensor in which the light sensitivity is controlled to be constant without being affected by delicate individual manufacturing conditions, without complicating the process, without reducing the blue sensitivity of the spectral sensitivity characteristic.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のイメージセンサに用いられる
フォトトランジスタの断面図、第2図は争通常の縦形バ
イポーラトランジスタの断面図、第3図は本発明の他の
実施例のフォトダイオードとラテラル型バイポーラトラ
ンジスタを組合わせた断面図、第4図は各々ラインイメ
ージセンサ、エリアイメージセンサの基本的な受光素子
配置を示す平面図である。 1・・・・・・エミッタ領域、2・・・・・・コレクタ
領域、14・・・・・・ベース領域、26・・・・・・
フォトダイオード、27・・・・・・ラテラルnpn 
)ランジスタ、28・・・・・・ラテラルpnpトラン
ジスタ。30.31・・・・・・受光素子。 代理人の氏名 弁理士 中尾敏男 はか1名第3図 (α)     tレノ (Cン     (dλ ((1) e口e−一一一−ロ zb −−−フォトク1イード
FIG. 1 is a cross-sectional view of a phototransistor used in an image sensor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventional vertical bipolar transistor, and FIG. 3 is a cross-sectional view of a photodiode according to another embodiment of the present invention. FIG. 4 is a cross-sectional view of a combination of lateral bipolar transistors, and a plan view showing the basic arrangement of light-receiving elements of a line image sensor and an area image sensor, respectively. 1...Emitter region, 2...Collector region, 14...Base region, 26...
Photodiode, 27...lateral npn
) transistor, 28...lateral pnp transistor. 30.31... Light receiving element. Name of agent Patent attorney Toshio Nakao 1 person Figure 3 (α) treno (Cn (dλ) ((1)

Claims (2)

【特許請求の範囲】[Claims] (1)フォトトランジスタを光信号読取り画素として有
するイメージセンサであって、上記フォトトランジスタ
が横方向型トランジスタを基本構造として且つ光に感応
することを特徴とするイメージセンサ。
(1) An image sensor having a phototransistor as an optical signal reading pixel, wherein the phototransistor has a basic structure of a lateral transistor and is sensitive to light.
(2)フォトダイオードを光信号読取り画素とし且つ各
々のフォトダイオードより得られる光信号を増幅するた
めに各々のフォトダイオードに光信号増幅用のトランジ
スタを付加したイメージセンサであって、上記光信号増
幅用トランジスタが横方向型トランジスタであることを
特徴とするイメージセンサ。
(2) An image sensor in which a photodiode is used as an optical signal reading pixel and a transistor for optical signal amplification is added to each photodiode in order to amplify the optical signal obtained from each photodiode, and the optical signal amplification transistor is added to each photodiode. An image sensor characterized in that a transistor for use in the image sensor is a lateral transistor.
JP61009147A 1986-01-20 1986-01-20 Image sensor Pending JPS62166561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61009147A JPS62166561A (en) 1986-01-20 1986-01-20 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61009147A JPS62166561A (en) 1986-01-20 1986-01-20 Image sensor

Publications (1)

Publication Number Publication Date
JPS62166561A true JPS62166561A (en) 1987-07-23

Family

ID=11712506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61009147A Pending JPS62166561A (en) 1986-01-20 1986-01-20 Image sensor

Country Status (1)

Country Link
JP (1) JPS62166561A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102281A (en) * 1978-11-30 1980-08-05 Gen Electric Radiationnsensitive transistor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102281A (en) * 1978-11-30 1980-08-05 Gen Electric Radiationnsensitive transistor device

Similar Documents

Publication Publication Date Title
US5858810A (en) Photo sensor and method for forming the same
JPS61139061A (en) Semiconductor photodetector
JPH09232556A (en) Semiconductor device
GB2144265A (en) Solid-state image sensor
US5721447A (en) Photodetector and a method for the fabrication thereof
JPS62166561A (en) Image sensor
JPS5814569A (en) Color image pickup device
JPH1146010A (en) Avalanche photodiode
JP2933870B2 (en) Photodetector and method of manufacturing the same
JPS6136713B2 (en)
JP2011082513A (en) Silicon photodetection module
JPH02238664A (en) Photodetector with built-in circuit
JPS62143483A (en) Light-receiving element
JPH0570945B2 (en)
JPH0485971A (en) Semiconductor device
JP2501556B2 (en) Optical sensor and manufacturing method thereof
JPH04242980A (en) Light-receiving element
JP2004119632A (en) Light receiving element with built-in circuit and method of inspecting same
JPH0513800A (en) Semiconductor device
JPS61285760A (en) Photoelectric conversion device
JP3553715B2 (en) Optical semiconductor device
JPS61148867A (en) Semiconductor photodetector
JPS6239080A (en) Semiconductor light position detecting device
JPH11345995A (en) Photodetector
JPH04280674A (en) Circuit built-in photodetector