JPS6216593A - Photoelectron element and optical amplifier - Google Patents

Photoelectron element and optical amplifier

Info

Publication number
JPS6216593A
JPS6216593A JP61129030A JP12903086A JPS6216593A JP S6216593 A JPS6216593 A JP S6216593A JP 61129030 A JP61129030 A JP 61129030A JP 12903086 A JP12903086 A JP 12903086A JP S6216593 A JPS6216593 A JP S6216593A
Authority
JP
Japan
Prior art keywords
optoelectronic device
coating
intermediate layer
thickness
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61129030A
Other languages
Japanese (ja)
Inventor
ウィリアム・ジョン・デブリン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
British Telecommunications PLC
Original Assignee
British Telecommunications PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Telecommunications PLC filed Critical British Telecommunications PLC
Publication of JPS6216593A publication Critical patent/JPS6216593A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Led Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光電子素子に関する。特に、レーザ素子の端面
に反射防止被膜を設けた構造の光増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to optoelectronic devices. In particular, the present invention relates to an optical amplifier having a structure in which an antireflection coating is provided on the end face of a laser element.

〔概 要〕〔overview〕

本発明は、端面に反射防止被膜が設けられた光電子素子
において、 反射防止被膜と光電子素子との間に化学的融和性を高め
るための中間層を設けることにより、反射防止被膜の効
果を高めるものである。
The present invention improves the effect of the anti-reflection coating by providing an intermediate layer between the anti-reflection coating and the opto-electronic element to increase chemical compatibility in a photoelectronic device having an anti-reflection coating on the end face. It is.

〔従来の技術〕[Conventional technology]

半導体レーザ素子は発光素子としてよく知られている。 Semiconductor laser devices are well known as light emitting devices.

その動作は、素子で発生して再びこの素子に入射する反
射光に依存している。「レーザ素子」はまた、受信光信
号を増幅する素子としても用いられる。この場合には、
素子を受信信号にだけ応答させる必要があり、このため
には、素子に戻る反射光をできるだけ除去する必要があ
る。
Its operation relies on reflected light generated by the element and incident on the element again. A "laser element" is also used as an element that amplifies a received optical signal. In this case,
It is necessary for the element to respond only to the received signal, and for this purpose it is necessary to eliminate as much as possible the reflected light returning to the element.

反射光を除去するために、端面に反射防止被膜を設けた
レーザ素子が用いられる。このような反射防止被膜の材
質として多種多様の金属酸化物、例えば酸化アルミニウ
ムCA1t 03 ) 、三酸化スカンジウム(Sc、
O3) 、二酸化ジルコニウム(ZrO□)および二酸
化セシウム(CeOt)等が提案されている0本出願人
は、英国特許出願第8414454号を基礎とした出願
、カナダ国  特許出願第403332号、ヨーロッパ
 特許出願第85304029号、公開第168165
号、 日本国   特願昭60−123467号、特開昭61
−7683号、 アメリカ合衆国 特許出願第741867号(出願臼は
すべて1985年6月6日)において、イツトリウム(
Y)、ガドリニウム(Gd)、ニオジム(Nd)および
ランタン(La)から選択された一以上の金属の酸化物
を主成分とする被膜が特に良好であることを開示した。
In order to remove reflected light, a laser element is used that has an antireflection coating on its end facets. A wide variety of metal oxides can be used as materials for such antireflection coatings, such as aluminum oxide (CA1t 03 ), scandium trioxide (Sc,
O3), zirconium dioxide (ZrO□), cesium dioxide (CeOt), etc. have been proposed. The applicant has filed an application based on British Patent Application No. 8414454, Canadian Patent Application No. 403332, and European Patent Application. No. 85304029, Publication No. 168165
No., Japanese Patent Application No. 123467/1983, Japanese Patent Application No. 1983/1983
-7683, United States Patent Application No. 741,867 (all applications filed June 6, 1985), Yttrium (
It has been disclosed that a coating mainly composed of an oxide of one or more metals selected from Y), gadolinium (Gd), niodymium (Nd) and lanthanum (La) is particularly good.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、ある種の金属酸化物被膜では、反射防止被膜と
しての性質が十分には示されない。
However, some metal oxide coatings do not exhibit sufficient properties as antireflection coatings.

本発明は、金属酸化物被膜の反射防止効果を十分に引き
出すことを目的とし、さらに、光信号の増幅に適した光
電子素子を提供することを目的とする。
The present invention aims to fully bring out the antireflection effect of a metal oxide film, and further aims to provide a photoelectronic element suitable for amplifying optical signals.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光電子素子は、少なくとも一つの端面に化合物
被膜が設けられた光電子素子において、上記化合物被膜
は、反射率を削減する実効被膜と、この実効被膜と上記
端面との化学的融和性(Chemi−cal comp
atibility)を高める中間層とを含むことを特
徴とする。
In the optoelectronic device of the present invention, in which at least one end face is provided with a compound coating, the compound coating has an effective coating that reduces reflectance, and a chemical compatibility between the effective coating and the end face. -cal comp
It is characterized by including an intermediate layer that enhances the ability of the user.

本発明は、実効被膜がイツトリウム(Y)、ガドリニウ
ム(Gd)、ニオジム(Nd)またはランタン(Y)の
酸化物で形成され、基板がインジウムガリウム・ヒ素リ
ン等のレーザ素子である場合に、特に適している。この
場合には、中間層として酸化アルミニウム(AlzOl
)が適していることがわかった。中間層の厚さは、10
nmないし30nn+が望ましく、特に15n+mない
し25nmがより望ましい。また、相対的には、実効被
膜の厚さの5%ないし15%、例えば約lO%が望まし
い。
The present invention particularly applies when the effective film is formed of an oxide of yttrium (Y), gadolinium (Gd), niodymium (Nd), or lanthanum (Y), and the substrate is a laser element such as indium gallium arsenide phosphide. Are suitable. In this case, aluminum oxide (AlzOl) is used as the intermediate layer.
) was found to be suitable. The thickness of the intermediate layer is 10
The thickness is preferably from nm to 30n+, particularly preferably from 15n+m to 25nm. Also relatively preferred is 5% to 15% of the effective coating thickness, for example about 10%.

〔作 用〕[For production]

本発明の光電子素子は、端面に設けられた被膜が、実効
被膜と中間層との二層構造をもつ。中間層は、レーザ素
子と実効被膜との間を完全に覆うが、それ自身は被膜が
施された素子の光学的特性に対してほとんどまたは全く
影響しない。また、中間層に用いる金属は、実効被膜に
比較して反射防止被膜としての効果は小さい。このよう
な薄い層でも実質的な効果が生じる。
In the optoelectronic device of the present invention, the coating provided on the end face has a two-layer structure including an effective coating and an intermediate layer. The interlayer completely covers the space between the laser element and the effective coating, but by itself has little or no effect on the optical properties of the coated element. Furthermore, the metal used in the intermediate layer has less effect as an antireflection coating than the effective coating. Even such thin layers produce substantial effects.

〔実施例〕〔Example〕

第1図は光電子素子の端面に被膜を施す装置を示す。こ
こでは、通常のインジウムガリウム・ヒ素リン・レーザ
素子の端面に酸化アルミニウム(A l z Ox )
の薄い中間層を設け、さらにその表面に三酸化ニガトリ
ニウム(GdtOs)の実効被膜を設ける例を説明する
FIG. 1 shows an apparatus for applying a coating to the end face of an optoelectronic device. Here, aluminum oxide (A lz Ox ) is applied to the end face of a normal indium gallium arsenide phosphide laser element.
An example will be described in which a thin intermediate layer is provided, and an effective film of nigatrioxide (GdtOs) is further provided on the surface thereof.

第1図に示した装置は真空槽10を備え、この真空槽1
0内には被膜を形成するための器具を備える。
The apparatus shown in FIG. 1 includes a vacuum chamber 10.
0 is equipped with a tool for forming a coating.

使用時にはこの真空槽10内の圧力をI X 10−’
torr(133マイクロパスカル)に排気する。真空
槽10はこのような真空に耐える構造に作られている。
During use, the pressure inside this vacuum chamber 10 is set to I x 10-'
Evacuate to torr (133 micropascals). The vacuum chamber 10 is constructed to withstand such a vacuum.

図示していないが、公知技術を用いて、制御用の信号線
および電力線がこの真空槽10内に導かれている。
Although not shown, control signal lines and power lines are guided into the vacuum chamber 10 using known techniques.

中間層の形成するための蒸発源としてAlzOxを用い
、実効被膜を形成するための蒸発源としてGd2O3を
用いる。これらの蒸発源を別々のるつぼ12A 、12
Bに入れ、これらを回転可能な円形コンベア11に載置
する。るつぼ12A 、 12Bは銅製であり、真空槽
10の外部から円形コンベア11を制御することにより
、るつぼ12A 、 12Bの位置を替えることができ
る。真空槽10内にはさらに、るつぼ12A 、12B
内の蒸発源に電子ビームを照射して加熱するための電子
銃13を備える。電子ビームの照射位置はマグネットに
より制御できる。るつぼ12^、12Bは、図示してい
ない手段により真空槽10内に導入される。
AlzOx is used as an evaporation source for forming the intermediate layer, and Gd2O3 is used as an evaporation source for forming the effective film. These evaporation sources are placed in separate crucibles 12A, 12
B and place them on the rotatable circular conveyor 11. The crucibles 12A and 12B are made of copper, and by controlling the circular conveyor 11 from outside the vacuum chamber 10, the positions of the crucibles 12A and 12B can be changed. Further inside the vacuum chamber 10 are crucibles 12A and 12B.
An electron gun 13 is provided for heating an evaporation source inside the chamber by irradiating an electron beam with an electron beam. The irradiation position of the electron beam can be controlled by a magnet. The crucibles 12^, 12B are introduced into the vacuum chamber 10 by means not shown.

真空槽10内にはまた、ターゲットホルダ14が設けら
れ、この中に、複数のターゲット15Aないし15X(
ここではレーザ素子)を配置することができる。それぞ
れのターゲットは、被膜を形成しようとする端面が下向
きに配置され、他の端面が上 。
A target holder 14 is also provided in the vacuum chamber 10, and a plurality of targets 15A to 15X (
Here, a laser element) can be arranged. Each target is placed with the end surface on which the coating is to be formed facing downward, and the other end surface facing upward.

向きに配置される。この上向きの端面には被膜が形成さ
れない。この装置は、約60個のターゲットに対して均
一な被膜を形成させることができる。
placed in the direction. No coating is formed on this upward end face. This device can form uniform coatings on approximately 60 targets.

すなわち、許容できる誤差範囲内で−バッチに60個の
被膜を作成することができる。
That is, 60 coatings can be made in a batch - within acceptable tolerances.

ターゲット15Aないし15Xの近傍には、膜厚測定用
の水晶16が配置される。また、真空槽10の外から制
御可能なシャッタ17が設けられ、蒸発ビームにシャフ
タ17を挿入して、ターゲット15Aないし15Xおよ
び水晶16への蒸着を防ぐことができる。
A crystal 16 for film thickness measurement is placed near the targets 15A to 15X. Further, a shutter 17 that can be controlled from outside the vacuum chamber 10 is provided, and the shutter 17 can be inserted into the evaporation beam to prevent evaporation onto the targets 15A to 15X and the crystal 16.

一つのターゲット、例えばターゲラl−15Aの上側の
端面の近傍には、この端面からの輻射を検出する位置に
輻射センサ18が配置される。図示していないが、この
ターゲット15Aには励起手段が接続される。
A radiation sensor 18 is disposed near the upper end face of one target, for example, Targetera I-15A, at a position to detect radiation from this end face. Although not shown, excitation means is connected to this target 15A.

この装置でインジウムガリウム・ヒ素リン・レーザ素子
の端面に被膜を形成するには、インジウムガリウム・ヒ
素リン・レーザ素子のターゲット15^ないし15Xを
ホルダ14に取り付け、るつぼ12Aおよび12Bを所
定の位置に配置する。真空槽10内を排気した後に、る
つぼ12A゛または12B内の蒸発源に電子ビームを照
射する。最初にAl2O2を蒸着することにより、すべ
てのターゲット15Aないし15Xで中間層が形成され
る。このAl2O2は水晶16にも堆積する。水晶16
による膜厚測定でAjltChの膜厚が20na+とな
ったときに(すべてのターゲット15^ないし15Xに
対して)蒸着を終了し、るつぼ12A 、12Bを交換
する。この後に、GdtOsに電子ビームを照射し、こ
の化合物を蒸着することにより実効被膜が形成される。
To form a film on the end face of an indium gallium arsenide phosphide laser device using this device, the targets 15^ to 15X of the indium gallium arsenide phosphide laser device are attached to the holder 14, and the crucibles 12A and 12B are placed in predetermined positions. Deploy. After the vacuum chamber 10 is evacuated, the evaporation source in the crucible 12A' or 12B is irradiated with an electron beam. An intermediate layer is formed on all targets 15A to 15X by first depositing Al2O2. This Al2O2 is also deposited on the crystal 16. crystal 16
When the film thickness of AjltCh becomes 20 na+ as determined by the film thickness measurement, the vapor deposition is terminated (for all targets 15^ to 15X) and the crucibles 12A and 12B are replaced. After this, an effective film is formed by irradiating GdtOs with an electron beam and vapor depositing this compound.

実効被膜の形成の終了は、輻射センサ18による監視に
基づき、最大の効果が得られた時点で行う。
Formation of the effective film is terminated when the maximum effect is obtained based on monitoring by the radiation sensor 18.

次に、水晶16および輻射センサ18による膜厚の監視
について以下に説明する。
Next, monitoring of film thickness using the crystal 16 and the radiation sensor 18 will be described below.

水晶16は発振素子として用いられ、その発振周波数を
真空槽10の外部から監視する。水晶16の表面にはる
つぼ12A 、12Bからの蒸気が凝縮し、ターゲット
15^ないし15Bに形成された被膜と同じ厚さの被膜
が形成される。この被膜のために水晶16の発振周波数
が変化する。この発振周波数変化から、水晶16の表面
に形成された被膜の厚さを測定することができる。水晶
16の被膜の厚さ゛はターゲット15Aないし15Xの
被膜の厚さと同じであり、ターゲット15Aないし15
X上のAl2O,被膜の厚さを20nmに制御できる。
The crystal 16 is used as an oscillation element, and its oscillation frequency is monitored from outside the vacuum chamber 10. The steam from the crucibles 12A and 12B condenses on the surface of the crystal 16, forming a coating having the same thickness as the coating formed on the targets 15^ to 15B. This coating changes the oscillation frequency of the crystal 16. From this change in oscillation frequency, the thickness of the coating formed on the surface of the crystal 16 can be measured. The thickness of the coating on the crystal 16 is the same as the coating thickness on the targets 15A to 15X.
The thickness of the Al2O film on X can be controlled to 20 nm.

輻射センサ18は、ターゲット15Aないし15Xの特
性に直接に関連する膜厚の制御に利用する。ターゲソ目
5Aを一定のバイアスで励起すると、一定量の輻射が発
生する。この一定量の輻射は両端面を経由して放出され
る。実効被膜はこれが形成された端面で最大の放射量を
得るためのものであり、反対側の端面での放射量が最小
になることに対応する。
The radiation sensor 18 is used to control the film thickness, which is directly related to the characteristics of the targets 15A to 15X. When the target eye 5A is excited with a constant bias, a constant amount of radiation is generated. This fixed amount of radiation is emitted via both end faces. The effective coating is for obtaining the maximum amount of radiation at the end surface on which it is formed, and corresponds to the minimum amount of radiation at the opposite end surface.

第2図は、Oないしλ/2の膜厚に被膜を形成したとき
に、一定の励起に対して輻射センサ18が記録した放射
強度の値を示す。ここで、λは被膜の輻射波長である。
FIG. 2 shows the radiation intensity values recorded by the radiation sensor 18 for a constant excitation when a coating is formed to a thickness of O to λ/2. Here, λ is the radiation wavelength of the coating.

図示したように、膜厚が非常に薄い場合には、その反対
側の端面で輻射センサ18が記録する放射強度は一定値
である。膜厚の増加とともに放射強度が減少し、膜厚が
λ/4のときに放射強度が最小となる。さらに膜厚が増
加すると放射強度も増加し、膜厚がλ/2のときに放射
強度が極大となり、膜厚が0のときと同じ値となる。被
膜の最適な厚さはλ/4である。したがって、輻射セン
サ18の検出した値が最小になるまでGdzOaを蒸着
し、最小になった時点で蒸着を終了させることが望まし
い。しかし、正確な最小値の検出は困難であり、確実に
最小にするために、無視できる程度の蒸着過多にするこ
とが望ましい。すなわち、放射強度が増加したことに気
がついたら、すぐに蒸着を終了させることが望ましい。
As shown in the figure, when the film thickness is very thin, the radiation intensity recorded by the radiation sensor 18 on the opposite end face is a constant value. The radiation intensity decreases as the film thickness increases, and reaches its minimum when the film thickness is λ/4. Furthermore, as the film thickness increases, the radiation intensity also increases, and when the film thickness is λ/2, the radiation intensity reaches a maximum, which is the same value as when the film thickness is 0. The optimum thickness of the coating is λ/4. Therefore, it is desirable to deposit GdzOa until the value detected by the radiation sensor 18 becomes the minimum, and to terminate the deposition when the value becomes the minimum. However, it is difficult to accurately detect the minimum value, and in order to ensure the minimum value, it is desirable to have negligible over-deposition. That is, it is desirable to terminate the vapor deposition as soon as it is noticed that the radiation intensity has increased.

通常の光検出器では、第2図に示した強度変化の範囲を
すべて検出することは困難である。これを解決するには
、放射強度が低下したときに励起電流を増加させる。励
起電流を段階的に増加させることが望ましい。
It is difficult for a normal photodetector to detect the entire range of intensity changes shown in FIG. To solve this, the excitation current is increased when the radiation intensity decreases. It is desirable to increase the excitation current in steps.

以上説明した技術を使用して、インジウムガリウム・ヒ
素リン・レーザ素子の端面に、膜厚20nmのAj22
0.中間層と、膜厚200nmのGd203実効被膜と
を形成した。AlzOzの膜厚は水晶16による測定に
より制御した。Gd2O,の膜厚は輻射センサ18の検
出した放射強度が最小となるように制御した。
Using the technique described above, Aj22 with a thickness of 20 nm is coated on the end face of an indium gallium arsenide phosphide laser device.
0. An intermediate layer and a 200 nm thick Gd203 effective film were formed. The AlzOz film thickness was controlled by measurement using a crystal 16. The film thickness of Gd2O was controlled so that the radiation intensity detected by the radiation sensor 18 was minimized.

これにより得られた被膜はレーザ活性を抑制した。この
場合には、反射率の評価やレーザのしきい値の決定は不
要である。
The resulting coating suppressed laser activity. In this case, it is not necessary to evaluate the reflectance or determine the threshold value of the laser.

繰り返して被膜形成を行うには、実効被膜の膜1   
   厚制御にも水晶16を用いた膜厚の監視を行うこ
とが望ましい。ただし、輻射センサ18を用いて水晶1
6の測定を較正して、最小の反射率に対応する最適な膜
厚を得るように設定する。
In order to repeatedly form a film, the effective film 1
It is desirable to monitor the film thickness using the crystal 16 for thickness control as well. However, using the radiation sensor 18, the crystal 1
6 measurements are calibrated to obtain the optimum film thickness corresponding to the minimum reflectance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光電子素子は、それ自身
は素子の光学的特性にほとんどまたは全く影響しない薄
い中間層を設けて、実効被膜の反射防止特性を高めるこ
とができる。本発明は、特に半導体レーザ素子を用いた
光増幅素子に使用して、その特性を改善する効果がある
As explained above, the optoelectronic device of the present invention can be provided with a thin intermediate layer that itself has little or no effect on the optical properties of the device to enhance the antireflection properties of the effective coating. The present invention is particularly effective in improving the characteristics of an optical amplification device using a semiconductor laser device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光電子素子の端面に被膜を施すための装置を示
す図。 第2図は膜厚に対する反対側の端面から放出された放射
強度を示す図。 10・・・真空槽、11・・・円形コンベア、12A 
、12B・・・るつぼ、13・・・電子銃、14・・・
ターゲットホルダ、15A〜15Xターゲツト、16・
・・水晶、17・・・シャッタ、18・・・輻射センサ
FIG. 1 is a diagram showing an apparatus for applying a coating to the end face of a photoelectronic device. FIG. 2 is a diagram showing the radiation intensity emitted from the opposite end surface with respect to the film thickness. 10... Vacuum chamber, 11... Circular conveyor, 12A
, 12B... Crucible, 13... Electron gun, 14...
Target holder, 15A to 15X target, 16.
...Crystal, 17...Shutter, 18...Radiation sensor.

Claims (12)

【特許請求の範囲】[Claims] (1)少なくとも一つの端面に化合物被膜が設けられた
光電子素子において、 上記化合物被膜は、 反射率を削減する実効被膜と、 この実効被膜と上記端面との化学的融和性を高める中間
層と を含む ことを特徴とする光電子素子。
(1) In an optoelectronic device in which a compound coating is provided on at least one end surface, the compound coating includes an effective coating that reduces reflectance, and an intermediate layer that increases chemical compatibility between the effective coating and the end surface. An optoelectronic device comprising:
(2)中間層はその厚さが10nmないし30nmであ
る特許請求の範囲第(1)項に記載の光電子素子。
(2) The optoelectronic device according to claim (1), wherein the intermediate layer has a thickness of 10 nm to 30 nm.
(3)中間層はその厚さが15nmないし25nmであ
る特許請求の範囲第(2)項に記載の光電子素子。
(3) The optoelectronic device according to claim (2), wherein the intermediate layer has a thickness of 15 nm to 25 nm.
(4)中間層はその厚さが実効被膜の厚さの5%ないし
15%である特許請求の範囲第(1)項ないし第(3)
項のいずれかに記載の光電子素子。
(4) Claims (1) to (3) wherein the intermediate layer has a thickness of 5% to 15% of the effective coating thickness.
3. The optoelectronic device according to any one of paragraphs.
(5)中間層はその厚さが実効被膜の厚さの10%であ
る特許請求の範囲第(4)項に記載の光電子素子。
(5) The optoelectronic device according to claim (4), wherein the intermediate layer has a thickness of 10% of the effective film thickness.
(6)実効被膜は、イットリウム(Y)、ガドリニウム
(Gd)、ニオジム(Nd)およびランタン(La)か
らなる組より選択された一以上の金属の酸化物を含む特
許請求の範囲第(1)項ないし第(5)項のいずれかに
記載の光電子素子。
(6) The effective coating includes an oxide of one or more metals selected from the group consisting of yttrium (Y), gadolinium (Gd), niodymium (Nd), and lanthanum (La). The optoelectronic device according to any one of Items to Items (5).
(7)実効被膜は三酸化二ガドリニウム(Gd_2O_
3)を含む特許請求の範囲第(1)項に記載の光電子素
子。
(7) The effective film is digadolinium trioxide (Gd_2O_
3) The optoelectronic device according to claim (1).
(8)中間層は酸化アルミニウム(Al_2O_3)を
含む特許請求の範囲第(6)項または第(7)項に記載
の光電子素子。
(8) The optoelectronic device according to claim (6) or (7), wherein the intermediate layer contains aluminum oxide (Al_2O_3).
(9)中間層はそれ自身では端面の反射率に実質的な効
果を生じない薄さの被膜である特許請求の範囲第(1)
項ないし第(8)項のいずれかに記載の光電子素子。
(9) Claim (1) wherein the intermediate layer is a thin film that does not have a substantial effect on the reflectance of the end face by itself.
The optoelectronic device according to any one of Items to Items (8).
(10)実効被膜は反射率が実質的に最小になる厚さに
調整される特許請求の範囲第(1)項ないし第(9)項
のいずれかに記載の光電子素子。
(10) The optoelectronic device according to any one of claims (1) to (9), wherein the effective coating is adjusted to a thickness that substantially minimizes reflectance.
(11)受光および発光のための二つの端面を含む半導
体レーザ素子を基板として備え、 上記二つの端面には、反射率を削減してレーザ発振を抑
制する化合物被膜が設けられた光増幅器において 上記化合物被膜は、 反射率を削減する実効被膜と、 この実効被膜と上記端面との化学的融和性を高める中間
層と を含む ことを特徴とする光増幅器。
(11) In the optical amplifier, the semiconductor laser device is provided as a substrate, including two end faces for receiving and emitting light, and the two end faces are provided with a compound coating that reduces reflectance and suppresses laser oscillation. An optical amplifier characterized in that the compound coating includes: an effective coating that reduces reflectance; and an intermediate layer that increases chemical compatibility between the effective coating and the end face.
(12)基板はインジウムガリウム・ヒ素リン・レーザ
素子である特許請求の範囲第(11)項に記載の光増幅
器。
(12) The optical amplifier according to claim (11), wherein the substrate is an indium gallium arsenide phosphide laser device.
JP61129030A 1985-06-04 1986-06-03 Photoelectron element and optical amplifier Pending JPS6216593A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8514051 1985-06-04
GB858514051A GB8514051D0 (en) 1985-06-04 1985-06-04 Opto-electronic devices

Publications (1)

Publication Number Publication Date
JPS6216593A true JPS6216593A (en) 1987-01-24

Family

ID=10580141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61129030A Pending JPS6216593A (en) 1985-06-04 1986-06-03 Photoelectron element and optical amplifier

Country Status (5)

Country Link
US (1) US4794607A (en)
EP (1) EP0204540A3 (en)
JP (1) JPS6216593A (en)
CA (1) CA1271830C (en)
GB (1) GB8514051D0 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3677658D1 (en) * 1985-07-29 1991-04-04 Mitsubishi Electric Corp OPTICAL HEAD DEVICE.
GB8729104D0 (en) * 1987-12-14 1988-01-27 British Telecomm Anti-reflection coatings
US5019787A (en) * 1989-10-30 1991-05-28 David Sarnoff Research Center, Inc. Optical amplifier
JPH03293791A (en) * 1990-04-12 1991-12-25 Canon Inc Semiconductor optical element, semiconductor optical amplifier, and manufacture of them
US5131001A (en) * 1990-12-21 1992-07-14 David Sarnoff Research Center, Inc. Monolithic semiconductor light emitter and amplifier
GB0103183D0 (en) 2001-02-09 2001-03-28 Eastman Kodak Co Transportable processor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846165A (en) * 1972-08-21 1974-11-05 Rca Corp Method of applying an anti-reflective coating on a semiconductor laser
JPS55115386A (en) * 1979-02-26 1980-09-05 Hitachi Ltd Semiconductor laser unit
JPS56138701A (en) * 1980-03-31 1981-10-29 Minolta Camera Co Ltd Antireflection film
JPS5854691A (en) * 1981-09-28 1983-03-31 Hitachi Ltd Semiconductor laser device
JPS58111386A (en) * 1981-12-25 1983-07-02 Hitachi Ltd Manufacture of semiconductor laser device
DE3332872A1 (en) * 1983-09-12 1985-04-04 Optische Werke G. Rodenstock, 8000 München REFLECTIVE-REDUCING COATING FOR AN OPTICAL ELEMENT MADE OF ORGANIC MATERIAL
US4638334A (en) * 1985-04-03 1987-01-20 Xerox Corporation Electro-optic line printer with super luminescent LED source
JPH1056301A (en) * 1996-08-08 1998-02-24 Murata Mfg Co Ltd High frequency switch

Also Published As

Publication number Publication date
CA1271830A (en) 1990-07-17
CA1271830C (en) 1990-07-17
EP0204540A3 (en) 1989-08-09
EP0204540A2 (en) 1986-12-10
US4794607A (en) 1988-12-27
GB8514051D0 (en) 1985-07-10

Similar Documents

Publication Publication Date Title
US11131794B2 (en) Optical filter and sensor system
KR102144038B1 (en) Silicon-germanium based optical filter
JPS62144388A (en) Optical device and manufacture of the same
US20210404053A1 (en) Argon-helium based coating
JPS6216593A (en) Photoelectron element and optical amplifier
CN112968073A (en) Ultra-sensitive flexible gallium oxide photoelectric detector, array, preparation method and application
JPS617683A (en) Photoelectric element
JPH0346386A (en) Thickness controlling method and device for reflection preventive film
JPS619575A (en) Method and device for forming thin film
JPH06125149A (en) Semiconductor element and manufacture thereof
Grigoryev et al. Ultraviolet photodetector based on a ZnS–ZnO structure with a surface acoustic wave
Chou et al. Second-harmonic generation and photoemission from silver
JP2000171630A (en) Formation of multilayered optical thin film
JP2012219281A (en) Film deposition apparatus
JPH09113229A (en) Film thickness control device and film thickness detection method
JPH098406A (en) Reflection preventing film forming method
Martin et al. I n situ characterization of nucleation, growth, and composition of ion‐assisted films by ellipsometry, reflectance–transmittance measurements, and ion‐scattering spectroscopy
Schmitz et al. Online Detection of Ozone in Ion Beam Sputtering
JPS61253444A (en) Excited emission intensity measuring apparatus
JPH039287A (en) Electron beam sensor
JPH036991B2 (en)