JPH098406A - Reflection preventing film forming method - Google Patents

Reflection preventing film forming method

Info

Publication number
JPH098406A
JPH098406A JP7151301A JP15130195A JPH098406A JP H098406 A JPH098406 A JP H098406A JP 7151301 A JP7151301 A JP 7151301A JP 15130195 A JP15130195 A JP 15130195A JP H098406 A JPH098406 A JP H098406A
Authority
JP
Japan
Prior art keywords
substrate
type inp
reflectance
board
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7151301A
Other languages
Japanese (ja)
Inventor
Hideaki Takano
秀明 鷹野
Tomonobu Tsuchiya
朋信 土屋
Tatsumi Ido
立身 井戸
Mari Koizumi
真里 小泉
Hiroaki Inoue
宏明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7151301A priority Critical patent/JPH098406A/en
Publication of JPH098406A publication Critical patent/JPH098406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To measure the reflection factor of 1% or smaller by a method wherein a reflection preventing film is simultaneously deposited on a P-type InP board besides the sample to be deposited on the reaction preventing film. CONSTITUTION: A sample support 21 is provided when bar-like semiconductor lasers are fixed to a jig, the bar-like semiconductor lasers are arranged with their edge faces facing upward. A P-type InP board 23 is mounted adjacent to the semiconductor lasers 22, and the bar-like semiconductor lasers 22 are fixed by the plate spring 24 supported by a plate spring support 25. As the absorption of light originated in IVBA is large, the coefficient absorption of the P-type InP board 23 is larger by one order of magnitude or more than the N-type or a semi-insulating InP board. Accordingly, the residual reflection from the backside of the board is absorved into the board and residual reflection is not generated, and the reflection factor of 1% or smaller can be measured easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信や光情報処理等
に用いられる半導体デバイス端面に設ける反射防止膜の
形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an antireflection film provided on an end face of a semiconductor device used for optical communication, optical information processing and the like.

【0002】[0002]

【従来の技術】近年、半導体レーザ等の半導体デバイス
端面に反射防止膜を形成し、半導体光増幅器の作製や、
半導体レーザの特性改善等が行われている。このような
反射防止膜にはおおむね反射率1%以下が必要とされる
ため、技術開発には、形成した反射防止膜の屈折率、膜
厚の測定手段の他に、反射率を容易に測定できる手段が
必要不可欠である。
2. Description of the Related Art In recent years, an antireflection film is formed on an end face of a semiconductor device such as a semiconductor laser to manufacture a semiconductor optical amplifier,
The characteristics of semiconductor lasers are being improved. Since such an antireflection film generally requires a reflectance of 1% or less, the technical development is to easily measure the reflectance in addition to the means for measuring the refractive index and the film thickness of the formed antireflection film. Means that can do it are indispensable.

【0003】従来、形成した膜の反射率を知る方法とし
ては、反射防止膜被堆積試料の直近にモニタ用基板を設
置し、該試料とモニタ用基板の双方に同時に該膜を堆積
させ、該モニタ用基板の反射率を測定する方法がある。
該モニタ用基板には、半導体デバイスの導波路との屈折
率が近く、かつ汎用性も高いn型InP基板もしくは反
絶縁性InP基板を用いられてきた。
Conventionally, as a method of knowing the reflectance of a formed film, a monitor substrate is placed in the immediate vicinity of a sample on which an antireflection film is deposited, and the film is simultaneously deposited on both the sample and the monitor substrate. There is a method of measuring the reflectance of the monitor substrate.
As the monitor substrate, an n-type InP substrate or an anti-insulating InP substrate, which has a refractive index close to that of a waveguide of a semiconductor device and has high versatility, has been used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記n
型InP基板もしくは反絶縁性InP基板では、裏面か
らの残留反射が1%程度あることを本発明者らは見出し
た。すなわち上記従来方法では、数%の反射率を測定す
ることはできるが、1%以下の反射率を測定することは
できないことがわかった。
However, the above n
The present inventors have found that in a type InP substrate or an anti-insulating InP substrate, residual reflection from the back surface is about 1%. That is, it was found that the above-mentioned conventional method can measure the reflectance of several percent, but cannot measure the reflectance of 1% or less.

【0005】このため、反射防止膜形成済みの半導体レ
ーザの内部利得を測定し、自然放出光のリップルから該
反射防止膜の反射率を算出する、既知の方法を用いざる
をえなかった。(N.A.Olsson,"Lightwave systems with
optical amplifiers",J.Lightwave Technol.,vol.LT-
7,pp.1071-1082,1989) しかしこの既知の方法は、算出された反射率が正確では
あるが、半導体レーザ、内部利得測定用光学系が必要な
ので、複雑である。
Therefore, there is no choice but to use a known method of measuring the internal gain of a semiconductor laser having an antireflection film formed thereon and calculating the reflectance of the antireflection film from the ripple of spontaneous emission light. (NAOlsson, "Lightwave systems with
optical amplifiers ", J. Lightwave Technol., vol.LT-
7, pp.1071-1082,1989) However, this known method is complicated because the calculated reflectance is accurate but a semiconductor laser and an optical system for measuring internal gain are required.

【0006】そこで本発明の目的は、上記従来技術を解
決し、1%以下の反射率を容易に測定できる手段を提供
することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned conventional techniques and provide a means for easily measuring a reflectance of 1% or less.

【0007】[0007]

【課題を解決するための手段】本発明では、上記の目的
を達成するため、半導体デバイスに反射防止膜を形成す
る方法において、該膜被堆積試料以外に、p型InP基
板にも同時に該膜を堆積させる。
In order to achieve the above object, the present invention provides a method of forming an antireflection film on a semiconductor device, wherein the film is simultaneously deposited on a p-type InP substrate in addition to the film deposition sample. Deposit.

【0008】[0008]

【作用】p型InP基板はIVBA(価電子帯間吸収)
に起因する光吸収が大きいため、吸収係数がn型もしく
は反絶縁性InP基板に比べて1桁以上大きい。したが
って本発明によれば、基板裏面からの残留反射は基板中
に吸収され、残留反射が起こらないので、1%以下の反
射率を容易に測定できる。
[Function] The p-type InP substrate is IVBA (absorption between valence bands)
Since the light absorption due to is large, the absorption coefficient is one digit or more larger than that of the n-type or anti-insulating InP substrate. Therefore, according to the present invention, since the residual reflection from the back surface of the substrate is absorbed in the substrate and the residual reflection does not occur, the reflectance of 1% or less can be easily measured.

【0009】以下、上記本発明の作用を図を参照しなが
ら詳細に説明する。
The operation of the present invention will be described in detail below with reference to the drawings.

【0010】図2は、基板10上に反射防止膜11設
け、基板に垂直に光を入射させたときの断面図である。
入射光12の一部は、基板表面から反射される(基板表
面からの反射光14)。また基板表面で反射されなかっ
た残りの光は、基板10中を進行し、基板10の裏面で
反射され、再び基板10中を進行し、入射側に戻る(基
板裏面からの残留反射光13)。
FIG. 2 is a sectional view when the antireflection film 11 is provided on the substrate 10 and light is vertically incident on the substrate.
Part of the incident light 12 is reflected from the substrate surface (reflected light 14 from the substrate surface). The remaining light not reflected on the substrate surface travels in the substrate 10, is reflected on the back surface of the substrate 10, travels in the substrate 10 again, and returns to the incident side (residual reflected light 13 from the back surface of the substrate). .

【0011】入射光強度を1とし、基板表面からの反射
光強度をRとする。基板裏面からの残留反射光強度r
は、次のように表される。
The incident light intensity is 1, and the reflected light intensity from the substrate surface is R. Residual reflected light intensity from backside of substrate r
Is expressed as follows.

【0012】[0012]

【数1】 [Equation 1]

【0013】(rb:基板裏面の反射率、α:基板の吸
収係数、L:基板の厚さ) 基板全体の反射率はR+rであるので、反射率の測定か
らRを求めるためにはR>>rが必要である。
(R b : reflectance of the back surface of the substrate, α: absorption coefficient of the substrate, L: thickness of the substrate) Since the reflectance of the entire substrate is R + r, R can be obtained from the measurement of the reflectance by R >> r is required.

【0014】そこで次に、InP基板のrを求め、R>
>rの関係を満たしているかを明らかにする。
Then, next, r of the InP substrate is obtained, and R>
Clarify whether the relation of> r is satisfied.

【0015】R:約1%とする。R: Approximately 1%.

【0016】rb:市販基板の裏面は粗く散乱するの
で、約2.5%(波長1.5μmでの実測値)である。
R b : It is about 2.5% (measured value at a wavelength of 1.5 μm) because the back surface of a commercially available substrate is roughly scattered.

【0017】α:波長1.5μmでの室温における吸収
係数は、以下の通り。n型InP基板(不純物濃度5X
1018/cm3)が7.5/cmである(O.K.Kim W.A.B
onner,"Infrared reflectance and absorption of n-ty
pe InP",Journal of Electronec Materials,vol.12,pp.
827-836,1983)。反絶縁性InP基板もほぼ同等の吸収
係数であることが知られている。一方p型InP基板
(不純物濃度5X1018/cm3)の吸収係数は130
/cmであり、n型もしくは反絶縁性に比べて1桁以上
大きい(H.C.Casey,Jr and P.L.Carter,"Variation of
intervalence band absorption with hole concentrati
on in p-type InP",Appl.Phys.Lett.vol.44,pp.82-83,1
984)。
Α: The absorption coefficient at room temperature at a wavelength of 1.5 μm is as follows. n-type InP substrate (impurity concentration 5X
10 18 / cm 3 ) is 7.5 / cm (OKKim WAB
onner, "Infrared reflectance and absorption of n-ty
pe InP ", Journal of Electronec Materials, vol.12, pp.
827-836,1983). It is known that the anti-insulating InP substrate also has almost the same absorption coefficient. On the other hand, the absorption coefficient of the p-type InP substrate (impurity concentration 5 × 10 18 / cm 3 ) is 130.
/ Cm, which is more than an order of magnitude higher than n-type or anti-insulating properties (HCCasey, Jr and PLCarter, "Variation of
intervalence band absorption with hole concentrati
on in p-type InP ", Appl.Phys.Lett.vol.44, pp.82-83,1
984).

【0018】L:市販基板の厚さは通常450μm
(0.045cm)である。
L: The thickness of a commercially available substrate is usually 450 μm
(0.045 cm).

【0019】r:以上のパラメータを式1に代入する
と、1.3%(n型もしくは反絶縁性)および0.00
002%(p型)が得られる。
R: Substituting the above parameters into Equation 1, 1.3% (n-type or anti-insulating) and 0.00
002% (p-type) is obtained.

【0020】すなわち、n型もしくは反絶縁性InP基
板では、R〜rであり、基板全体の反射率測定から、基
板表面からの反射率(反射防止膜の反射率)Rを求める
ことはできない。
That is, in the case of an n-type or anti-insulating InP substrate, R to r, and the reflectance R from the substrate surface (reflectance of the antireflection film) cannot be obtained from the reflectance measurement of the entire substrate.

【0021】一方、p型InP基板では、R>>rを満
たしており、基板全体の反射率測定から、基板表面から
の反射率(反射防止膜の反射率)Rを求めることが可能
である。すなわち図1に示すように、p−InP基板1
上に反射防止膜2を設けると、入射光3の一部は基板表
面からの反射光5となり、残りの基板裏面へ向かう光4
はすべて吸収される。
On the other hand, the p-type InP substrate satisfies R >> r, and the reflectance R from the substrate surface (reflectance of the antireflection film) R can be obtained by measuring the reflectance of the entire substrate. . That is, as shown in FIG. 1, the p-InP substrate 1
When the antireflection film 2 is provided on the upper surface, a part of the incident light 3 becomes the reflected light 5 from the front surface of the substrate and the remaining light 4 toward the rear surface of the substrate.
Are all absorbed.

【0022】[0022]

【実施例】以下、発振波長1.5μmの半導体レーザ端
面に反射防止膜を形成する場合を採り上げ、本発明の実
施例を説明する。
EXAMPLE An example of the present invention will be described below with reference to the case where an antireflection film is formed on the end face of a semiconductor laser having an oscillation wavelength of 1.5 μm.

【0023】図3に、バー状の半導体レーザの治具への
固定方法を示す。治具本体20に試料支え21が設けら
れており、バー状の半導体レーザ22を端面を上にして
並べた。隣接してp型InP基板(Znドープ濃度が5
X1018/cm3)23を載せ、板バネ支え25により
支えられた板バネ24でバー状の半導体レーザ22を固
定した。
FIG. 3 shows a method of fixing the bar-shaped semiconductor laser to the jig. A sample support 21 is provided on the jig body 20, and the bar-shaped semiconductor lasers 22 are arranged side by side with the end face upward. Adjacent to the p-type InP substrate (Zn doping concentration 5
X10 18 / cm 3 ) 23 was placed, and the bar-shaped semiconductor laser 22 was fixed by the plate spring 24 supported by the plate spring support 25.

【0024】図4に、治具のEB蒸着装置チャンバへの
固定方法を示す。図3で示した治具32をチャンバ30
内の回転ドーム31に下向きに固定した。回転ドーム3
1は図中1点鎖線で示した軸を中心に回転し、均一な膜
が堆積できる。排気管34でチャンバ30内を真空に
し、所定の基板温度、酸素分圧の下でTiO2膜を、つ
いでSiO2膜を、所定の時間堆積した。33は蒸発源
である。
FIG. 4 shows a method of fixing the jig to the chamber of the EB vapor deposition apparatus. The jig 32 shown in FIG.
It was fixed downward to the inner rotating dome 31. Rotating dome 3
1 rotates about the axis shown by the one-dot chain line in the figure, and a uniform film can be deposited. The chamber 30 was evacuated by the exhaust pipe 34, and a TiO 2 film and then a SiO 2 film were deposited for a predetermined time under a predetermined substrate temperature and oxygen partial pressure. 33 is an evaporation source.

【0025】図6に、p型InP基板の反射率測定系を
示す。白色光源40から出た光は、チョッパ41、短波
長カットフィルタ42を経て、分光器43に入る。分解
能調節のため分光器43の入口と出口にはスリット44
が設けられている。出口側のスリット44を出た光は、
レンズ45を通して、50:50ビームスプリッタ46
により半分は反射し(図面上方)、半分は透過する(図
面右方)。ビームスプリッタ46により反射した光はp
型InP基板47にあたり、該反射光はビームスプリッ
タ46を透過し、受光器48で受け、該出力をロックイ
ンアンプ49で増幅する。
FIG. 6 shows a reflectance measuring system for a p-type InP substrate. The light emitted from the white light source 40 enters the spectroscope 43 through the chopper 41 and the short wavelength cut filter 42. A slit 44 is provided at the entrance and exit of the spectroscope 43 for adjusting the resolution.
Is provided. The light emitted from the slit 44 on the exit side is
50:50 beam splitter 46 through lens 45
As a result, half is reflected (upper part of the drawing) and half is transmitted (right part of the drawing). The light reflected by the beam splitter 46 is p
Upon hitting the InP substrate 47, the reflected light passes through the beam splitter 46, is received by the light receiver 48, and the output is amplified by the lock-in amplifier 49.

【0026】図7に、上記測定系を用いて測定した、反
射防止膜堆積済のp型InP基板の反射率を示す。堆積
した反射防止膜は、波長1.5μmで反射防止条件とな
るTiO2/SiO22層膜である。図には、n型InP
基板上に同じ反射防止膜を堆積した試料の反射率も合わ
せて示した。波長1.5μmにおける堆積済n型InP
基板では、基板裏面からの残留反射が重畳して1%強で
あったのに対し、p型InP基板では、残留反射分を吸
収により除去され0.4%となっており、1%以下の反
射率を容易に測定できることがわかった。
FIG. 7 shows the reflectance of the p-type InP substrate on which the antireflection film has been deposited, which was measured using the above measurement system. The deposited antireflection film is a TiO 2 / SiO 2 2 layer film which has an antireflection condition at a wavelength of 1.5 μm. In the figure, n-type InP
The reflectance of the sample in which the same antireflection film is deposited on the substrate is also shown. Deposited n-type InP at wavelength of 1.5 μm
In the substrate, the residual reflection from the back surface of the substrate was superposed and was a little over 1%, whereas in the p-type InP substrate, the residual reflection was absorbed and removed to 0.4%, which was less than 1%. It was found that the reflectance can be easily measured.

【0027】なお、上記実施例においては、p型InP
基板を治具そのものに固定して用いたが、本発明はそれ
に限定するものではない。例えば、図5に示すように、
p型InP基板35を被堆積試料を固定した治具32に
近接して設け、半導体レーザ36で所定の波長の光を照
射し、p型InP基板35からの反射光を受光器37で
受光する構成をとってもよい。この場合は、堆積膜厚の
変化に伴い反射光強度が変化することを利用して膜厚制
御を行うことができ、再現性を改善することが可能であ
る。
In the above embodiment, p-type InP is used.
Although the substrate is used by being fixed to the jig itself, the present invention is not limited to this. For example, as shown in FIG.
The p-type InP substrate 35 is provided in the vicinity of the jig 32 on which the sample to be deposited is fixed, the semiconductor laser 36 irradiates light of a predetermined wavelength, and the light receiver 37 receives the reflected light from the p-type InP substrate 35. You may take a structure. In this case, the film thickness can be controlled by utilizing the fact that the reflected light intensity changes with the change of the deposited film thickness, and the reproducibility can be improved.

【0028】[0028]

【発明の効果】本発明により、1%以下の反射率を容易
に測定できる。
According to the present invention, the reflectance of 1% or less can be easily measured.

【0029】[0029]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を示す図。FIG. 1 is a diagram showing the principle of the present invention.

【図2】本発明の作用を示す図。FIG. 2 is a diagram showing the operation of the present invention.

【図3】本発明の実施例を示す図。FIG. 3 is a diagram showing an embodiment of the present invention.

【図4】本発明の実施例を示す図。FIG. 4 is a diagram showing an embodiment of the present invention.

【図5】本発明の実施例を示す図。FIG. 5 is a diagram showing an embodiment of the present invention.

【図6】本発明による反射防止膜の反射率測定系を示す
図。
FIG. 6 is a diagram showing a reflectance measurement system of an antireflection film according to the present invention.

【図7】本発明による反射防止膜の反射率を示す図。FIG. 7 is a graph showing the reflectance of the antireflection film according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・p−InP基板、2・・・反射防止膜、3・・
・入射光、4・・・基板裏面へ向かう光、5・・・基板
表面からの反射光、10・・・基板、11・・・反射防
止膜、12・・・入射光、13・・・基板裏面からの反
射光、14・・・基板表面からの反射光、20・・・治
具本体、21・・・試料支え、22・・・バー状の半導
体レーザ、23・・・p−InP基板、24・・・板バ
ネ、25・・・板バネ支え、30・・・チャンバ、31
・・・回転ドーム、32・・・試料を固定した治具、3
3・・・蒸発源、34・・・排気管、35・・・p型I
nP基板、36・・・半導体レーザ、37・・・受光
器、40・・・白色光源、41・・・チョッパ、42・
・・短波長カットフィルタ、43・・・分光器、44・
・・スリット、45・・・レンズ、46・・・50:5
0ビームスプリッタ、47・・・p型InP基板、48
・・・受光器、49・・・ロックインアンプ。
1 ... p-InP substrate, 2 ... antireflection film, 3 ...
-Incoming light, 4 ... Light directed to the back surface of the substrate, 5 ... Reflected light from the front surface of the substrate, 10 ... Substrate, 11 ... Antireflection film, 12 ... Incident light, 13 ... Reflected light from substrate back surface, 14 ... Reflected light from substrate surface, 20 ... Jig body, 21 ... Sample support, 22 ... Bar-shaped semiconductor laser, 23 ... p-InP Substrate, 24 ... Leaf spring, 25 ... Leaf spring support, 30 ... Chamber, 31
... Rotary dome, 32 ... Jig for fixing sample, 3
3 ... Evaporation source, 34 ... Exhaust pipe, 35 ... P-type I
nP substrate, 36 ... Semiconductor laser, 37 ... Photoreceiver, 40 ... White light source, 41 ... Chopper, 42.
..Short wavelength cut filters, 43 ... Spectrometers, 44.
..Slits, 45 ... Lenses, 46 ... 50: 5
0 beam splitter, 47 ... p-type InP substrate, 48
... Receiver, 49 ... Lock-in amplifier.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小泉 真里 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 井上 宏明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mari Koizumi 1-280 Higashi Koikeku, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Hiroaki Inoue 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体デバイスに反射防止膜を形成する方
法において、該膜被堆積試料以外に、p型InP基板に
も同時に該膜を堆積させることを特徴とする反射防止膜
形成方法。
1. A method for forming an antireflection film on a semiconductor device, which comprises simultaneously depositing the film on a p-type InP substrate in addition to the film deposition sample.
【請求項2】上記p型InP基板にレーザ光を照射し、
該反射光強度が変化することを利用して膜厚制御を行う
ことを特徴とする請求項1記載の反射防止膜形成方法。
2. Irradiating the p-type InP substrate with laser light,
The method for forming an antireflection film according to claim 1, wherein the film thickness is controlled by utilizing the change in the reflected light intensity.
JP7151301A 1995-06-19 1995-06-19 Reflection preventing film forming method Pending JPH098406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7151301A JPH098406A (en) 1995-06-19 1995-06-19 Reflection preventing film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7151301A JPH098406A (en) 1995-06-19 1995-06-19 Reflection preventing film forming method

Publications (1)

Publication Number Publication Date
JPH098406A true JPH098406A (en) 1997-01-10

Family

ID=15515693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7151301A Pending JPH098406A (en) 1995-06-19 1995-06-19 Reflection preventing film forming method

Country Status (1)

Country Link
JP (1) JPH098406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303495A (en) * 1997-04-30 1998-11-13 Fujitsu Ltd Semiconductor laser
WO2000052795A1 (en) * 1999-02-26 2000-09-08 The Furukawa Electric Co., Ltd. Semiconductor light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303495A (en) * 1997-04-30 1998-11-13 Fujitsu Ltd Semiconductor laser
WO2000052795A1 (en) * 1999-02-26 2000-09-08 The Furukawa Electric Co., Ltd. Semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
KR100782315B1 (en) Method and apparatus for in-situ monitoring of plasma etch and deposition processes using a pulsed broadband light source
US7474396B2 (en) Raman spectroscopy system and method using a subwavelength resonant grating filter
US7718948B2 (en) Monitoring light pulses
US5388909A (en) Optical apparatus and method for measuring temperature of a substrate material with a temperature dependent band gap
JP3420374B2 (en) Gallium oxide coatings for optoelectronic devices
US20070076210A1 (en) Position-based response to light
Wagner et al. Raman monitoring of semiconductor growth
CN1734287A (en) Absolute distance measuring device
CN111239012B (en) Aerosol particle detection system and method
JPH098406A (en) Reflection preventing film forming method
WO2018217220A1 (en) Detector for low temperature transmission pyrometry
JPH0730201A (en) Method and apparatus for vapor deposition of reflection preventive coating on surface of non-resonant photoamplifier and for inspecting thickness of such coating
KR19980050571A (en) How to make Bragg Reflective Film
Fronen Facet reflectivity and low-frequency noise in the light output of LED and superradiant diodes
EP0321087A1 (en) Anti-reflection coatings
JPH06125149A (en) Semiconductor element and manufacture thereof
US20230395408A1 (en) Optical sensor for remote temperature measurements
JP2006023330A (en) Optical filter having a plurality of optical characteristics and application thereof to meteorological observation
JPH0346386A (en) Thickness controlling method and device for reflection preventive film
Park et al. Design, fabrication, and micro-reflectance measurement of a GaAs/AlAs-oxide antireflection film
JPS6057204A (en) Method and device for measuring surface state of high-temperature material
JP2921880B2 (en) Semiconductor manufacturing equipment with particle monitor
Righini et al. Passive and active optical waveguides in LiF thin films
KR20240012319A (en) Analysis device, analysis method, and analysis program
Goushcha et al. Determination of the carrier collection efficiency function of Si photodiode using spectral sensitivity measurements