JPS62165868A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS62165868A
JPS62165868A JP61006204A JP620486A JPS62165868A JP S62165868 A JPS62165868 A JP S62165868A JP 61006204 A JP61006204 A JP 61006204A JP 620486 A JP620486 A JP 620486A JP S62165868 A JPS62165868 A JP S62165868A
Authority
JP
Japan
Prior art keywords
electrode
gas
filled
groove
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61006204A
Other languages
Japanese (ja)
Inventor
Tadanori Maoka
忠則 真岡
Kanji Igarashi
五十嵐 寛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61006204A priority Critical patent/JPS62165868A/en
Publication of JPS62165868A publication Critical patent/JPS62165868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To construct a fuel cell with high reliable gas seal by providing an electrode with ribs filled with electrolyte holding matrix after filling a hydrophilic material into a groove provided on the end portion parallel to the gas flow path. CONSTITUTION:The hole portion of the edge portion 17a, 17b of a porous electrode is filled with a phosphoric acidophilic powder such as silicon carbide or carbon powder and impregnated with the phosphoric acid, so that the penetration of the gas is prevented for the sake of the surface tension of the phosphoric acid. In order to prevent the falling off of the pasty matrix filled in the groove portion when the both electrodes are assembled as an unit inserting an electrolytic layer 1, the forming of the groove 10 in the end portion of the electrode is performed from the side of the gas flow groove 5a for the upper side electrode (usually positive electrode) of the electrolytic layer and from the side of the catalyst layer coated surface 2b for the down side electrode (usually negative electrode) of the electrolytic layer respectively, and after impregnating a hydrophilic material all over the end portion the pasty matrix is filled in each groove portion, and the wet seal is performed. The silicon carbide fine powder is suitable for the hydrophilic material to be used here.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池に係り、特に電極の端部におけるガス
漏れを確実に防止し得るようにした燃料′6池に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell, and more particularly to a fuel cell which can reliably prevent gas leakage at the ends of electrodes.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、燃料の有しているエネルギーを直接電気的エネル
ギーに変換する装置として燃料電池が知られている。こ
の燃料電池は通常、電解質層を挾んで一対の多孔質電極
を配置するとともに、一方の電極の背面に水素等の燃料
ガスを接触させ、また他方の電極の背面に酸素等の酸化
剤ガスを接触させ、このとき起こる電気化学的反応を利
用して、上記電極間から電気エネルギーを取り出すよう
にしたものであり、前記燃料ガスと酸化剤ガスが供給さ
れている限り高い変換効率で電気エネルギーを取り出す
ことができるものである。
2. Description of the Related Art Fuel cells are conventionally known as devices that directly convert energy contained in fuel into electrical energy. This fuel cell usually has a pair of porous electrodes sandwiching an electrolyte layer between them, and a fuel gas such as hydrogen is brought into contact with the back surface of one electrode, and an oxidizing gas such as oxygen is brought into contact with the back surface of the other electrode. Electrical energy is extracted from between the electrodes by bringing them into contact and using the electrochemical reaction that occurs at this time.As long as the fuel gas and oxidant gas are supplied, electrical energy can be extracted with high conversion efficiency. It is something that can be taken out.

第3図は、上記原理に基づく特にリン酸を電解質とした
、リブ付電極型の燃料電池における単位セルの構成例を
分解斜視図にて示したものである。
FIG. 3 is an exploded perspective view showing an example of the configuration of a unit cell in a ribbed electrode type fuel cell based on the above principle and using phosphoric acid as an electrolyte.

図において、1は電解質としてのリン酸をマトリックス
に含浸してなる電解質層、3a、 3bはこの電解質層
1を挾んで配置された多孔炭素材からなるアノード電極
、カソード電極であり、その電解質層1と接する側には
触媒2a、 2bが夫々塗布され、かつ背面側にはリブ
4a、 4bおよび燃料ガス、酸化剤ガスの流通する溝
5a、 5bを夫々有している。ここで、燃料ガスの流
通する溝5aと酸化剤ガスの流通する溝5bとは、互い
に直交する方向に規則的に複数本平行に形成されている
。以上により単位セルが形成され、かかる単位セルをち
密な炭素質で作られたセパレータ6を挾んで複数個積層
することにより単位セル積層体を構成している。
In the figure, 1 is an electrolyte layer formed by impregnating a matrix with phosphoric acid as an electrolyte, and 3a and 3b are an anode electrode and a cathode electrode made of a porous carbon material placed between the electrolyte layer 1. Catalysts 2a and 2b are respectively coated on the side in contact with the catalyst 1, and the rear side has ribs 4a and 4b and grooves 5a and 5b, respectively, through which fuel gas and oxidant gas flow. Here, the grooves 5a through which the fuel gas flows and the grooves 5b through which the oxidant gas flows are regularly formed in parallel in a direction orthogonal to each other. A unit cell is formed as described above, and a unit cell laminate is constructed by stacking a plurality of such unit cells with separators 6 made of dense carbonaceous material sandwiched therebetween.

また、上記単位セル積層体は第4図に示す如く、その上
下端側に集電板7、絶縁板8、締付板9、端子10を夫
々取付け、適当な締付は圧でもって上下方向から締付け
るようにしている。さらに、かかる単位セル積層体の側
面斡にはガスケツ1へ11を介して、燃料ガス、酸化剤
ガスを管16を通し供給および排出するための一対のマ
ニホールド12および13.14および15を夫々対向
して配置し、適当な圧力で締付は固定することにより燃
料電池を構成している。
Further, as shown in FIG. 4, the unit cell laminate is provided with a current collecting plate 7, an insulating plate 8, a clamping plate 9, and a terminal 10 on its upper and lower ends, respectively, and appropriate tightening is performed by applying pressure in the vertical direction. I try to tighten it from the beginning. Further, a pair of manifolds 12 and 13, and 14 and 15 for supplying and discharging fuel gas and oxidizing gas through pipes 16 to gasket 1 via 11 are arranged in the side walls of the unit cell stack, respectively. A fuel cell is constructed by arranging them and tightening and fixing them with an appropriate pressure.

さてかかる構成の燃料電池において、アノード電極3a
、カソード電極3bは通気性が必要であることから炭素
質の多孔性材料で作られる。したがって、その溝5aを
流通する燃料ガスがアノード電極3aの縁部17aの内
部を自由に通過して酸化剤ガス側のマニホールド14お
よび15室内に漏れたり、または溝5bを流通する酸化
剤ガスがカソード電極3bの縁部17bの内部を自由に
通過して燃料ガス側のマニホールド12および13室内
に漏れたりし、結果的に両ガスが混合することになり非
常に危険である。このため、アノード電極3aまたはカ
ソード電極3bの縁部17a及び17bにはガス漏れ防
止策としてのシールを施すことが必要であり、縁部17
a及び17bには樹脂やゴム材を含浸したり、或は耐熱
耐酸性樹脂フィルムをコの字状に巻きつけたり、又はシ
リコンカーバイト粉末を塗布し親水性をもたせ、電解液
と同じりん酸を含浸するいわゆるウェットシール法など
のエツジシールが施されている。
Now, in the fuel cell having such a configuration, the anode electrode 3a
The cathode electrode 3b is made of a carbonaceous porous material because it requires air permeability. Therefore, the fuel gas flowing through the groove 5a may freely pass through the inside of the edge 17a of the anode electrode 3a and leak into the manifolds 14 and 15 on the oxidizing gas side, or the oxidizing gas flowing through the groove 5b may leak. The gas may freely pass through the edge 17b of the cathode electrode 3b and leak into the manifolds 12 and 13 on the fuel gas side, resulting in mixing of both gases, which is extremely dangerous. Therefore, it is necessary to seal the edges 17a and 17b of the anode electrode 3a or the cathode electrode 3b as a measure to prevent gas leakage.
a and 17b are impregnated with a resin or rubber material, or a heat-resistant and acid-resistant resin film is wrapped in a U-shape, or silicon carbide powder is applied to make them hydrophilic, and phosphoric acid, which is the same as the electrolytic solution, is applied. Edge sealing, such as the so-called wet sealing method, is applied.

(特開昭60−95863号) 最後のウェットシールは、簡便な方法であるがシール性
能が不完全で信頼性にとぼしい。
(Japanese Unexamined Patent Publication No. 60-95863) The last wet seal is a simple method, but the sealing performance is incomplete and the reliability is low.

電極端部への親水性材料の含浸処理は通常、親水性粉末
の水溶液中に電極端部を浸漬し、この系を減圧して粉末
を含浸させ、乾燥後ユニにりん酸を保持する方法がとら
れるが、この場合かなり粒径の小さな親水性材料を用い
ても、それらが流液中においては凝集して2次粒子を形
成しているため多孔質電極端部の内部にまではなかなか
充填されず、表面層の極く近傍までしか含浸されない。
The process of impregnating the end of an electrode with a hydrophilic material is usually done by immersing the end of the electrode in an aqueous solution of hydrophilic powder, reducing the pressure in the system to impregnate the powder, and then drying it to retain the phosphoric acid. However, in this case, even if a hydrophilic material with a fairly small particle size is used, it is difficult to fill the inside of the porous electrode end because they aggregate in the flowing liquid and form secondary particles. It is impregnated only to the very vicinity of the surface layer.

そのためここにりん酸を保持させた場合そのシール性は
充分確保されなかった。このような事情を鑑み、R,D
、Breaalt氏らは電極端部を先ず親水性材料にて
含浸処理した後に縁部のガス流路の溝を親水性材料で充
填した後にりん酸を保持させてシールする方法を提案し
た。(U S P  4,279,970)この方法で
あると減圧含浸処理による親水性材料の充填はガス流路
溝の残肉部の比較的薄い部分のみ(t=0.5mm)の
ため、親水材は充分含浸され、さらにその上の溝部に親
水材が充填されているのでここにりん酸を保持させた場
合そのシール性は向上し、電極端部からのガスリーグが
充分阻止できた。
Therefore, when phosphoric acid was retained here, sufficient sealing performance could not be ensured. Considering these circumstances, R.D.
, Breaalt et al. proposed a method in which the end of the electrode is first impregnated with a hydrophilic material, and then the groove of the gas flow path at the edge is filled with the hydrophilic material, and then phosphoric acid is retained and sealed. (U.S.P. 4,279,970) With this method, the hydrophilic material is filled only in a relatively thin portion (t = 0.5 mm) of the remaining wall of the gas flow groove by the reduced pressure impregnation treatment. The material was sufficiently impregnated, and the groove above it was filled with a hydrophilic material, so when phosphoric acid was retained there, the sealing performance was improved and gas leakage from the electrode end was sufficiently prevented.

この方法においてはガスリークが充分阻止されたが、溝
加工部に充填した親水材の積層面の面出しが充分でない
と、単電池の積層面からのガスリークが大きくなってし
まうという欠点があった。
Although this method sufficiently prevented gas leakage, it had the disadvantage that gas leakage from the stacked surface of the unit cell would increase if the laminated surface of the hydrophilic material filled in the grooved portion was not sufficiently leveled.

〔発明の目的〕 本発明は上記のような問題を解決するために成されたも
ので、多孔質電極端部のウェットシールを簡便にかつ確
実に行ない、合わせて単電池積層面からのガスリークを
も阻止することのできる信頼性の高いガスシールを有す
る燃料電池を提供することにある。
[Object of the Invention] The present invention was made to solve the above-mentioned problems, and it is possible to easily and reliably wet-seal the end of a porous electrode, and also to prevent gas leakage from the cell stack surface. It is an object of the present invention to provide a fuel cell having a highly reliable gas seal that can also prevent

〔発明の概要〕[Summary of the invention]

シリコンカーバイトや炭素粉末など親りん酸性の粉末で
充満せしめ、これにりん酸を含浸し、りん酸の表面張力
により気体の通過を防止しようとするものである。
It is filled with phosphoric acid powder such as silicon carbide or carbon powder, and is impregnated with phosphoric acid to prevent gas from passing through due to the surface tension of the phosphoric acid.

本発明においては第1図及び第2図に示した如く電極縁
部に溝加工を施し、溝加工をした残肉部に親水材の含浸
処理を施した後、この溝部には粘性の高いペースト状マ
トリックスそのものを充填することにより反応ガスのシ
ールを行なうものである。
In the present invention, as shown in FIGS. 1 and 2, grooves are formed on the edge of the electrode, and after the remaining thickness of the groove is impregnated with a hydrophilic material, a highly viscous paste is applied to the groove. The reactant gas is sealed by filling the matrix itself.

この場合電解質層1を介して両極を一体化する際、溝部
に充填したペースト状マトリックスが脱落しないように
するため、電極端部の溝10の形成を第1図及び第2図
の如く電解質層を介して上側の電極(通常カソード)に
おいては、ガス流路溝5aが形成されている側から、ま
た下側の電極(通常カソード)においては触媒層塗着面
2b側から行ない、あらかじめ端部全体にわたって親水
材を含浸した後にそれぞれの溝部呼ペースト状マトリッ
クスを充填して・ウェットシールを行なう。この除用い
る親水性材料としては炭化珪素微粉末が適当である。
In this case, when integrating the two electrodes through the electrolyte layer 1, in order to prevent the paste matrix filled in the groove from falling off, the groove 10 at the end of the electrode is formed on the electrolyte layer as shown in FIGS. 1 and 2. At the upper electrode (usually the cathode), the gas flow groove 5a is formed, and at the lower electrode (usually the cathode), from the side where the catalyst layer is coated 2b. After the entire surface is impregnated with the hydrophilic material, each groove is filled with a pasty matrix and wet-sealed. As the hydrophilic material used for this removal, silicon carbide fine powder is suitable.

上述のようにそれぞれの方向から溝加工の施された多孔
質電極端部を次の組成をもつ含浸液に浸し、この系を真
空ポンプに接続して減圧−常圧のサイクルを数回繰り返
し、電極端部全体、特に溝加工残肉部に親木材を充填す
る。
As mentioned above, the end of the porous electrode with grooves processed in each direction is immersed in an impregnating liquid having the following composition, and this system is connected to a vacuum pump and the cycle of reduced pressure and normal pressure is repeated several times. Fill the entire end of the electrode, especially the remaining thickness of the groove, with parent wood.

空気中200℃で30分間乾燥後ここに炭化珪素を主成
分とするペースト状マトリックスを充填した。
After drying in air at 200° C. for 30 minutes, a paste-like matrix containing silicon carbide as a main component was filled.

含浸液の組成;5iC(昭和電工製) 平均粒径1μm  120g 純水       75n+9 Tricon X−100(非イオン系界面活性剤) 
      8g (Rohm & Hass社製) Taflon 3O−J(PTFEディスパージョン)
         1.9 g (三井フロロケミカル社製) 用いた電解質保持マトリックスの組成令以下のものであ
る。
Composition of impregnating liquid: 5iC (manufactured by Showa Denko) Average particle size 1 μm 120 g Pure water 75n+9 Tricon X-100 (nonionic surfactant)
8g (manufactured by Rohm & Hass) Taflon 3O-J (PTFE dispersion)
1.9 g (manufactured by Mitsui Fluorochemical Co., Ltd.) This is less than the composition of the electrolyte retention matrix used.

上述のようにウェットシールが施された多孔質電極を平
板のインターコネクタに挾み、面圧2kg/dで締め付
は後マニホールドを取り付け、マニホールド内に一定圧
の空気を封入し、多孔質電極の片側の端部からの空気の
リークの速さを200℃において測定したところシール
長10■当り、封入圧10 cm A gのところで1
.3 X 10−’cc/sec−cmAgであった。
The porous electrode wet-sealed as described above is sandwiched between the flat interconnectors, tightened with a surface pressure of 2 kg/d, and then the manifold is attached, and air at a constant pressure is sealed inside the manifold. The rate of air leakage from one end of the was measured at 200°C and was 1 at a sealing pressure of 10 cm A g per 10 cm of seal length.
.. 3 x 10-'cc/sec-cmAg.

さらにリークの速さは空気の封入圧を20cmHgまで
上げてもほとんど変化がなかった。このようにウェット
シールが施された一対の多孔質電極に公知の方法により
触媒層を付与した後上述の電解質保持マトリックス層を
介して一体化して単電池を作製し、電池性能を調べたと
ころ従来法のシールが施された電極の同等のI −V特
性をえた。
Furthermore, the rate of leakage hardly changed even when the air sealing pressure was increased to 20 cmHg. A catalyst layer was applied to the pair of wet-sealed porous electrodes by a known method, and then integrated via the electrolyte retention matrix layer described above to produce a unit cell, and the battery performance was investigated. Equivalent I-V characteristics of the electrode with a legal seal were obtained.

さらにこの電池を一定負荷を通して長時間運転したとこ
ろ約5000時間は反応ガスのクロスオーバーを起すこ
となく安定した電池特性を示すことができた。
Furthermore, when this battery was operated for a long time under a constant load, it was able to exhibit stable battery characteristics for approximately 5,000 hours without causing crossover of the reactant gas.

〔発明の効果〕〔Effect of the invention〕

上述のようにウェットシールが施された電極を用いて作
製された単電池の電極端部よりの反応ガスのリークは充
填したペースト型マトリックス及び残肉部に含浸された
電解質保持親木材により充分阻止された。このシール性
は電極及び電極間に異常差圧(20cmHg)がついた
場合も充分確保されることが確認された。
As mentioned above, leakage of reactive gas from the electrode end of a single cell produced using a wet-sealed electrode is sufficiently prevented by the filled paste-type matrix and the electrolyte-retaining parent wood impregnated into the remaining flesh. It was done. It was confirmed that this sealing performance was sufficiently ensured even when an abnormal pressure difference (20 cmHg) was applied between the electrodes.

また下側の電極の加工溝に充填したマトリックスは電解
保持マトリックス層1は直接接している為マトリックス
層lとの液絡が充分にとられ長期に互る反応ガスのシー
ル性が確保された。さらにマトリックス層5を介して上
側の電極端部の加工溝に充填したペースト型マトリック
スはセパレータSとの間の密着性が良くなったため単電
池の積層面からの反応ガスのリークが阻止された。
In addition, since the matrix filled in the groove of the lower electrode was in direct contact with the electrolytically retained matrix layer 1, a sufficient liquid junction with the matrix layer 1 was established, and a long-term sealing property of the reactant gases was ensured. Furthermore, the paste-type matrix filled into the processed groove at the upper electrode end via the matrix layer 5 had improved adhesion with the separator S, so that leakage of reaction gas from the stacked surface of the cell was prevented.

本発明によればこのように長期に互り高いシール性が確
保される多孔質電極端部のウェットシールが電池を大型
化した場合においても従来法に比べて比較的簡単に行う
ことが可能となった。
According to the present invention, wet sealing of the ends of porous electrodes that ensures high sealing performance over a long period of time can be performed relatively easily compared to conventional methods even when the size of the battery is increased. became.

この方法による電池は単電池積層面からの反応ガスのリ
ークが阻止されるという利点の為、電池を積層化して大
容量化した場合にも有利となった。
Batteries manufactured by this method have the advantage that leakage of reaction gas from the stacked surfaces of the single cells is prevented, so it is also advantageous when the batteries are stacked to increase capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のウェットシールが施された多孔質電極
を用いた単位電池の斜視図、第2図は第1図の単位電池
の側面図、第3図はリブ付き電極(ガス流路溝付き多孔
質電極)を用いた燃料電池の単位電池の構造図、第4図
は燃料電池の構造図である。 1・・・電解質層    2・・・触媒3・・・電極 
     4・・・リブ5・・・溝 +”CF−i人弁理士 則近忽佑 同  三俣弘文 第2図 ; 第  3 図 第  4 図
Fig. 1 is a perspective view of a unit cell using a wet-sealed porous electrode of the present invention, Fig. 2 is a side view of the unit cell of Fig. 1, and Fig. 3 is a ribbed electrode (gas flow channel). Fig. 4 is a structural diagram of a unit cell of a fuel cell using a grooved porous electrode). 1... Electrolyte layer 2... Catalyst 3... Electrode
4...Rib 5...Groove +"CF-i Patent Attorney Noriyuki Hirofumi MitsumataFigure 2; Figure 3Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)電解質を保持したマトリックスを挾持し、導電性
の多孔質基体の一方の面に燃料ガスおよび酸化剤ガスの
流通路が形成されると共に、他方の面に貴金属触媒担持
のカーボン微粉とフッ素系結着剤から成る触媒層が塗着
された一対のリブ付電極を配置して成り、前記各ガス流
通路に燃料ガスおよび酸化剤ガスが流通している条件下
で、電気エネルギーを出力する単位セルを複数個積層し
て構成する燃料電池において、前記リブ付電極のガス流
通路が形成されている面にガス流通路と平行してその端
部に溝部が形成され、この溝部に親水性材料を充填した
後に、電解質保持マトリックスが充填されたリブ付電極
を具備したことを特徴とする燃料電池。
(1) A conductive porous substrate sandwiching a matrix holding an electrolyte, with flow paths for fuel gas and oxidant gas formed on one side, and fine carbon powder supporting a noble metal catalyst and fluorine on the other side. It consists of a pair of ribbed electrodes coated with a catalyst layer made of a system binder, and outputs electrical energy under the condition that fuel gas and oxidant gas are flowing through each of the gas flow paths. In a fuel cell configured by stacking a plurality of unit cells, a groove is formed at the end of the surface of the ribbed electrode on which the gas flow passage is formed in parallel with the gas flow passage; A fuel cell comprising a ribbed electrode filled with an electrolyte retention matrix after being filled with a material.
(2)前記親水性材料は炭化珪素であり、電解質保持マ
トリックスはリン酸と炭化珪素の混合物であることを特
徴とする特許請求の範囲第1項記載の燃料電池。
(2) The fuel cell according to claim 1, wherein the hydrophilic material is silicon carbide, and the electrolyte retention matrix is a mixture of phosphoric acid and silicon carbide.
JP61006204A 1986-01-17 1986-01-17 Fuel cell Pending JPS62165868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61006204A JPS62165868A (en) 1986-01-17 1986-01-17 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61006204A JPS62165868A (en) 1986-01-17 1986-01-17 Fuel cell

Publications (1)

Publication Number Publication Date
JPS62165868A true JPS62165868A (en) 1987-07-22

Family

ID=11632003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006204A Pending JPS62165868A (en) 1986-01-17 1986-01-17 Fuel cell

Country Status (1)

Country Link
JP (1) JPS62165868A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154772A (en) * 1983-02-24 1984-09-03 Toshiba Corp Fuel cell
JPS59181466A (en) * 1983-03-31 1984-10-15 Toshiba Corp Manufacture of electrolyte matrix

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154772A (en) * 1983-02-24 1984-09-03 Toshiba Corp Fuel cell
JPS59181466A (en) * 1983-03-31 1984-10-15 Toshiba Corp Manufacture of electrolyte matrix

Similar Documents

Publication Publication Date Title
US4603093A (en) Lead-acid battery
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JPH04259759A (en) Diaphragm humidifying structure for solid high polymer electrolytic fuel cell and electrolytic cell
JP4528386B2 (en) Solid polymer fuel cell and manufacturing method thereof
JP2778767B2 (en) Porous electrode and method of using the same
US5063123A (en) Separator for fuel cell
CN1462489A (en) Electrode for fuel cell and method of manufacturing the electrode
JPS59154772A (en) Fuel cell
JPS62165868A (en) Fuel cell
JP4498681B2 (en) Polymer electrolyte fuel cell
RU2751535C2 (en) Membrane-electrode fuel cell block with polymer membrane
US11631903B1 (en) Zinc bromine electrochemical cell
JP7354928B2 (en) Gas diffusion layer for fuel cells
JPS6247966A (en) Manufacture of fuel cell
JP7272314B2 (en) Laminates for fuel cells
JP2633522B2 (en) Fuel cell
JPH0652873A (en) Fuel cell
JPS61292859A (en) Manufacture of fuel cell
JPS6139455A (en) Fuel cell
JPS61126771A (en) Fuel cell
JPH0696781A (en) Solid polymer electrolytic fuel cell
JPH0850904A (en) Fuel cell
JPS59224075A (en) Fuel cell
JP2005005232A (en) Membrane electrode assembly and solid polymer electrolyte fuel cell using the same
JPS6273570A (en) Manufacture of fuel cell