JPS6216513A - Semiconductor thin film - Google Patents

Semiconductor thin film

Info

Publication number
JPS6216513A
JPS6216513A JP60154208A JP15420885A JPS6216513A JP S6216513 A JPS6216513 A JP S6216513A JP 60154208 A JP60154208 A JP 60154208A JP 15420885 A JP15420885 A JP 15420885A JP S6216513 A JPS6216513 A JP S6216513A
Authority
JP
Japan
Prior art keywords
thin film
silane
semiconductor thin
impurity gas
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60154208A
Other languages
Japanese (ja)
Other versions
JP2543498B2 (en
Inventor
Yoshinori Ashida
芦田 芳徳
Koji Igarashi
孝司 五十嵐
Nobuhiro Fukuda
福田 信弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60154208A priority Critical patent/JP2543498B2/en
Publication of JPS6216513A publication Critical patent/JPS6216513A/en
Application granted granted Critical
Publication of JP2543498B2 publication Critical patent/JP2543498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain an amorphous silicon carbide semiconductor thin film, especially, a P-type amorphous silicon carbide semiconductor thin film (P-aSiC:H film), having excellent characteristics at a low temperature using low discharge power by a method wherein the carbon content of the thin film, to be obtained by performing glow discharge decomposition on the specific methyl silane, silane and impurity gas, is specified. CONSTITUTION:The content of carbon in the thin film obtained by glow discharge decomposition of methyl silane indicated by the formula Si(CH3)nH4-n (n=1-4), the silane indicated by the formula SimH2m+2 (m=1-3) and impurity gas, is set at 10at% or below. There are monomethylsilane, dimethyl silane, trimethyl silane and tetramethyl silane corresponding to n=1-4 in the methyl silane expressed by the formula Si(CH3)nH4-n. There are monosilane, disilane and trisilane in the silane expressed by the formula SimH2m+2 corresponding to m=1-3. There is diborane (B2H6) which gives P-type conductivity, for example, and phosphine (PH3) which gives N-type conductivity as the impurity gas with which the conductive type of the semiconductor thin film can be changed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体薄膜に関し、特にr型の導電性を示す非
晶質シリコンカーバイドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to semiconductor thin films, and particularly to amorphous silicon carbide exhibiting r-type conductivity.

〔背景技術〕[Background technology]

非晶質シリコンカーバイド(a−8iCX、0<Xぐ)
の薄膜は最近よく研究されており、その用途は太陽電池
、感光ドラム等に開けている。a−3iCXは光学バン
ドキャップが非晶質シリコン(a−8i )にくらべて
大きいこと及び、p型不純物やn型不純物の一ドーピン
グが可能であることから、タンデム型太陽電池の短波長
光変換のための太陽電池及びpあるいはn型ドーピング
をして、太陽電池の光入射膜(窓層)に用いられる。
Amorphous silicon carbide (a-8iCX, 0<X)
Thin films have been extensively studied recently, and their applications are open to solar cells, photosensitive drums, etc. A-3iCX has a larger optical bandgap than amorphous silicon (a-8i) and can be doped with p-type and n-type impurities, making it suitable for short wavelength light conversion in tandem solar cells. It is used for solar cells and, with p- or n-type doping, for the light incident film (window layer) of solar cells.

従来、a−8iCXについてはモノシランと炭化水素と
の混合ガスをグロー放電により分解して形成せられる方
法が広く知られている。しかしながらこの混合ガスを使
う方法の場合モノシランと炭化水素では、その分解に要
するエネルギーは大きく異なるため、得られるa−8i
CXの組成や性質を制御することが困難でありた。即ち
モノシランは分解されやすく、炭化水素は分解されにく
いために所望のS/C比の膜を得るには分解条件はきわ
めて厳密に制御されねばならなかった。
Conventionally, a widely known method for forming a-8iCX is to decompose a mixed gas of monosilane and hydrocarbon by glow discharge. However, in the method using this mixed gas, the energy required for decomposition of monosilane and hydrocarbon is greatly different, so the a-8i obtained is
It has been difficult to control the composition and properties of CX. That is, since monosilane is easily decomposed and hydrocarbons are difficult to decompose, decomposition conditions must be extremely strictly controlled in order to obtain a film with a desired S/C ratio.

また光学バンドキャップを大きくすると暗導電度および
光導電度が低下する問題があり、その上pあるいはn型
不純物のドーピングにより効果的にpあるいはn型の導
電性を付与することは困難であった。
In addition, increasing the optical band gap has the problem of decreasing dark conductivity and photoconductivity, and furthermore, it has been difficult to effectively impart p- or n-type conductivity by doping with p- or n-type impurities. .

本発明者らは先にシリコン−炭素結合を有する化合物を
ジシランとともにグロー放電分解することにより、広い
光学的バンドギャップを有し、かつ高い光導電度を有す
る非晶質シリコンカーバイド半導体薄膜を提案した(特
願昭59−247577)。
The present inventors previously proposed an amorphous silicon carbide semiconductor thin film with a wide optical bandgap and high photoconductivity by glow discharge decomposition of a compound having a silicon-carbon bond together with disilane. (Patent application No. 59-247577).

本発明者はさらに検討した結果、低温、低放電電力で良
好な特性を有する非晶質シリコンカーバイド半導体薄膜
特にr型非晶質シリコンカーバイド半導体薄膜(以下p
−asic:H膜と略称する)を得ることができた。
As a result of further study, the present inventor found that an amorphous silicon carbide semiconductor thin film, particularly an r-type amorphous silicon carbide semiconductor thin film (hereinafter referred to as p
-asic:H film) was successfully obtained.

〔発明の開示〕[Disclosure of the invention]

本発明は一般式5i(CH,)nH,−n(n=1〜4
)で表わされるメチルシラン、一般式SimH2m+2
 (m=1〜3)で表わされるシラン及び不純物ガスを
グロー放電分解して得られる薄膜中の炭素含有量が10
at%以下である半導体薄膜である。
The present invention is based on the general formula 5i(CH,)nH,-n(n=1-4
), the general formula SimH2m+2
The carbon content in the thin film obtained by glow discharge decomposition of silane and impurity gas represented by (m = 1 to 3) is 10
It is a semiconductor thin film having a concentration of at% or less.

本発明において使用する一般式S i (CH,)n 
H,−9(n=1〜4)で表わされるメチルシランには
n=1゜2.5及び4に対応してそれぞれモノメチルシ
ラン、ジメチルシラン、トリメチルシラン及びテトラメ
チルシランがある。
General formula S i (CH,)n used in the present invention
Methylsilanes represented by H, -9 (n=1 to 4) include monomethylsilane, dimethylsilane, trimethylsilane and tetramethylsilane corresponding to n=1.2.5 and 4, respectively.

また本発明において一般式SimH,m+2 (m=1
〜3)で表わされるシランにはm=1.2及び3に対応
してそれぞれモノシラン、ジシラン及びトリシランがあ
る。
Furthermore, in the present invention, the general formula SimH, m+2 (m=1
The silanes represented by ~3) include monosilane, disilane, and trisilane corresponding to m=1.2 and 3, respectively.

不純物ガスとしては半導体薄膜の導電型を変更するもの
であり、たとえばr型の導電性を付与するものには、ジ
ボラン、、(B2H6)、n型の導電性を付与するもの
にはフォスフイン(PH3)がある。これらB2H,や
PH,は水素やヘリウムで希釈して用いるのが好ましい
The impurity gas is one that changes the conductivity type of the semiconductor thin film; for example, diborane (B2H6) is used to impart r-type conductivity, and phosphine (PH3) is used to impart n-type conductivity. ). It is preferable to use these B2H and PH after diluting them with hydrogen or helium.

本発明の特徴とするところは低温かつ低放電電力による
グロー放電分解で得られた良好な光学及び電気特性を有
する1)−asic:H膜である。このためには好まし
くは、メチルシランにおいてはモノメチルシラン、ジメ
チルシラン、トリメチルシラン;シランにおいてはジシ
ラン;不純物ガスにおいては水素又はヘリウムで希釈さ
れたジボランが用いられる。特に好ましくは本発明はジ
メチルシラン、ジシラン及び水素又はヘリウムで希釈さ
れたジボランを低い放電電力でグロー放電分解し、25
0℃以下に保持された基体上に形成されたピーasic
:H膜である。
The present invention is characterized by a 1)-asic:H film having good optical and electrical properties obtained by glow discharge decomposition at low temperature and low discharge power. For this purpose, preferably monomethylsilane, dimethylsilane, trimethylsilane is used as the methylsilane; disilane as the silane; diborane diluted with hydrogen or helium as the impurity gas. Particularly preferably, the invention provides glow discharge decomposition of dimethylsilane, disilane and diborane diluted with hydrogen or helium at low discharge power.
ASIC formed on a substrate kept below 0°C
:H film.

本発明のf−asic:H膜は10at%以下の炭素を
膜中に含有する。またグロー放電から得られる非晶質薄
膜には水素がとりこまれてシリコン原子の不対電子と結
合していることが当業者には知られているが、本発明で
はこのシリコン原子と水素との結合様式はIRスペクト
ルからSiH,又は(SiH2)nが大多数を占めてい
ることが確認されている。さらに本発明の薄膜は20a
t%を越える多量の結合水素を含有している。従来技術
においては本発明の如<5IH2又は(siH2)nお
よび多着の水素が含有される非晶質シリコン膜は電気的
特性に劣るものとして実用に供されなかったものである
。然るに本発明者は前述の如く原料の組成を選択するこ
とにより極めて特異な効果を見出したものである。すな
わち、その性質はたとえば炭素含有量が高々3at%で
あるのに光学的バンドギャップは2.2eVを越える広
いものであることから明らかでありさらに光導電度は1
0””S/cmにも達するものもあり、暗導電度の10
倍以上の光導電度を示すものもあるのである。本発明に
おいては光学的バンドギャップは膜中の炭素含有量を1
〜10at%の間で、水素含有量を15〜60%の間で
変更することにより1.8eV〜2.5e’Vの間で変
更することができる。
The f-asic:H film of the present invention contains 10 at% or less of carbon. Furthermore, it is known to those skilled in the art that hydrogen is incorporated into the amorphous thin film obtained from glow discharge and is bonded to unpaired electrons of silicon atoms. It has been confirmed from the IR spectrum that the bonding mode is dominated by SiH or (SiH2)n. Furthermore, the thin film of the present invention is 20a
It contains a large amount of bonded hydrogen exceeding t%. In the prior art, an amorphous silicon film containing <5IH2 or (siH2)n and a large amount of hydrogen as in the present invention was not put to practical use because it had poor electrical properties. However, the present inventor has discovered a very unique effect by selecting the composition of the raw materials as described above. That is, its properties are clear from the fact that, although the carbon content is at most 3 at%, the optical bandgap is wide, exceeding 2.2 eV, and furthermore, the photoconductivity is 1
Some reach as high as 0''S/cm, which is 10% of the dark conductivity.
Some exhibit photoconductivity that is more than twice as high. In the present invention, the optical bandgap is determined by the carbon content in the film being 1
~10 at% and can be varied between 1.8 eV and 2.5 e'V by varying the hydrogen content between 15 and 60%.

この場合、水素含有量の変更は基体の温度を変更するこ
とにより行うことが出来る。多量の水素を効率よくとり
入れるために基体の温度は250°C以下に保持される
。好ましい効果を与える基体の温度は80℃以上、20
0℃以下であり、特に好ましい基体の温度は100℃以
上、160℃以下である0 〔発明を実施するだめの好ましい形態〕つぎに本発明の
実施の態様について記す。
In this case, the hydrogen content can be changed by changing the temperature of the substrate. In order to efficiently incorporate a large amount of hydrogen, the temperature of the substrate is maintained below 250°C. The temperature of the substrate that gives a favorable effect is 80°C or higher, 20°C
The temperature of the substrate is preferably 0° C. or lower, and a particularly preferable temperature of the substrate is 100° C. or higher and 160° C. or lower. [Preferred Mode for Carrying Out the Invention] Next, embodiments of the present invention will be described.

グロー放電可能な反応室中に半導体薄膜を形成すべき基
体を配置し、減圧下250°C以下の温度に加熱保持す
る。ついで、ジメチルシラン、ジシラン及び水素又はヘ
リウムで希釈されたジボランを導入し、圧力0.05〜
2Tomにおいて放電電力1〜10Wでグロー放電分解
することにより本発明のばよく、ジボラン等の添加量は
通常のドーパントと同様適宜法められる。
A substrate on which a semiconductor thin film is to be formed is placed in a reaction chamber capable of glow discharge, and heated and maintained at a temperature of 250° C. or less under reduced pressure. Next, dimethylsilane, disilane and diborane diluted with hydrogen or helium are introduced, and the pressure is 0.05~
The present invention can be carried out by glow discharge decomposition at a discharge power of 1 to 10 W at 2 Tom, and the amount of diborane etc. to be added can be determined as appropriate in the same manner as for ordinary dopants.

以下、実施例をあげてさらに具体的に本発明を説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例−1 基板加熱手段、真空排気手段、ガス導入手段及び基板を
設置することのできる平行平板電極を有するグロー放電
室をもつ容量結合型高周波プラズマCVD(Chemi
cal Vapor Deposition)装置の該
基板設置部へ、結晶シリコン板およびコーニング社製7
059ガラス基板を設置した。油拡散ポンプにより10
−’ Torr以下に真空排気しながら、該基板設置部
の温度(薄膜の形成温度)が150°Cになるように加
熱した。
Example 1 A capacitively coupled high-frequency plasma CVD (chemi
Place a crystalline silicon plate and a Corning Co., Ltd. 7
A 059 glass substrate was installed. 10 by oil diffusion pump
The substrate was heated to a temperature of 150° C. (thin film formation temperature) while evacuating to a temperature below -' Torr.

ジメチルシラン、ジシラン、水素希釈10 Oolll
Xfiジボランをそれぞれ7,2.5及び100 se
cMを導入し、圧力0.56Torrにおいて放電電力
1Wでグロー放電した。45分間放置後放電を停止し、
冷却後薄膜が形成された該基板をとり出し、膜厚、光学
バンドギャップ、光導重度、暗導電車および赤外吸収ス
ペクトルを測定した。膜厚は5860 Aであり、成膜
速度は約2.2A/秒であることがわかった。光学的バ
ンドギャップは分光光度計で薄膜の光吸収係数αを測定
した後、入射光のエネルギー(hν)に対して(αhν
)1/2をプロットし、その直線部分を外挿しhν軸と
の切片の値として求め、2.78vが得られた。またA
Ml、100mW/cd照射下における光導重度は1.
4X10 87cm、暗導電車は6.2X10 87c
m  でp型の導電性を示した。
Dimethylsilane, disilane, hydrogen dilution 10 Ooll
Xfi diborane at 7, 2.5 and 100 se
cM was introduced, and glow discharge was performed at a pressure of 0.56 Torr and a discharge power of 1 W. After leaving it for 45 minutes, stop the discharge,
After cooling, the substrate on which the thin film was formed was taken out, and the film thickness, optical band gap, degree of light guide, dark conductor, and infrared absorption spectrum were measured. It was found that the film thickness was 5860 A and the film formation rate was about 2.2 A/sec. The optical bandgap is determined by measuring the light absorption coefficient α of a thin film using a spectrophotometer, and then calculating the optical band gap by (αhν) with respect to the energy of incident light (hν).
) 1/2 was plotted, and the straight line portion was extrapolated to find the value of the intercept with the hν axis, and 2.78v was obtained. Also A
The light guiding degree under Ml, 100 mW/cd irradiation is 1.
4X10 87cm, dark conductor 6.2X10 87c
It showed p-type conductivity at m.

実施例2 本実施例では実施例1においてジメチルシラン流量を1
/2の3.(5sccMとして基板設置部の温度を10
0℃にした例である。
Example 2 In this example, the dimethylsilane flow rate was changed to 1 in Example 1.
/2-3. (Assuming 5sccM, the temperature of the board installation part is 10
This is an example where the temperature was set to 0°C.

放電電力3w、圧力0.55Torrで25分間放電後
放電を停止し、冷却後実施例1と同様の測定をした。こ
の結果成膜速度4.7A/秒、光学的バンドギャップ2
.16eV、光導重度8X10−88/c*、  暗導
電車5×1087cmを得た。
After discharging for 25 minutes at a discharge power of 3 W and a pressure of 0.55 Torr, the discharge was stopped, and after cooling, the same measurements as in Example 1 were carried out. As a result, the deposition rate was 4.7 A/sec, and the optical band gap was 2.
.. 16 eV, a light conductivity of 8×10-88/c*, and a dark conductor of 5×1087 cm were obtained.

実施例1および2において炭素含有量を二次イオン質量
分析法によって求めたところそれぞれ3at%及び1.
6at%であった。赤外吸収スペクトルから求めた水素
量は実施例2の方が実施例1よりも大きくて約32at
%であった。いま、実施例2で得られた薄膜の方が光学
的バンドギャップにおいて実施例1よりも大きいが、こ
れは、本発明の薄膜においては従来方法のシリコンカー
バイド膜と異ることを示すものである。
In Examples 1 and 2, the carbon content was determined by secondary ion mass spectrometry and was 3 at% and 1.0%, respectively.
It was 6 at%. The amount of hydrogen determined from the infrared absorption spectrum was larger in Example 2 than in Example 1, about 32 at.
%Met. Now, the thin film obtained in Example 2 has a larger optical bandgap than Example 1, which indicates that the thin film of the present invention is different from the silicon carbide film of the conventional method. .

即ち本発明は薄膜の光学的特性として重要な性質である
光学的バンドギャップを炭素含有量及び水素含有量の両
方で制御できる便利さを備えるものである。
That is, the present invention provides the convenience of controlling the optical bandgap, which is an important optical property of a thin film, by controlling both the carbon content and the hydrogen content.

〔作用効果〕[Effect]

本発明により得られる半導体薄膜は広い光学禁制予巾を
有する故に、アモルファス太陽電池をはじめとする非晶
質光電変換素子の窓材料、バックコンタクト材料、タン
デム接合太陽電池において光入射側に配置される短波長
感度の良好な光電変換部の材料として用いるのに好適で
あるほかに、非晶質シリコンを用いる各種のデバイスに
有用である。
Since the semiconductor thin film obtained by the present invention has a wide optical gap, it can be used as a window material for amorphous photoelectric conversion elements such as amorphous solar cells, a back contact material, and a tandem junction solar cell on the light incident side. In addition to being suitable for use as a material for photoelectric conversion parts with good short wavelength sensitivity, it is also useful for various devices using amorphous silicon.

Claims (5)

【特許請求の範囲】[Claims] (1)一般式Si(CH_3)_nH_4_−_n(n
=1〜4)で表わされるメチルシラン、一般式Si_m
H_2_m_+_2(m=1〜3)で表わされるシラン
及び不純物ガスをグロー放電分解して得られる薄膜中の
炭素含有量が10at%以下であることを特徴とする半
導体薄膜。
(1) General formula Si(CH_3)_nH_4_-_n(n
= 1 to 4), general formula Si_m
1. A semiconductor thin film obtained by glow discharge decomposition of silane and impurity gas represented by H_2_m_+_2 (m=1 to 3) and having a carbon content of 10 at% or less.
(2)メチルシランがn=2であるところのジメチルシ
ランである特許請求の範囲第1項記載の半導体薄膜。
(2) The semiconductor thin film according to claim 1, wherein the methylsilane is dimethylsilane where n=2.
(3)シランがm=2であらわされるところのジシラン
である特許請求の範囲第1項記載の半導体薄膜。
(3) The semiconductor thin film according to claim 1, wherein the silane is disilane represented by m=2.
(4)不純物ガスが水素又はヘリウムで希釈されたジボ
ランもしくはフォスフィンである特許請求の範囲第1項
記載の半導体薄膜。
(4) The semiconductor thin film according to claim 1, wherein the impurity gas is diborane or phosphine diluted with hydrogen or helium.
(5)薄膜が250℃以下の温度に保持された基体上に
形成される特許請求の範囲第1項記載の半導体薄膜。
(5) The semiconductor thin film according to claim 1, wherein the thin film is formed on a substrate maintained at a temperature of 250° C. or less.
JP60154208A 1985-07-15 1985-07-15 Semiconductor thin film Expired - Lifetime JP2543498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154208A JP2543498B2 (en) 1985-07-15 1985-07-15 Semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154208A JP2543498B2 (en) 1985-07-15 1985-07-15 Semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS6216513A true JPS6216513A (en) 1987-01-24
JP2543498B2 JP2543498B2 (en) 1996-10-16

Family

ID=15579205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154208A Expired - Lifetime JP2543498B2 (en) 1985-07-15 1985-07-15 Semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2543498B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085575A (en) * 1983-10-18 1985-05-15 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS60154521A (en) * 1984-01-23 1985-08-14 Semiconductor Energy Lab Co Ltd Manufacture of silicon carbide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085575A (en) * 1983-10-18 1985-05-15 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPS60154521A (en) * 1984-01-23 1985-08-14 Semiconductor Energy Lab Co Ltd Manufacture of silicon carbide film

Also Published As

Publication number Publication date
JP2543498B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
US4615905A (en) Method of depositing semiconductor films by free radical generation
US4517223A (en) Method of making amorphous semiconductor alloys and devices using microwave energy
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4664937A (en) Method of depositing semiconductor films by free radical generation
JPH0434314B2 (en)
JP2533639B2 (en) Method for producing amorphous silicon doped with P-type carbon
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4710786A (en) Wide band gap semiconductor alloy material
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US4738729A (en) Amorphous silicon semiconductor solar cell
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
US5391410A (en) Plasma CVD of amorphous silicon thin film
US4703336A (en) Photodetection and current control devices
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JPS6216513A (en) Semiconductor thin film
Kenne et al. High deposition rate preparation of amorphous silicon solar cells by rf glow discharge decomposition of disilane
JPH0817738A (en) Formation method for crystalline semiconductor thin film
JP2659400B2 (en) Formation method of carbon-containing silicon thin film
Myong et al. High quality microcrystalline silicon-carbide films prepared by photo-CVD method using ethylene gas as a carbon source
De et al. Boron doped hydrogenated amorphous silicon films prepared by photo-CVD
Iftiquar et al. Control of the properties of wide bandgap a-SiC: H films prepared by RF PECVD method by varying methane flow rate
Ray et al. Preparation of improved quality a-SiGe: H alloy films for device applications
EP2953154A1 (en) Usage of Si-O-Si based molecules for high efficiency Si solar cells
JPS61125124A (en) Semiconductor thin film
JPH1187751A (en) Polycrystalline silicon thin film, photoelectric conversion element, and their manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term