JPS6216437A - Production of olefin rich in ethylene - Google Patents

Production of olefin rich in ethylene

Info

Publication number
JPS6216437A
JPS6216437A JP60152501A JP15250185A JPS6216437A JP S6216437 A JPS6216437 A JP S6216437A JP 60152501 A JP60152501 A JP 60152501A JP 15250185 A JP15250185 A JP 15250185A JP S6216437 A JPS6216437 A JP S6216437A
Authority
JP
Japan
Prior art keywords
crystalline aluminosilicate
seed
solid material
catalyst
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60152501A
Other languages
Japanese (ja)
Other versions
JPH049775B2 (en
Inventor
Hidehiko Kudo
英彦 工藤
Ryoko Endo
遠藤 良子
Jun Kaita
純 貝田
Sachio Asaoka
佐知夫 浅岡
Isao Suzuki
功 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP60152501A priority Critical patent/JPS6216437A/en
Publication of JPS6216437A publication Critical patent/JPS6216437A/en
Publication of JPH049775B2 publication Critical patent/JPH049775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

PURPOSE:To obtain the titled compound from methanol or dimethyl ether, by using a catalyst prepared by firing a crystalline aluminosiliate at a high temperature or exchanging alkali metal ions wholly or partially with multivalent metal ions, e.g. zinc or lanthanum. CONSTITUTION:A lower olefin rich in ethylene is produced from methanol or dimentyl ether as a raw material. In the process, a calayst obtained by firing a crystalline aluminosilicate of erionite/offretite based zeolite prepared by the presence of a seed solid material in an aqueous raw material mixture containing a silica source, alumina source, alkali metal salt and a choline compound or exchanging at least part of alkali metal ions with multivalent metal ions, e.g. zinc or lanthanum, is used as a catalyst, and regenerated for reuse by burning and removing periodically carbonaceous materials deposited on the catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規な製造方法によって得られた結晶性アルミ
ノシリケートを触媒として用いメタノールおよび/また
はジメチルエーテルからエチレンに富む低級オレフィン
を製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing ethylene-rich lower olefins from methanol and/or dimethyl ether using crystalline aluminosilicate obtained by a new production method as a catalyst. It is.

特に本発明は、結晶性アルミノシリケートを高温焼成す
ることによシないしはアルカリ金属イオンを全部または
部分的に亜鉛、ランタン等の多価金属イオンに交換した
ものを触媒として用い、かつ、反応において触媒上へ沈
着した炭素質物質を周期的に燃焼除去しエチレンに富む
低級オレフィンを製造する方法に関する。
In particular, the present invention uses as a catalyst a crystalline aluminosilicate which has been calcined at a high temperature to exchange all or part of the alkali metal ions with polyvalent metal ions such as zinc or lanthanum. This invention relates to a method for producing ethylene-rich lower olefins by periodically burning off carbonaceous materials deposited on top.

〔従来の技術〕 結晶性アルミノシリケートはゼオライトとじて天然のも
のや合成されたものが数多く知られている。これらの結
晶性アルミノシリケートは多数の立体構造をなす細孔を
有しモレキュラーシーズとして吸着剤やガスの分離に用
いられる他、炭化水素類の転換用触媒等として工業的に
使用されている。
[Prior Art] Many natural and synthesized crystalline aluminosilicates such as zeolites are known. These crystalline aluminosilicates have pores forming a large number of three-dimensional structures and are used as molecular seeds for adsorbents and gas separation, and are also used industrially as catalysts for conversion of hydrocarbons.

また最近になシ各種の結晶性アルミノシリケートを触媒
として用いて、メタノールあるいはジメチルエーテルか
ら低級オレフィンを製造する方法が多く開発されている
。例えばモーピルオイル社によるZSM−5ゼオライト
がシん、マンガンおよびカルシウム等に修飾によジメタ
ツールから低級オレフィンを製造しておシ、また同様に
ZSM−34ゼオライト(特開昭53−58499)が
メタノールから低級オレフィンを製造するのに用いられ
ている。
Recently, many methods have been developed for producing lower olefins from methanol or dimethyl ether using various crystalline aluminosilicates as catalysts. For example, ZSM-5 zeolite manufactured by Mopil Oil Co., Ltd. is used to produce lower olefins from dimetatool by modifying with silane, manganese, calcium, etc., and ZSM-34 zeolite (Japanese Patent Application Laid-open No. 58499-1989) is used to produce lower olefins from methanol. Used to produce olefins.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記ZSM−5ゼオライトは細孔径が大
きくガソリン製造“には適するが、低級オレフィンの選
択性が低く、低級オレフィンの製造には不適当でアシ、
又Z S M−34ゼオライトはメタノールからエチレ
ン、プロピレン等を製造する触媒としては高い選択性を
示すが、触媒上への炭素質析出による活性劣化が極めて
早く、かつ劣化触媒を空気や水素等で再生処理してもこ
の劣化を完全には除去することができず、この種の触媒
として必ずしも満足なものとは云えなかった。
However, although the ZSM-5 zeolite has a large pore size and is suitable for gasoline production, it has low selectivity for lower olefins, making it unsuitable for producing lower olefins.
Furthermore, although ZSM-34 zeolite exhibits high selectivity as a catalyst for producing ethylene, propylene, etc. from methanol, its activity deteriorates extremely quickly due to carbon deposits on the catalyst, and the deteriorated catalyst cannot be exposed to air, hydrogen, etc. Even with regeneration treatment, this deterioration could not be completely removed, and it could not be said that this type of catalyst was necessarily satisfactory.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者等はメタノールやジメチルエーテルを原料とし
てエチレンに富む低級オレフィンを効率良く製造する方
法を開発するために種々検討を重ねた結果、シリカ源、
アルミナ−源、アルカリ金属塩およびコリン化合物を含
む水性原料混合物に種固形物を存在させることによシ得
た、エリオナイトノオフレタイト系ゼオライトの結晶性
アルミノシリケート、を高温焼成ないしはそのアルカリ
金属イオンの少くとも1部を亜鉛、ランタン等の多価金
属イオンに交換し触媒として用いることによシ目的とす
るエチレンに富む低級オレフィンを効率良く製造するこ
とが出来、さらにその際に触媒上へ析出した炭素質物質
を周期的に燃焼除去を行うことによシ安定してエチレン
に富む低級オレフィンを製造することが可能であること
を見い出し本発明を完成するに至った。
The present inventors have conducted various studies to develop a method for efficiently producing ethylene-rich lower olefins using methanol and dimethyl ether as raw materials.
A crystalline aluminosilicate of erionite noophretite zeolite obtained by the presence of a seed solid in an aqueous raw material mixture containing an alumina source, an alkali metal salt, and a choline compound is calcined at high temperature or its alkali metal ions are By exchanging at least a portion of ethylene with polyvalent metal ions such as zinc or lanthanum and using it as a catalyst, it is possible to efficiently produce the desired ethylene-rich lower olefin, and further, during this process, the ethylene-rich olefin is precipitated on the catalyst. The present inventors have discovered that it is possible to stably produce lower olefins rich in ethylene by periodically burning and removing the carbonaceous materials, and have completed the present invention.

本発明の目的は、メタノールまたはジメチルエーテルか
ら石油化学の基幹原料であるエチレン、プロピレン、ブ
テン等の低級オレフィン類を効率良く安定して製造する
ことができるエチレンに富む低級オレフィンの製造方法
を提供することにある。すなわち本発明はシリカ源、ア
ルミナ源、アルカリ金属塩およびコリン化合物を含む水
性原料混合物をコリン化合物が気化ないしは分解しない
水熱合成条件下に保持して結晶性アルミノシリケートを
含有する固形物を生成せしめる種固形物合成工程で得ら
れた結晶性アルミノシリケートを含有する固形物の一部
を種とし、これとシリカ源、アルミナ源、アルカリ金属
塩およびコリン化合物を含む水性原料混合物をコリン化
合物が気化ないしは分解しない水熱合成条件下に保持し
て得たアルミノシリケート、を高温焼成してその少くと
も1部をH(プロトン)型にするかまたは、そのアルカ
リ金属の少くとも1部を多価金属イオンに交換したもの
を触媒として用い、高温且つ常圧乃を至高圧下にメタノ
ール及び/又はジメチルエーテルと接触させることを特
徴とするエチレンに富むオレフィン類の製造方法である
An object of the present invention is to provide a method for producing lower olefins rich in ethylene, which can efficiently and stably produce lower olefins such as ethylene, propylene, butene, which are key raw materials for petrochemistry, from methanol or dimethyl ether. It is in. That is, the present invention produces a solid material containing crystalline aluminosilicate by holding an aqueous raw material mixture containing a silica source, an alumina source, an alkali metal salt, and a choline compound under hydrothermal synthesis conditions in which the choline compound does not vaporize or decompose. A part of the solid material containing crystalline aluminosilicate obtained in the seed solid synthesis step is used as a seed, and an aqueous raw material mixture containing this, a silica source, an alumina source, an alkali metal salt, and a choline compound is mixed until the choline compound is vaporized or Aluminosilicate obtained by holding under hydrothermal synthesis conditions that do not decompose is calcined at a high temperature to convert at least a part of it into the H (proton) form, or at least a part of the alkali metal is converted into polyvalent metal ions. This is a method for producing ethylene-rich olefins, which is characterized by using an exchanged olefin as a catalyst and contacting it with methanol and/or dimethyl ether at high temperature and under normal pressure to extremely high pressure.

次に本発明で用いる触媒の結晶アルミノシリケートの製
造法について詳しく述べる。シリカ源としてはシリカ粉
末、けい酸、コロイド状シリカ、溶解シリカ等が用いら
れ、アルミナ源としてはアルミニウムの硫酸塩、硝酸塩
等やアルミン酸ナイリウム、コロイr状アルミナ、アル
ミナ等が用いられ、アルカリ金属塩としてはナトリウム
、カリウム、ルビジウム等の水酸化物が用いられ、また
有機添加物としては、コリン、塩化コリン、水酸化コリ
ン等のコリン化合物が用いられる。
Next, the method for producing the crystalline aluminosilicate catalyst used in the present invention will be described in detail. As a silica source, silica powder, silicic acid, colloidal silica, dissolved silica, etc. are used, and as an alumina source, aluminum sulfate, nitrate, etc., nylium aluminate, colloidal alumina, alumina, etc. are used, and alkali metal Hydroxides such as sodium, potassium, and rubidium are used as salts, and choline compounds such as choline, choline chloride, and choline hydroxide are used as organic additives.

種固形物合成工程では上記した如き母液ゲル原料を用い
コリン化合物が気化ないしは分解しない水熱合成条件す
なわち前記のシリカ源、アルミナ源、アルカリ金属塩お
よびコリン化合物よシなる水性原料混合物を50℃〜1
70℃、1〜12日間保持することによって結晶性アル
ミノシリケートを含む固形物を生成させる。この場合得
られる固形物は結晶化度が低いエリオナイトとオ7レタ
イトを有する低結晶性アルミノシリケートである。この
結晶性アルミノシリケートを含有する固形物の一部を次
工程の種として用いるのであるが、母液ゲルの状態であ
っても、乾燥物、焼成物であってもよい。
In the seed solid synthesis step, the mother liquor gel raw material as described above is used and the choline compound is not vaporized or decomposed under hydrothermal synthesis conditions, that is, the aqueous raw material mixture consisting of the silica source, alumina source, alkali metal salt, and choline compound is heated at 50°C to 1
A solid containing crystalline aluminosilicate is produced by holding at 70°C for 1 to 12 days. The solid obtained in this case is a low-crystalline aluminosilicate having erionite and oletite with low crystallinity. A part of the solid material containing this crystalline aluminosilicate is used as a seed in the next step, and it may be in the form of a mother liquor gel, dried product, or fired product.

次にこのようにして得られた結晶性アルミノシリケート
を含有する固形物の一部を種とし、これと前記のような
シリカ源、アルミナ源、アルカリ金属塩、およびコリン
化合物とを含んだ水性混合物を前記と同様な水熱合成条
件下に保持することによって、エリオナイトおよびオフ
レタイト系ゼオライトの高結晶性アルミノシリケートを
得る。
Next, a part of the solid material containing the crystalline aluminosilicate thus obtained is used as a seed, and an aqueous mixture containing this and the above-mentioned silica source, alumina source, alkali metal salt, and choline compound is prepared. Highly crystalline aluminosilicates of erionite and offretite zeolites are obtained by maintaining the zeolites under the same hydrothermal synthesis conditions as described above.

すなわち、含有する結晶性アルミノシリケートが低結晶
である固形物を種に用い高結晶性アルミノシリケートを
得ることが出来る。また以後はこのように水熱合成によ
って得られた高結晶性アルミノシリケートを種に用いる
ことができる。穫の量は何れの工程においてもぜオライ
ド基準で水性原料混合物の0.01〜3重量%程度で十
分である。
That is, a highly crystalline aluminosilicate can be obtained by using a solid material containing low crystalline aluminosilicate as a seed. Further, the highly crystalline aluminosilicate obtained by hydrothermal synthesis in this manner can be used as a seed. In any process, an amount of about 0.01 to 3% by weight of the aqueous raw material mixture based on the olide is sufficient.

稲結晶の量が余多少ないと、純度の高い、製品が得られ
ず、また余シ多いと収量を下げることになり好ましくな
い。このようにして得られた結晶性アルミノシリケート
は、本発明の方法において触媒として用いられるが該結
晶性アルミノシリケートの交換可能な陽イオンの少なく
とも一部が水素イオン(プロトン型)であることがよシ
好ましい。
If the amount of rice crystals is too small, a product with high purity cannot be obtained, and if there are too many rice crystals, the yield will be lowered, which is undesirable. The crystalline aluminosilicate thus obtained is used as a catalyst in the method of the present invention, but it is preferable that at least a part of the exchangeable cations of the crystalline aluminosilicate are hydrogen ions (proton type). It is preferable.

一方、水素イオン交換量が多くなシすぎると、メタノー
ル転化反応において水素移行反応が顕著になシ、低級オ
レフィンの選択性が著しく低下し、更に炭素析出が促進
され触媒劣化が早まる。従って本発明においては、数十
チの範囲の水素イオン交換量が望ましい。
On the other hand, if the amount of hydrogen ion exchange is too large, the hydrogen transfer reaction becomes noticeable in the methanol conversion reaction, the selectivity for lower olefins is significantly reduced, and furthermore, carbon precipitation is promoted and catalyst deterioration is accelerated. Therefore, in the present invention, a hydrogen ion exchange amount in the range of several tens of inches is desirable.

この結晶性アルミノシリケートは、その結晶中に陽イオ
ンの一部としてアルカリ金属イオン以外に窒素化合物イ
オンを含有するため、窒素化合物イオンを水素イオン変
換するためには、該結晶性アルミノシリケートを空気流
通下、400〜800℃、好ましくは、500〜600
℃の温度範囲で1時間以上焼成すればよい、更に該結晶
性アルミノシリケートは、粉末として製造されるが、こ
れを触媒として用いる際、適当な形状に成型しても良い
。この成型は通常の方法で良く、例えば、押し出し成型
、打錠成型、噴霧乾燥造粒などいずれかの方法を採用す
れば良い。その際、通常添加される粘結剤あるいは成型
助剤等を添加することができる。
This crystalline aluminosilicate contains nitrogen compound ions in addition to alkali metal ions as part of the cations in its crystals, so in order to convert nitrogen compound ions to hydrogen ions, the crystalline aluminosilicate must be passed through air circulation. Lower, 400-800℃, preferably 500-600℃
Further, the crystalline aluminosilicate is produced as a powder, but when used as a catalyst, it may be molded into an appropriate shape. This molding may be carried out by a conventional method, such as extrusion molding, tablet molding, spray drying granulation, or the like. At that time, a binder or a molding aid that is normally added can be added.

例えば、シリカ、アルミナ、シリカ、アルミナ、粘土類
、グラファイト、ステアリン酸、殿粉、ポリビニルアル
コール等を80チ以下、好ましくは2〜40%の範囲で
添加できる。このようにして得られた成型品は焼成して
本発明における触媒として用いる。
For example, silica, alumina, silica, alumina, clays, graphite, stearic acid, starch, polyvinyl alcohol, etc. can be added in an amount of 80% or less, preferably in the range of 2 to 40%. The molded product thus obtained is fired and used as a catalyst in the present invention.

また、本発明で用いられる触媒は、上記のものの他に該
結晶性アルミノシリケートのアルカリ金属イオンを全部
または部分的に亜鉛またはランタン等の多価イオンに交
換することが好ましい。
In addition to the above-mentioned catalysts, the catalyst used in the present invention preferably exchanges all or part of the alkali metal ions of the crystalline aluminosilicate with polyvalent ions such as zinc or lanthanum.

この交換は、公知の方法で良く、例えば、上記成型品と
した結晶性アルミノシリケートを一担硝酸アンモニウム
水溶液等のアンモニウムイオンを含む水溶液中でイオン
交換しアンモニウム型に変換後、硝酸亜鉛または硝酸ラ
ンタン等の水溶液中で再びイオン交換することによジア
ルカリ金属イオンの全部または一部を亜鉛またはランタ
ン等の多価イオンに交換すれば良い。このイオン交換は
結晶性アルミノシリケートを成型品とする前に行っても
良い。
This exchange may be carried out by a known method. For example, the crystalline aluminosilicate formed into the molded product is ion-exchanged in an aqueous solution containing ammonium ions, such as a monovalent ammonium nitrate aqueous solution, to convert it into an ammonium type, and then zinc nitrate or lanthanum nitrate is used. All or part of the dialkali metal ions may be exchanged with polyvalent ions such as zinc or lanthanum by ion exchange again in an aqueous solution of . This ion exchange may be performed before making the crystalline aluminosilicate into a molded product.

゛本発明の方法はメタノールおよび/またはジメチルエ
ーテルを該結晶性アルミノシリケート触媒と高温で接触
させることによシ実施される。
The process of the invention is carried out by contacting methanol and/or dimethyl ether with the crystalline aluminosilicate catalyst at elevated temperatures.

反応方法は固定床、流動床あるいは移動床のいずれの方
法でも良く、触媒の形状はそれに応じて適当なものを選
ぶことができる。反応温度は300〜500℃、好まし
くは350〜400℃、圧力は特には制限ないが、通常
1〜30気圧の範囲で良く、好ましくは1〜20気圧で
ある。
The reaction method may be fixed bed, fluidized bed or moving bed, and the shape of the catalyst can be selected accordingly. The reaction temperature is 300 to 500°C, preferably 350 to 400°C, and the pressure is not particularly limited, but is usually in the range of 1 to 30 atm, preferably 1 to 20 atm.

原料のメタノールおよび/又はジメチルエーテルはその
まま触媒上に供給しても良く、水、窒素、ヘリウム、二
酸化炭素、水素、アルゴン等あるいはメタン、エタン、
プロ・ぞン等の転化反応に不活性なキャリヤーガスある
いは希釈剤を同時に加えてることが出来、中でも水の添
加が好ましい。この際、原料中のメタノールおよび/ま
たはジメチルエーテルの濃度は10チ以上であることが
望ましい。更1cLH3V(液空間速度)は0.01〜
30 hr−”、好ましくは0.1〜IQhr  の範
囲である。
The raw materials methanol and/or dimethyl ether may be fed onto the catalyst as they are, or may be fed directly onto the catalyst using water, nitrogen, helium, carbon dioxide, hydrogen, argon, etc. or methane, ethane,
An inert carrier gas or diluent can be added at the same time to the conversion reaction of pro-zone, etc., and the addition of water is particularly preferred. At this time, it is desirable that the concentration of methanol and/or dimethyl ether in the raw material is 10 or more. Furthermore, 1cLH3V (liquid hourly space velocity) is 0.01~
30 hr-'', preferably in the range of 0.1 to IQhr.

なお反応方式としてメタノールを一旦r−アルミナなど
の公知触媒で脱水しジメチルエーテルに変換した後、該
アルミノシリケート触媒上に流通させても良い。勿論、
この転化反応で回収される未反応・メタノールおよび/
またはジメチルエーテルを再び原料として循環させても
何らさしつかえない。
As a reaction method, methanol may be dehydrated using a known catalyst such as r-alumina and converted into dimethyl ether, and then passed over the aluminosilicate catalyst. Of course,
Unreacted methanol and/or recovered in this conversion reaction
Alternatively, there is no problem in recycling dimethyl ether as a raw material again.

本発明の方法においては、経時による活性低下した触媒
の一部あるいは全部を周期的に通常の方法、すなわち空
気等の酸素を含有する400〜800℃の高温下で流通
させ、触媒上に析出した炭素質物質を燃焼除去すること
によシ再生し、再使用することか可能となる。
In the method of the present invention, part or all of the catalyst whose activity has decreased over time is periodically circulated in a normal manner, that is, at a high temperature of 400 to 800°C containing oxygen such as air, to precipitate it on the catalyst. By burning off the carbonaceous material, it becomes possible to regenerate and reuse it.

以下本発明を実施例をあげて説明するが、これら実施例
のみに限定されるものではない。
The present invention will be explained below with reference to Examples, but it is not limited to these Examples.

なお実施例において反応はすべて固定床流通式のマイク
ロリアクター(10■x200m)を用い常圧下で行っ
た。
In the examples, all reactions were carried out under normal pressure using a fixed bed flow microreactor (10 x 200 m).

実施例 1 アルミン酸ソーダ(和光紬薬工業製特級Mα原子比0゜
78) 26.76.9.水酸化ナトリウム(和光紬薬
工業製特級)11.9511および水酸化カリウム(和
光紬薬工業製特級)13.01!iを水266.14g
に溶解した。この溶液へ塩化プリン(東京化成工業製特
級) 112.37 Fを加えしかる後シリカゾル溶液
(日量化学工業製スノーテックス30 ) 384.4
3 Nを添加混合し母液ゲルを調合した。
Example 1 Sodium aluminate (special grade Mα atomic ratio 0°78, manufactured by Wako Tsugyaku Kogyo) 26.76.9. Sodium hydroxide (special grade manufactured by Wako Tsumugi Pharmaceutical Industries) 11.9511 and potassium hydroxide (special grade manufactured by Wako Tsumugi Pharmaceutical Industries) 13.01! i = 266.14g of water
dissolved in. To this solution, add chlorinated purine (special grade manufactured by Tokyo Chemical Industry Co., Ltd.) 112.37 F, and then add silica sol solution (Snowtex 30 manufactured by Nichikagaku Kogyo Co., Ltd.) 384.4
3N was added and mixed to prepare a mother liquid gel.

この母液ゲルをパイレックス製オートクレーブにセット
し150℃8日間自己発生圧力下に保持しゼオライト化
を行なわしめた。反応終了後、生成物の濾過を行い、更
に毎回11の蒸留水にて3回洗浄した。その後120℃
で乾燥後空気気流中550℃で3時間焼成した、これに
よって結晶生成物(A)を得た。
This mother liquor gel was placed in a Pyrex autoclave and maintained under self-generated pressure at 150° C. for 8 days to convert it into zeolite. After the reaction was completed, the product was filtered and washed three times with 11 portions of distilled water each time. Then 120℃
After drying, the product was calcined in an air stream at 550° C. for 3 hours, thereby obtaining a crystalline product (A).

このものの粉末X線回折結果、低いエリオナイト/オ7
レタイト系ゼオライトであった。
Powder X-ray diffraction results of this product show low erionite/o7
It was a retite-based zeolite.

次いで上記と全く同様にして得られた母液ゲルに上記結
晶生成物(A)311を添加混合し、同様にパイレック
ス製オートクレーブにセットし150℃にて自己発生圧
力下でゼオライト化を行なわしめ、8日間で反応を停止
した。その後は同様にして結晶生成(至)を得た。
Next, the above crystalline product (A) 311 was added and mixed to the mother liquor gel obtained in exactly the same manner as above, and the same was set in a Pyrex autoclave and zeolite formation was carried out at 150°C under self-generated pressure. The reaction stopped within days. Thereafter, crystal formation (total) was obtained in the same manner.

このものの粉末をX線回折した結果、結晶性の非常に高
いエリオナイト/オフレタイト系ゼオライトであった。
X-ray diffraction of this powder revealed that it was an erionite/offretite zeolite with very high crystallinity.

この粉末にアルミナバインダーを35重量%加え成型品
とし再び乾燥後空気気流中550℃で3時間焼成し触媒
とした。
35% by weight of alumina binder was added to this powder to form a molded product, which was dried again and then calcined in an air stream at 550° C. for 3 hours to obtain a catalyst.

常圧流通反応装置にこの触媒5dを充てんし、メタノー
ル濃度が30重量%となるように水を添加した原料を用
いLH8V I Aτ 、反応温度350℃のメタノー
ル転換反応を4時間継続した。
This catalyst 5d was filled in an atmospheric pressure flow reactor, and the methanol conversion reaction was continued for 4 hours at LH8V I Aτ and a reaction temperature of 350° C. using raw materials to which water had been added so that the methanol concentration was 30% by weight.

反応開始から4時間までの反応結果を表−1に示す。Table 1 shows the reaction results up to 4 hours from the start of the reaction.

実施例 2 実施例1で製造した触媒IIを2.2規定の硝酸アンモ
ニウム水溶液5d中2時間自然還留する操作を4回縁シ
返すことによシー担アンモニウム型とした。その後乾燥
し1規定の硝酸亜鉛水溶液5−中88℃で4時間放置す
ることによシ亜鉛型にイオン交換した。
Example 2 Catalyst II produced in Example 1 was made into a sheath-supported ammonium type by subjecting it to natural reflux for 2 hours in 5 d of a 2.2N ammonium nitrate aqueous solution and repeating the process four times. Thereafter, it was dried and left to stand at 88° C. for 4 hours in a 1N aqueous solution of zinc nitrate, thereby ion-exchanging it into a zinc type.

この触媒を乾燥後焼成し実施例1と同様な反応を行った
。結果を表−1に示す。
This catalyst was dried and then calcined to carry out the same reaction as in Example 1. The results are shown in Table-1.

実施例 3 実施例2の硝酸亜鉛を硝酸ランタンに変えた以外は実施
例2と同様な操作を行い反応結果を表−1に示す。
Example 3 The same operation as in Example 2 was carried out except that zinc nitrate in Example 2 was changed to lanthanum nitrate, and the reaction results are shown in Table 1.

実施例 4〜7 実施例1の使用済触媒に550℃において空気を20 
wIL/TrLixで導入し二酸化炭素が反応管からの
流出ガス中に認められなくなるまで焼成を続けた。
Examples 4 to 7 The spent catalyst of Example 1 was blown with air for 20 minutes at 550°C.
wIL/TrLix was introduced and calcination was continued until no carbon dioxide was observed in the gas exiting the reaction tube.

次いで窒素ガスで酸素を充分パージ後、実施例1と同一
条件で反応を行い、その後同じ操作を3回縁シ返しだ。
Next, after sufficiently purging oxygen with nitrogen gas, a reaction was carried out under the same conditions as in Example 1, and then the same operation was repeated three times.

これらの反応結果を表−1に示す。The results of these reactions are shown in Table-1.

比較例 1 アルミン酸ソーダ(和光紬薬工業製特級A4/Nα原子
比0.78 ) 26.76 J、  水酸化ナトリウ
ム(和光紬薬工業製特級)11.95IIおよび水酸化
カリウム(和光紬薬工業製特級)13.01gを水26
6.1411に溶解した。この溶液へ塩化コリン(東京
化成工業製特級)112.37gを加えしかる後シリカ
ゾル溶液(8産化学工業製スノーテックス30 ) 3
84.43II”添加混合し母液ゲルを調合した。
Comparative Example 1 Sodium aluminate (special grade A4/Nα atomic ratio 0.78, made by Wako Tsumugi Kogyo) 26.76 J, sodium hydroxide (special grade made by Wako Tsumugi Kogyo) 11.95 II, and potassium hydroxide (wako Tsumugi Kogyo Kogyo) (special grade) 13.01g in water 26
6.1411. To this solution was added 112.37 g of choline chloride (special grade manufactured by Tokyo Chemical Industry Co., Ltd.), and then a silica sol solution (Snowtex 30 manufactured by Yasan Kagaku Kogyo Co., Ltd.) 3
84.43II'' was added and mixed to prepare a mother liquor gel.

この母液ゲルをノぞイレツクス製オートクレーブにセッ
トし150℃ 8日間自己発生圧力下に保持しゼオライ
ト化を行なわしめた。反応終了後、生成物の濾過を行い
、更に毎回11の蒸留水にて3回洗浄した。その後12
0℃で乾燥後空気気流中550℃で3時間焼成した、こ
れによって結晶生成物(Alを得た。
This mother liquor gel was placed in an autoclave manufactured by Nozo Irex and maintained at 150° C. under self-generated pressure for 8 days to convert it into zeolite. After the reaction was completed, the product was filtered and washed three times with 11 portions of distilled water each time. then 12
After drying at 0° C., it was calcined at 550° C. for 3 hours in a stream of air, thereby obtaining a crystalline product (Al).

このものの粉末X線回折結果、低いエリオナイト/オフ
レタイト系ゼオライトであった。
As a result of powder X-ray diffraction of this product, it was found to be a low erionite/offretite zeolite.

この結晶性アルミノシリケートを実施例1と同様に触化
し反応を行った。結果を表−2に示す。
This crystalline aluminosilicate was catalyzed and reacted in the same manner as in Example 1. The results are shown in Table-2.

比較例 2 比較例1のゼオライト化温度を180℃にしゼオライト
化時間を6時間とした以外は、比較例1と同様の操作を
行い高結晶性アルミノシリケートを得た、この高結晶性
アルミノシリケートを実施例1と同様に触媒化し反応を
行った。結果を表−2に示す。
Comparative Example 2 Highly crystalline aluminosilicate was obtained by performing the same operation as in Comparative Example 1, except that the zeolization temperature in Comparative Example 1 was 180°C and the zeolization time was 6 hours. Catalytic reaction was carried out in the same manner as in Example 1. The results are shown in Table-2.

比較例 3 比較例2で得た触媒を実施例3と同様の操作を行いラン
タン型とし反応を行った。表−2に結果を示す。
Comparative Example 3 The catalyst obtained in Comparative Example 2 was subjected to the same operation as in Example 3 to make it into a lanthanum type and a reaction was carried out. The results are shown in Table-2.

比較例 4 比較例1のゼオライト化温度および時間を180℃、8
時間としたことと有機添加物をテトラメチルアンモニウ
ムに変えた以外は比較例1と同様の操作を行い高結晶性
アルミノシリケートを得た。
Comparative Example 4 The zeolization temperature and time of Comparative Example 1 were changed to 180°C, 8
A highly crystalline aluminosilicate was obtained by carrying out the same operation as in Comparative Example 1, except that the time was changed and the organic additive was changed to tetramethylammonium.

この高結晶性アルミノシリケートを実施例1と同様に触
媒化し反応を行った。結果を表1に示す。
This highly crystalline aluminosilicate was catalyzed and reacted in the same manner as in Example 1. The results are shown in Table 1.

表−1 ※l メタノールから炭化水素への転化率※2 エチレ
ン、プロピレン、ブテンの総和衣−2 〔発明の効果〕 上記の結果からも明かなように、本発明によるときは、
メタノールから高転化率でエチレン、プロピレン、ブテ
ン等の低級オレフィンを得ることができる。また、この
ことは、メタノールの代シにジメチルエーテルを使用し
ても同様である。
Table-1 *l Conversion rate from methanol to hydrocarbons *2 Total composition of ethylene, propylene, and butene-2 [Effects of the invention] As is clear from the above results, when the present invention is used,
Lower olefins such as ethylene, propylene, and butene can be obtained from methanol at high conversion rates. This also applies when dimethyl ether is used in place of methanol.

Claims (4)

【特許請求の範囲】[Claims] (1)シリカ源、アルミナ源、アルカリ金属塩およびコ
リン化合物を含む水性原料混合物を該コリン化合物が気
化ないしは分解しない水熱合成条件下に保持して結晶性
アルミノシリケートを含有する固形物を生成せしめる種
同形物合成工程で得られた結晶性アルミノシリケートを
含有する固形物の一部を種とし、これとシリカ源、アル
ミナ源、アルカリ金属塩およびコリン化合物を含む水性
原料混合物を該コリン化合物が気化ないし分解しない水
熱合成条件下に保持する結晶性アルミノシリケート製造
工程から得た結晶性アルミノシリケートを高温焼成して
その少くとも1部をH(プロトン)型にするかまたはそ
のアルカリ金属の少くとも1部を多価金属イオンに交換
したものを触媒として用い、高温且つ常圧乃至高圧下に
メタノール及び/又はジメチルエーテルと接触させるこ
とを特徴とするエチレンに富むオレフィン類の製造方法
(1) A solid material containing crystalline aluminosilicate is produced by holding an aqueous raw material mixture containing a silica source, an alumina source, an alkali metal salt, and a choline compound under hydrothermal synthesis conditions in which the choline compound does not vaporize or decompose. A part of the solid material containing crystalline aluminosilicate obtained in the seed isomorph synthesis step is used as a seed, and an aqueous raw material mixture containing this, a silica source, an alumina source, an alkali metal salt, and a choline compound is vaporized. or the crystalline aluminosilicate obtained from the crystalline aluminosilicate production process maintained under hydrothermal synthesis conditions that do not decompose, is calcined at a high temperature to convert at least a part of it into the H (proton) form, or at least a part of the alkali metal is converted into the H (proton) form. 1. A method for producing ethylene-rich olefins, which comprises using a catalyst partially exchanged with polyvalent metal ions and contacting it with methanol and/or dimethyl ether at high temperature and under normal to high pressure.
(2)該結晶性アルミノシリケート製造工程が少なくと
も2つの工程を含み、最初の工程のみは該種固形物合成
工程において得られた結晶性アルミノシリケートを含有
する固形物の一部を種として用い、それ以後は該製造工
程において得られた結晶性アルミノシリケートを含有す
る固形物の一部を製造工程の種として用いる特許請求の
範囲第(1)項記載のエチレンに富むオレフィン類の製
造方法。
(2) the crystalline aluminosilicate production step includes at least two steps, and only the first step uses as a seed a part of the solid material containing the crystalline aluminosilicate obtained in the seed solid material synthesis step; The method for producing ethylene-rich olefins according to claim 1, wherein a part of the crystalline aluminosilicate-containing solid material obtained in the production process is used as a seed for the production process thereafter.
(3)接触反応によつて触媒沈着した炭素質物質を周期
的に燃焼除去することを特徴とする特許請求の範囲第(
1)又は(2)項に記載のエチレンに富むオレフィン類
の製造方法。
(3) Claim No. (3) characterized in that the carbonaceous material deposited as a catalyst through a catalytic reaction is periodically burned and removed.
The method for producing ethylene-rich olefins according to item 1) or (2).
(4)該結晶性アルミノシリケート製造工程が少くとも
2つの工程を含み、最初の工程のみは該固形物合成工程
において得られた結晶性アルミノシリケートを含有する
固形物の一部を種として用いそれ以後は該製造工程にお
いて得られた結晶性アルミノシリケートを含有する固形
物の一部を製造工程の種として用いる特許請求の範囲第
(1)項乃至第(3)項に記載のエチレンに富むオレフ
ィン類の製造方法。
(4) The crystalline aluminosilicate manufacturing process includes at least two steps, and only the first step uses a part of the solid material containing the crystalline aluminosilicate obtained in the solid material synthesis step as a seed. Thereafter, a part of the solid material containing crystalline aluminosilicate obtained in the manufacturing process is used as a seed for the manufacturing process. manufacturing method.
JP60152501A 1985-07-12 1985-07-12 Production of olefin rich in ethylene Granted JPS6216437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60152501A JPS6216437A (en) 1985-07-12 1985-07-12 Production of olefin rich in ethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60152501A JPS6216437A (en) 1985-07-12 1985-07-12 Production of olefin rich in ethylene

Publications (2)

Publication Number Publication Date
JPS6216437A true JPS6216437A (en) 1987-01-24
JPH049775B2 JPH049775B2 (en) 1992-02-21

Family

ID=15541842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60152501A Granted JPS6216437A (en) 1985-07-12 1985-07-12 Production of olefin rich in ethylene

Country Status (1)

Country Link
JP (1) JPS6216437A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339999A (en) * 1976-09-24 1978-04-12 Mobil Oil Crystalline zeolite having aluminummfree shell
JPS5637215A (en) * 1979-08-30 1981-04-10 Mobil Oil Method of synthesizing zeolite
JPS5916832A (en) * 1982-07-20 1984-01-28 Agency Of Ind Science & Technol Composite zeolite and preparation of hydrocarbon using said zeolite as catalyst
JPS5916833A (en) * 1983-03-16 1984-01-28 Agency Of Ind Science & Technol Preparation of lower olefin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339999A (en) * 1976-09-24 1978-04-12 Mobil Oil Crystalline zeolite having aluminummfree shell
JPS5637215A (en) * 1979-08-30 1981-04-10 Mobil Oil Method of synthesizing zeolite
JPS5916832A (en) * 1982-07-20 1984-01-28 Agency Of Ind Science & Technol Composite zeolite and preparation of hydrocarbon using said zeolite as catalyst
JPS5916833A (en) * 1983-03-16 1984-01-28 Agency Of Ind Science & Technol Preparation of lower olefin

Also Published As

Publication number Publication date
JPH049775B2 (en) 1992-02-21

Similar Documents

Publication Publication Date Title
US8647999B2 (en) Method for regenerating a catalyst containing a CHA zeolite
US8450233B2 (en) Process for obtaining catalyst composites comprising MeAPO and their use in conversion of organics to olefins
EP2234718B1 (en) Process for obtaining modified molecular sieves
US7622624B2 (en) Crystalline intergrowth material, its synthesis and its use in the conversion of oxygenates to olefins
US7608746B2 (en) Process for producing propylene
JP5135839B2 (en) Propylene production method
KR20000005237A (en) Usage of oxygenation material transform of small pore non-zeolite molecular body catalysis containing alkali earth metal
EA020102B1 (en) METHOD FOR PREPARING METALLOALUMINOPHOSPHATE (MeAPO) MOLECULAR SIEVES
TWI418530B (en) Production of propylene
JP5685870B2 (en) Propylene production method
JP5600923B2 (en) Method for producing aluminosilicate
JP2011121859A (en) Method for producing aluminosilicate
EP0152485B1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
US5254785A (en) Production of olefins
JP5474972B2 (en) Method for producing metalloaluminophosphate (MeAPO) molecular sieves from amorphous materials
JP6798282B2 (en) Manufacturing method of AEI type zeolite
JP2006008655A (en) Method for producing propylene
JPS6216437A (en) Production of olefin rich in ethylene
JPS58210030A (en) Manufacture of ethyl benzene
JP7222743B2 (en) Zeolite catalyst and method for producing lower olefins using the zeolite catalyst
JPS6215288A (en) Production of hydrocarbon
JPH04103541A (en) Production of olefin
JPH0379330B2 (en)
JPS5862121A (en) Preparation of olefin
JPH0336813B2 (en)