JPH049775B2 - - Google Patents

Info

Publication number
JPH049775B2
JPH049775B2 JP60152501A JP15250185A JPH049775B2 JP H049775 B2 JPH049775 B2 JP H049775B2 JP 60152501 A JP60152501 A JP 60152501A JP 15250185 A JP15250185 A JP 15250185A JP H049775 B2 JPH049775 B2 JP H049775B2
Authority
JP
Japan
Prior art keywords
crystalline aluminosilicate
seed
solid material
catalyst
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60152501A
Other languages
Japanese (ja)
Other versions
JPS6216437A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60152501A priority Critical patent/JPS6216437A/en
Publication of JPS6216437A publication Critical patent/JPS6216437A/en
Publication of JPH049775B2 publication Critical patent/JPH049775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は新規な製造方法によつて得られた結晶
性アルミノシリケートを触媒として用いメタノー
ルおよび/またはジメチルエーテルからエチレン
に富む低級オレフインを製造する方法に関するも
のである。 特に本発明は、結晶性アルミノシリケートを高
温焼成することによりなしいしはアルカリ金属イ
オンを全部または部分的に亜鉛、ランタン等の多
価金属イオンに交換したものを触媒として用い、
かつ、反応において触媒上へ沈着した炭素質物質
を周期的に燃焼除去しエチレンに富む低級オレフ
インを製造する方法に関する。 〔従来の技術〕 結晶性アルミノシリケートはゼオライトとして
天然のものや合成されものが数多く知られてい
る。これらの結晶性アルミノシリケートは多数の
立体構造をなす細孔を有しモレキユラーシーブと
して吸着剤やガスの分離に用いられる他、炭化水
素類の転換用触媒等として工業的に使用されてい
る。 また最近になり各種の結晶性アルミノシリケー
トを触媒として用いて、メタノールあるいはジメ
チルエーテルから低級オレフインを製造する方法
が多く開発されている。例えばモービルオイル社
によるZSM−5ゼオライトがりん、マンガンお
よびカルシウム等に修飾によりメタノールから低
級オレフインを製造しており、また同様にZSM
−34ゼオライト(特開昭53−58499)がメタノー
ルから低級オレフインを製造するのに用いられて
いる。 〔発明が解決しようとする問題点〕 しかしながら、蒸気ZSM−5ゼオライトは細
孔径が大きくガソリン製造には適するが、低級オ
レフインの選択性が低く、低級オレフインの製造
には不適当であり、又ZSM−34ゼオライトはメ
タノールからエチレン、プロピレン等を製造する
触媒としては高い選択性を示すが、触媒上への炭
素質析出による活性劣化が極めて早く、かつ劣化
触媒を空気や水素等で再生処理してもこの劣化を
完全には除去することができず、この種の触媒と
して必ずしも満足なものとは云えなかつた。 〔問題点を解決するための手段〕 本発明者等はメタノールやジメチルエーテルを
原料としてエチレンに富む低級オレフインを効率
良く製造する方法を開発するために種々検討を重
ねた結果、シリカ源、アルミナ源、アルカリ金属
塩およびコリン化合物を含む水性原料混合物に種
固定物を存在させることにより得た、オリオナイ
トノフレタイト系ゼオライトの結晶性アルミノシ
リケート、を高温焼成ないしはそのアルカリ金属
イオンの少くとも1部を亜鉛、ランタン等の多価
金属イオンに交換し触媒として用いることにより
目的とするエチレンに富む低級オレフインを効率
良く製造することが出来、さらにその際に触媒上
へ析出した炭素質物質を周期的に燃焼除去を行う
ことにより安定してエチレンに富む低級オレフイ
ンを製造することが可能であることを見い出し本
発明を完成するに至つた。 本発明の目的は、メタノールまたはジメチルエ
ーテルから石油化学の基幹原料であるエチレン、
プロピレン、ブテン等の低級オレフイン類を効率
良く安定して製造することができるエチレンに富
む低級オレフインの製造方法を提供することにあ
る。すなわち本発明はシリカ源、アルミナ源、ア
ルカリ金属およびコリン化合物を含む水性原料混
合物をコリン化合物が気化ないしは分割しない水
熱合成条件下に保持して結晶性アルミノリケート
を含有する固形物を生成せしめる種固形物合成工
程で得られた結晶性アルミノシリケートを含有す
る固形物の一部を種とし、この種を下記水性原料
混合物の0.01〜3重量%とシリカ源、アルミナ
源、アルカリ金属塩およびコリン化合物を含む水
性原料混合物をコリン化合物が気化ないしは分解
しない水熱合成条件下に保持する結晶性アルミノ
シリケート製造工程から得たエリオナイト及びオ
フレタイト系結晶性アルミノシリケート、を高温
焼成してその少くとも1部をH(プロトン)型に
するかまたは、そのアルカリ金属の少くとも1部
を多価金属イオンに交換したものを触媒として用
い、高温且つ常圧乃至高圧下にメタノール及び/
又はジメチルエーテルと接触させることを特徴と
するエチレンに富むオレフイン類の製造方法であ
る。 次に本発明で用いる触媒の結晶アルミノシリケ
ートの製造法について詳しく述べる。シリカ源と
してはシリカ粉末、けい酸、コロイト状シリカ、
溶解シリカ等が用いられ、アルミナ源としてはア
ルミニウムの硫酸塩、硝酸塩等やアルミナ酸ナイ
リウム、コロイド状アルミナ、アルミナ等が用い
られ、アルカリ金属塩としてはナトリウム、カリ
ウム、ルビジウム等の水酸化物が用いられ、また
有機添加物としては、コリン塩化コリン、水酸化
コリン等のコリン化合物が用いられる。 種固形物合成工程では上記した如き母液ゲル原
料を用いコリン化合物が気化ないしは分解しない
水熱合成条件すなわち前記のシリカ源、アルミナ
源、アルカリ金属塩およびコリン化合物よりなる
水性原料混合物を50℃〜170℃、1〜12日間保持
することによつて結晶性アルミノシリケートを含
む固形物を生成させる。この場合得られる固形物
は結晶化度が低いエリオナイトとオフレタイトを
有する低結晶性アルミノシリケートである。この
結晶性アルミノシリケートを含有する固形物の一
部を次工程の種として用いるのであるが、母液ゲ
ルの状態であつても、乾燥物、焼成物であつても
よい。 次にこのようにして得られた結晶性アルミノシ
リケートを含有する固形物の一部を種とし、これ
と前記のようなシリカ源、アルミナ源、アルカリ
金属塩、およびコリン化合物とを含んだ水性混合
物を前記と同様な水熱合成条件下に保持すること
によつて、エリオナイトおよびオフレタイト系ゼ
オライトの高結晶性アルミノシリケートを得る。 すなわち、含有する結晶性アルミノシリケート
が低結晶である固形物を種に用い高結晶性アルミ
ノシリケートを得ることが出来る。また以後はこ
のように水熱合成によつて得られた高結晶性アル
ミノシリケートを種に用いることができる。種の
量は何れの工程においてもゼオライト基準で水性
原料混合物の0.01〜3重量%程度で十分である。
種結晶の量が余り少ないと、純度の高い、製品が
得られず、また余り多いと収量を下げることにな
り好ましくない。このようにして得られた結晶性
アルミノシリケートは、本発明の方法において触
媒として用いられるが該結晶性アルミノシリケー
トの交換可能な陽イオンの少なくとも一部が水素
イオン(プロトン型)であることがより好まし
い。一方、水素イオン交換量が多くなりすぎる
と、メタノール転化反応において水素移行反応が
顕著になり低級オレフインの選択性が著しく低下
し、更に炭素析出が促進され触媒劣化が早まる。
従つて本発明においては、数十%の範囲の水素イ
オン交換量が望ましい。 この結晶性アルミノシリケートは、その結晶中
に陽イオンの一部としてアルカリ金属イオン以外
に窒素化合物イオンを含有するため、窒素化合物
イオンを水素イオン交換するためには、該結晶性
アルミノシリケートを空気流通下、400〜800℃、
好ましくは、500〜600℃の温度範囲で1時間以上
焼成すればよい、更に該結晶性アルミノシリケー
トは、粉末として製造されるが、これを触媒とし
て用いる際、適当な形状に成型しても良い。この
成型は通常の方法で良く、例えば、押し出し成
型、打錠成型、噴霧乾燥造粒などいずれかの方法
を採用すれば良い。その際、通常添加される粘結
剤あるいは成型助剤等を添加することができる。
例えば、シリカ、アルミナ、シリカ、アルミナ、
粘土類、グラフアイト、ステアリン酸、澱粉、ポ
リビニルアルコール等を80%以下、好ましくは2
〜40%の範囲で添加できる。このようにして得ら
れた成型品は焼成して本発明における触媒として
用いる。 また、本発明で用いられる触媒は、上記のもの
の他に該結晶性アルミノシリケートのアルカリ金
属イオンを全部または部分的に亜鉛またはランタ
ン等の多価イオンに交換することが好ましい。 この交換は、公知の方法で良く、例えば、上記
成型品とした結晶性アルミノシリケートを一担硝
酸アンモニウム水溶液等のアンモニウムイオンを
含む水溶液中でイオン交換しアンモニウム型に変
換後、硝酸亜鉛または硝酸ランタン等の水溶液中
で再びイオン交換することによりアルカリ金属イ
オンの金部または一部を亜鉛またはランタン等の
多価イオンに交換すれば良い。このイオン交換は
結晶性アルミノシリケートを成型品とする前に行
つても良い。 本発明の方法はメタノールおよび/まははジメ
チルエーテルを該結晶性アルミノシリケート触媒
と高温で接触させることにより実施される。 反応方法は固定床、流動床あるいは移動床のい
ずれの方法でも良く、触媒の形状はそれに応じて
適当なものを選ぶことができる。反応温度は300
〜500℃、好ましくは350〜400℃、圧力は特には
制限ないが、通常1〜30気圧の範囲で良く、好ま
しくは1〜20気圧である。 原料のメタノールおよび/又はジメチルエーテ
ルはそのまま触媒上に供給しても良く、水、窒
素、ヘリウム、二酸化炭素、水素、アルゴン等あ
るいはメタン、エタン、プロパン等の転化反応に
不活性なキヤリヤーガスあるいは希釈剤を同時に
加えてることが出来、中でも水の添加が好まし
い。この際、原料中のメタノールおよび/または
ジメチルエーテルの濃度は10%以上であることが
望ましい。更にLHSV(液空間速度)は0.01〜
30hr-1、好ましくは0.1〜10hr-1の範囲である。 なお反応方式としてメタノールを一旦γ−アル
ミナなどの公知触媒で脱水しジメチルエーテルに
変換した後、該アルミノシリケート触媒上に流通
させても良い。勿論、この転化反応で回収される
未反応・メタノールおよび/またはジメチルエー
テルを再び原料として循環させても何らさしつか
えない。 本発明の方法においては、経時による活性低下
した触媒の一部あるいは全部を周期的に通常の方
法、すなわち空気等の酸素を含有する400〜800℃
の高温下で流通させ、触媒上に析出した炭素質物
質を燃焼除去することにより再生し、再使用する
ことが可能となる。 以下本発明を実施例をあげて説明するが、これ
ら実施例のみに限定されるものではない。 なお実施例において反応はすべて固定床流通式
のマイクロリアクター(10mm×200mm)を用いて
常圧下で行つた。 実施例 1 アルミン酸ソーダ(和光純薬工業製特級Al/
Na原子比0.78)26.76g、水酸化ナトリウム(和
光純薬工業製特級)11.95gおよび水酸化カリム
ウ(和光純薬工業製特級)13.01gを水266.14g
に溶解した。この溶液へ塩化コリン(東京化成工
業製特級)112.37gを加えしかる後シリカゾル溶
液(日産化学工業製スノーテツクス30)384.43g
を添加混合し母液ゲルを調合した。 この母液ゲルをパイレツクス製オートクレーブ
にセツトし150℃8日間自己発生圧力下に保持し
ゼオライト化を行なわしめた。反応終了後、生成
物の濾過を行い、更に毎回1の蒸留水にて3回
洗浄した。その後120℃で乾燥後空気気流中550℃
で3時間焼成した、これによつて結晶生成物(A)を
得た。 このものの粉末X線回析結果、低いエリオナイ
ト/オフレタイト系ゼオライトであつた。 次いで上記と全く同様にして得られた母液ゲル
に上記結晶生成物(A)3gを添加混合し、同様にパ
イレツクス製オートクレーブにセツトし150℃に
て自己発生圧力下でゼオライト化を行なわしめ、
8日間で反応を停止した。その後は同様にして結
晶生成(B)を得た。 このものの粉末をX線回析した結果、結晶性の
非常に高いエリオナイト/オフレタイト系ゼオラ
イトであつた。 この粉末にアルミナバインダーを35重量%加え
成型品とし再び乾燥後空気気流中550℃で3時間
焼成し触媒とした。 常圧流通反応装置にこの触媒5mlを充てんし、
メタノール濃度が30重量%となるように水を添加
した原料を用いLHSV1hr-1、反応温度350℃のメ
タノール転換反応を4時間継続した。 反応開始から4時間までの反応結果を表−1に
示す。 実施例 2 実施例1で製造した触媒1gを2.2規定の硝酸
アンモニウム水溶液5ml中2時間自然還留する操
作を4回繰り返すことにより一担アンモニウム型
とした。その後乾燥し1規定の硝酸亜鉛水溶液5
ml中88℃で4時間放置することにより亜鉛型にイ
オン交換した。 この触媒を乾燥後焼成し実施例1と同様な反応
を行つた。結果を表−1に示す。 実施例 3 実施例2の硝酸亜鉛を硝酸ランタンに変えた以
外は実施例2と同様な操作を行い反応結果を表−
1に示す。 実施例 4〜7 実施例1の使用済触媒に550℃において空気を
20ml/minで導入し二酸化炭素が反応管からの流
出ガス中に認められなくなるまで焼成を続けた。
次いで窒素ガスで酸素を充分パージ後、実施例1
と同一条件で反応を行い、その後同じ操作を3回
繰り返した。これらの反応結果を表−1に示す。 比較例 1 アルミン酸ソーダ(和光純薬工業製特級Al/
Na原子比0.78)26.76g、水酸化ナトリウム(和
光純薬工業製特級)11.95gおよび水酸化カリム
ウム(和光純薬工業製特級)13.01gを水266.14
gに溶解した。この溶液へ塩化コリン(東京化成
工業製特級)112.37gを加えしかる後シリカゾル
溶液(日産化学工業製スノーテツクス30)384.43
gを添加混合し母液ゲルを調合した。 この母液ゲルをパイレツクス製オートクレーブ
にセツトし150℃8日間自己発生圧力下に保持し
ゼオライト化を行なわしめた。反応終了後、生成
物の濾過を行い、更に毎回1の蒸留水にて3回
洗浄した。その後120℃で乾燥後空気気流中550℃
で3時間焼成した、こによつて結晶生成物(A)を得
た。 このものの粉末X線回析結果、低いエリオナイ
ト/オフレタイト系ゼオライトであつた。 この結晶性アルミノシリケートを実施例1と同
様に触化し反応を行つた。結果を表−2に示す。 比較例 2 比較例1のゼオライト化温度を180℃にしゼオ
ライト化時間を6時間とした以外は、比較例1と
同様の操作を行い高結晶性アルミノシリケートを
得た、この高結晶性アルミノシリケートを実施例
1と同様に触媒化し反応を行つた。結果を表−2
に示す。 比較例 3 比較例2で得た触媒を実施例3と同様の操作を
行いランタン型とし反応を行つた。表−2に結果
を示す。 比較例 4 比較例1のゼオライト化温度および時間を180
℃、8時間としたことを有機添加物をテトラメチ
ルアンモニウムに変えた以外は比較例1と同様の
操作を行い高結晶性アルミノシリケートを得た。
この高結晶性アルミノシリケートを実施例1と同
様に触媒化し反応を行つた。結果を表−2に示
す。
[Industrial Application Field] The present invention relates to a method for producing ethylene-rich lower olefins from methanol and/or dimethyl ether using a crystalline aluminosilicate obtained by a new production method as a catalyst. In particular, the present invention uses as a catalyst a crystalline aluminosilicate obtained by calcining it at a high temperature or by replacing all or part of the alkali metal ions with polyvalent metal ions such as zinc or lanthanum.
The present invention also relates to a method for producing ethylene-rich lower olefins by periodically burning off carbonaceous substances deposited on a catalyst during a reaction. [Prior Art] Many natural and synthetic crystalline aluminosilicates are known as zeolites. These crystalline aluminosilicates have many pores forming a three-dimensional structure and are used as molecular sieves for adsorbents and gas separation, as well as being used industrially as catalysts for conversion of hydrocarbons. . Recently, many methods have been developed for producing lower olefins from methanol or dimethyl ether using various crystalline aluminosilicates as catalysts. For example, Mobil Oil's ZSM-5 zeolite is modified with phosphorus, manganese, calcium, etc. to produce lower olefins from methanol;
-34 zeolite (JP 53-58499) has been used to produce lower olefins from methanol. [Problems to be solved by the invention] However, although steam ZSM-5 zeolite has a large pore size and is suitable for producing gasoline, it has low selectivity for lower olefins and is therefore unsuitable for producing lower olefins. -34 Zeolite exhibits high selectivity as a catalyst for producing ethylene, propylene, etc. from methanol, but its activity deteriorates extremely quickly due to carbonaceous precipitation on the catalyst, and the degraded catalyst cannot be regenerated with air or hydrogen. However, this deterioration could not be completely removed, and it could not be said that this type of catalyst was necessarily satisfactory. [Means for Solving the Problems] The present inventors have conducted various studies in order to develop a method for efficiently producing ethylene-rich lower olefins using methanol and dimethyl ether as raw materials. A crystalline aluminosilicate of orionite nophretite zeolite obtained by the presence of a seed fixation substance in an aqueous raw material mixture containing an alkali metal salt and a choline compound is calcined at a high temperature or at least a part of its alkali metal ions are removed. By exchanging polyvalent metal ions such as zinc and lanthanum and using them as a catalyst, the target ethylene-rich lower olefin can be efficiently produced, and the carbonaceous substances deposited on the catalyst can be periodically removed. The present inventors have discovered that it is possible to stably produce lower olefins rich in ethylene by combustion removal, and have completed the present invention. The purpose of the present invention is to convert methanol or dimethyl ether into ethylene, a key raw material for petrochemicals.
The object of the present invention is to provide a method for producing lower olefins rich in ethylene, which can efficiently and stably produce lower olefins such as propylene and butene. That is, the present invention produces a solid material containing crystalline aluminosilicate by holding an aqueous raw material mixture containing a silica source, an alumina source, an alkali metal, and a choline compound under hydrothermal synthesis conditions in which the choline compound does not vaporize or split. A part of the solid material containing crystalline aluminosilicate obtained in the seed solid synthesis step is used as a seed, and this seed is added to 0.01 to 3% by weight of the following aqueous raw material mixture, silica source, alumina source, alkali metal salt, and choline. At least one of erionite and offretite-based crystalline aluminosilicate obtained from a crystalline aluminosilicate production process in which an aqueous raw material mixture containing the compound is held under hydrothermal synthesis conditions in which the choline compound does not vaporize or decompose is calcined at a high temperature. Using a catalyst in which at least a portion of the alkali metal is in the H (proton) form or at least a portion of the alkali metal is exchanged with a polyvalent metal ion, methanol and/or
or a method for producing ethylene-rich olefins, which comprises contacting the olefins with dimethyl ether. Next, the method for producing the crystalline aluminosilicate catalyst used in the present invention will be described in detail. Silica sources include silica powder, silicic acid, colloidal silica,
Dissolved silica, etc. are used, aluminum sulfates, nitrates, etc., nylium aluminate, colloidal alumina, alumina, etc. are used as alumina sources, and hydroxides of sodium, potassium, rubidium, etc. are used as alkali metal salts. As the organic additive, choline compounds such as choline chloride and choline hydroxide are used. In the seed solid synthesis step, the mother liquor gel raw material as described above is used and the choline compound is heated under hydrothermal synthesis conditions such that the choline compound does not vaporize or decompose. C. for 1 to 12 days to form a solid containing crystalline aluminosilicate. The solid obtained in this case is a low-crystalline aluminosilicate with erionite and offretite having low crystallinity. A part of the solid material containing this crystalline aluminosilicate is used as a seed in the next step, and it may be in the form of a mother liquor gel, dried product, or fired product. Next, a part of the solid material containing the crystalline aluminosilicate thus obtained is used as a seed, and an aqueous mixture containing this and the above-mentioned silica source, alumina source, alkali metal salt, and choline compound is prepared. Highly crystalline aluminosilicates of erionite and offretite zeolites are obtained by maintaining the zeolites under the same hydrothermal synthesis conditions as described above. That is, a highly crystalline aluminosilicate can be obtained by using a solid material containing low crystalline aluminosilicate as a seed. Further, the highly crystalline aluminosilicate obtained by hydrothermal synthesis as described above can be used as a seed. In any process, an amount of about 0.01 to 3% by weight of the aqueous raw material mixture based on the zeolite is sufficient.
If the amount of seed crystals is too small, a product with high purity cannot be obtained, and if it is too large, the yield will be lowered, which is not preferable. The crystalline aluminosilicate thus obtained is used as a catalyst in the method of the present invention, but it is preferable that at least a part of the exchangeable cations of the crystalline aluminosilicate are hydrogen ions (proton type). preferable. On the other hand, if the amount of hydrogen ion exchange becomes too large, the hydrogen transfer reaction becomes prominent in the methanol conversion reaction, resulting in a significant decrease in the selectivity of lower olefins, and furthermore, carbon precipitation is promoted and catalyst deterioration is accelerated.
Therefore, in the present invention, a hydrogen ion exchange amount in the range of several tens of percent is desirable. This crystalline aluminosilicate contains nitrogen compound ions in addition to alkali metal ions as part of the cations in its crystals, so in order to exchange nitrogen compound ions with hydrogen ions, the crystalline aluminosilicate must be passed through air circulation. Lower, 400-800℃,
Preferably, the crystalline aluminosilicate may be calcined at a temperature range of 500 to 600°C for 1 hour or more.Furthermore, the crystalline aluminosilicate is produced as a powder, but when used as a catalyst, it may be molded into an appropriate shape. . This molding may be carried out by a conventional method, such as extrusion molding, tablet molding, spray drying granulation, or the like. At that time, a binder or a molding aid that is normally added can be added.
For example, silica, alumina, silica, alumina,
Contains clays, graphite, stearic acid, starch, polyvinyl alcohol, etc. at 80% or less, preferably 2
It can be added in the range of ~40%. The molded product thus obtained is fired and used as a catalyst in the present invention. In addition to the above-mentioned catalysts, the catalyst used in the present invention preferably exchanges all or part of the alkali metal ions of the crystalline aluminosilicate with polyvalent ions such as zinc or lanthanum. This exchange may be carried out by a known method. For example, the crystalline aluminosilicate formed into the molded product is ion-exchanged in an aqueous solution containing ammonium ions, such as a monovalent ammonium nitrate aqueous solution, to convert it into an ammonium type, and then zinc nitrate or lanthanum nitrate is used. The gold portion or part of the alkali metal ion may be exchanged with polyvalent ions such as zinc or lanthanum by ion exchange again in an aqueous solution of . This ion exchange may be performed before making the crystalline aluminosilicate into a molded product. The process of the invention is carried out by contacting methanol and/or dimethyl ether with the crystalline aluminosilicate catalyst at elevated temperatures. The reaction method may be fixed bed, fluidized bed or moving bed, and the shape of the catalyst can be selected accordingly. The reaction temperature is 300
-500°C, preferably 350-400°C, and the pressure is not particularly limited, but it is usually in the range of 1-30 atm, preferably 1-20 atm. The raw materials methanol and/or dimethyl ether may be fed directly onto the catalyst, or a carrier gas or diluent inert to the conversion reaction of water, nitrogen, helium, carbon dioxide, hydrogen, argon, etc. or methane, ethane, propane, etc. They can be added at the same time, and it is especially preferable to add water. At this time, it is desirable that the concentration of methanol and/or dimethyl ether in the raw material is 10% or more. Furthermore, LHSV (liquid hourly space velocity) is 0.01~
30 hr −1 , preferably in the range of 0.1 to 10 hr −1 . As a reaction method, methanol may be dehydrated using a known catalyst such as γ-alumina and converted into dimethyl ether, and then passed over the aluminosilicate catalyst. Of course, there is no problem in recycling the unreacted methanol and/or dimethyl ether recovered in this conversion reaction as raw materials again. In the method of the present invention, part or all of the catalyst whose activity has decreased over time is periodically heated at 400 to 800°C in an atmosphere containing oxygen such as air.
The carbonaceous substances deposited on the catalyst are burned and removed by flowing the catalyst at high temperatures, making it possible to regenerate and reuse the catalyst. The present invention will be explained below with reference to Examples, but it is not limited to these Examples. In the Examples, all reactions were carried out under normal pressure using a fixed bed flow microreactor (10 mm x 200 mm). Example 1 Sodium aluminate (special grade Al manufactured by Wako Pure Chemical Industries)
26.76 g of Na atomic ratio 0.78), 11.95 g of sodium hydroxide (special grade manufactured by Wako Pure Chemical Industries) and 13.01 g of potassium hydroxide (special grade manufactured by Wako Pure Chemical Industries) and 266.14 g of water.
dissolved in Add 112.37g of choline chloride (special grade manufactured by Tokyo Chemical Industry Co., Ltd.) to this solution, and then add 384.43g of silica sol solution (Snowtex 30 manufactured by Nissan Chemical Industries).
were added and mixed to prepare a mother liquid gel. This mother liquor gel was placed in a Pyrex autoclave and maintained under self-generated pressure at 150°C for 8 days to convert it into zeolite. After the reaction was completed, the product was filtered and washed three times with 1 portion of distilled water each time. Then dry at 120℃ and then 550℃ in an air stream.
This gave a crystalline product (A). As a result of powder X-ray diffraction of this product, it was found to be a low erionite/offretite zeolite. Next, 3 g of the above-mentioned crystalline product (A) was added to and mixed with the mother liquor gel obtained in exactly the same manner as above, and the mixture was similarly placed in a Pyrex autoclave to undergo zeolization at 150°C under self-generated pressure.
The reaction was stopped after 8 days. Thereafter, crystal formation (B) was obtained in the same manner. X-ray diffraction analysis of this powder revealed that it was an erionite/offretite zeolite with very high crystallinity. 35% by weight of alumina binder was added to this powder to form a molded product, which was dried again and then calcined in an air stream at 550°C for 3 hours to obtain a catalyst. Fill a normal pressure flow reactor with 5 ml of this catalyst,
The methanol conversion reaction was continued for 4 hours at a reaction temperature of 350° C. and a LHSV of 1 hr −1 using raw materials to which water had been added so that the methanol concentration was 30% by weight. Table 1 shows the reaction results up to 4 hours from the start of the reaction. Example 2 1 g of the catalyst produced in Example 1 was subjected to natural reflux for 2 hours in 5 ml of a 2.2N ammonium nitrate aqueous solution, which was repeated 4 times to obtain a mono-supported ammonium type. After that, it is dried and a 1N aqueous solution of zinc nitrate is
ml at 88°C for 4 hours to perform ion exchange into zinc form. This catalyst was dried and then calcined to carry out the same reaction as in Example 1. The results are shown in Table-1. Example 3 The same procedure as in Example 2 was carried out except that zinc nitrate in Example 2 was changed to lanthanum nitrate, and the reaction results are shown in the table.
Shown in 1. Examples 4 to 7 Air was blown into the spent catalyst of Example 1 at 550°C.
The gas was introduced at a rate of 20 ml/min, and the calcination was continued until carbon dioxide was no longer observed in the gas flowing out from the reaction tube.
Next, after sufficiently purging oxygen with nitrogen gas, Example 1
The reaction was carried out under the same conditions as above, and the same operation was repeated three times. The results of these reactions are shown in Table-1. Comparative example 1 Sodium aluminate (special grade Al manufactured by Wako Pure Chemical Industries)
26.76 g of Na atomic ratio 0.78), 11.95 g of sodium hydroxide (special grade manufactured by Wako Pure Chemical Industries) and 13.01 g of potassium hydroxide (special grade manufactured by Wako Pure Chemical Industries) in 266.14 g of water
Dissolved in g. To this solution, 112.37 g of choline chloride (special grade manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and then 384.43 g of silica sol solution (Snowtex 30 manufactured by Nissan Chemical Industries) was added.
g was added and mixed to prepare a mother liquid gel. This mother liquor gel was placed in a Pyrex autoclave and maintained under self-generated pressure at 150°C for 8 days to convert it into zeolite. After the reaction was completed, the product was filtered and washed three times with 1 portion of distilled water each time. Then dry at 120℃ and then 550℃ in an air stream.
The mixture was calcined for 3 hours to obtain a crystalline product (A). As a result of powder X-ray diffraction of this product, it was found to be a low erionite/offretite zeolite. This crystalline aluminosilicate was catalyzed and reacted in the same manner as in Example 1. The results are shown in Table-2. Comparative Example 2 Highly crystalline aluminosilicate was obtained by performing the same operation as in Comparative Example 1 except that the zeolization temperature was 180°C and the zeolization time was 6 hours. Catalytic reaction was carried out in the same manner as in Example 1. Table 2 of the results
Shown below. Comparative Example 3 The catalyst obtained in Comparative Example 2 was subjected to the same operation as in Example 3 to form a lanthanum type catalyst and a reaction was carried out. The results are shown in Table-2. Comparative Example 4 The zeolization temperature and time of Comparative Example 1 were 180
C. for 8 hours and the organic additive was changed to tetramethylammonium, but the same operation as in Comparative Example 1 was carried out to obtain a highly crystalline aluminosilicate.
This highly crystalline aluminosilicate was catalyzed and reacted in the same manner as in Example 1. The results are shown in Table-2.

【表】 *2 エチレン、プロピレン、ブテンの総和
[Table] *2 Total of ethylene, propylene, butene

〔発明の効果〕〔Effect of the invention〕

上記の結果からも明らかなように、本発明によ
るときは、メタノールから高転化率でエチレン、
プロピレン、ブテン等の低級オレフインを得るこ
とができる。また、このことは、メタノールの代
りにジメチルエーテルを使用しても同様である。
As is clear from the above results, when the present invention is used, it is possible to convert methanol into ethylene at a high conversion rate.
Lower olefins such as propylene and butene can be obtained. Moreover, this also applies when dimethyl ether is used instead of methanol.

Claims (1)

【特許請求の範囲】 1 シリカ源、アルミナ源、アルカリ金属塩およ
びコリン化合物を含む水性原料混合物を該コリン
化合物が気化ないしは分解しない水熱合成条件下
に保持して結晶性アルミノシリケートを含有する
固形物を生成せしめる種固形物合成工程で得られ
た結晶性アルミノシリケートを含有する固形物の
一部を種とし、この種を下記水性原料混合物の
0.01〜3重量%とシリカ源、アルミナ源、アルカ
リ金属塩およびコリン化合物を含む水性原料混合
物を該コリン化合物が気化ないし分解しない水熱
合成条件下に保持する結晶性アルミノシリケート
製造工程から得たエリオナイト及びオフレタイト
系結晶性アルミノシリケートを高温焼成してその
少くとも1部をH(プロトン)型にするかまたは
そのアルカリ金属の少くとも1部を多価金属イオ
ンに交換したものを触媒として用い、高温且つ常
圧乃至高圧下にメタノール及び/又はジメチルエ
ーテルと接触させることを特徴とするエチレンに
富むオレフイン類の製造方法。 2 該結晶性アルミノシリケート製造工程が少く
とも2つの工程を含み、最初の工程のみは該種固
形物合成工程において得られた結晶性アルミノシ
リケートを含有する固形物の一部を種として用
い、それ以後は該製造工程において得られた結晶
性アルミノシリケートを含有する固形物の一部を
製造工程の種として用いる特許請求の範囲第1項
記載のエチレンに富むオレフイン類の製造法方
法。 3 接触反応によつて触媒沈着した炭素質物質を
周期的に燃焼除去することを特徴とする特許請求
の範囲第1又は2項に記載のエチレンに富むオレ
フイン類の製造方法。 4 該結晶性アルミノシリケート製造工程が少く
とも2つの工程を含み、最初の工程のみは該固形
物合成工程において得られた結晶性アルミノシリ
ケートを含有する固形物の一部を種として用いそ
れ以後は該製造工程において得られた結晶性アル
ミノシリケートを含有する固形物の一部を製造工
程の種として用いる特許請求の範囲第1項乃至第
3項の何れかの項に記載のエチレンに富むオレフ
イン類の製造方法。
[Claims] 1. A solid containing crystalline aluminosilicate is produced by holding an aqueous raw material mixture containing a silica source, an alumina source, an alkali metal salt, and a choline compound under hydrothermal synthesis conditions in which the choline compound does not vaporize or decompose. A part of the solid material containing crystalline aluminosilicate obtained in the seed solid synthesis process is used as a seed, and this seed is used as a seed for the following aqueous raw material mixture.
Erio obtained from a crystalline aluminosilicate manufacturing process in which an aqueous raw material mixture containing 0.01 to 3% by weight, a silica source, an alumina source, an alkali metal salt, and a choline compound is held under hydrothermal synthesis conditions in which the choline compound does not vaporize or decompose. Night and offretite crystalline aluminosilicate is calcined at high temperature to convert at least a part of it into the H (proton) form, or at least a part of its alkali metal is exchanged with polyvalent metal ions, using as a catalyst, 1. A method for producing ethylene-rich olefins, which comprises contacting them with methanol and/or dimethyl ether at high temperature and normal pressure to high pressure. 2. The crystalline aluminosilicate manufacturing process includes at least two steps, and only the first step uses as a seed a part of the solid material containing the crystalline aluminosilicate obtained in the seed solid material synthesis step. The method for producing ethylene-rich olefins according to claim 1, wherein a part of the crystalline aluminosilicate-containing solid material obtained in the production process is subsequently used as a seed for the production process. 3. The method for producing ethylene-rich olefins according to claim 1 or 2, characterized in that the carbonaceous material deposited as a catalyst by the catalytic reaction is periodically burned and removed. 4. The crystalline aluminosilicate production process includes at least two steps, and only the first step uses a part of the solid material containing the crystalline aluminosilicate obtained in the solid material synthesis step as a seed, and the subsequent steps include Ethylene-rich olefins according to any one of claims 1 to 3, in which a part of the solid material containing crystalline aluminosilicate obtained in the manufacturing process is used as a seed in the manufacturing process. manufacturing method.
JP60152501A 1985-07-12 1985-07-12 Production of olefin rich in ethylene Granted JPS6216437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60152501A JPS6216437A (en) 1985-07-12 1985-07-12 Production of olefin rich in ethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60152501A JPS6216437A (en) 1985-07-12 1985-07-12 Production of olefin rich in ethylene

Publications (2)

Publication Number Publication Date
JPS6216437A JPS6216437A (en) 1987-01-24
JPH049775B2 true JPH049775B2 (en) 1992-02-21

Family

ID=15541842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60152501A Granted JPS6216437A (en) 1985-07-12 1985-07-12 Production of olefin rich in ethylene

Country Status (1)

Country Link
JP (1) JPS6216437A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339999A (en) * 1976-09-24 1978-04-12 Mobil Oil Crystalline zeolite having aluminummfree shell
JPS5637215A (en) * 1979-08-30 1981-04-10 Mobil Oil Method of synthesizing zeolite
JPS5916833A (en) * 1983-03-16 1984-01-28 Agency Of Ind Science & Technol Preparation of lower olefin
JPS5916832A (en) * 1982-07-20 1984-01-28 Agency Of Ind Science & Technol Composite zeolite and preparation of hydrocarbon using said zeolite as catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339999A (en) * 1976-09-24 1978-04-12 Mobil Oil Crystalline zeolite having aluminummfree shell
JPS5637215A (en) * 1979-08-30 1981-04-10 Mobil Oil Method of synthesizing zeolite
JPS5916832A (en) * 1982-07-20 1984-01-28 Agency Of Ind Science & Technol Composite zeolite and preparation of hydrocarbon using said zeolite as catalyst
JPS5916833A (en) * 1983-03-16 1984-01-28 Agency Of Ind Science & Technol Preparation of lower olefin

Also Published As

Publication number Publication date
JPS6216437A (en) 1987-01-24

Similar Documents

Publication Publication Date Title
US8647999B2 (en) Method for regenerating a catalyst containing a CHA zeolite
US8450233B2 (en) Process for obtaining catalyst composites comprising MeAPO and their use in conversion of organics to olefins
CA2073537C (en) Converting methanol to light olefins using small particles of elapo molecular sieve
US7608746B2 (en) Process for producing propylene
EP2234718B1 (en) Process for obtaining modified molecular sieves
US8603431B2 (en) Process for preparing silicoaluminophosphate (SAPO) molecular sieves, catalysts containing said sieves and catalytic dehydration processes using said catalysts
US4542117A (en) Catalyst composition, method for its production
US4724275A (en) Crystalline aluminosilicates and their use in the conversion of methanol to low molecular weight hydrocarbons
TWI418530B (en) Production of propylene
EA020102B1 (en) METHOD FOR PREPARING METALLOALUMINOPHOSPHATE (MeAPO) MOLECULAR SIEVES
KR20150095816A (en) Aromatic transformation using uzm-44 aluminosilicate zeolite
JP5685870B2 (en) Propylene production method
JP2011121859A (en) Method for producing aluminosilicate
EP0152485B1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
JP2018087105A (en) Production method of aei zeolite
JP5895705B2 (en) Propylene production method
JP4826707B2 (en) Propylene production method
CA2137576A1 (en) Production of olefins
EA019724B1 (en) METHOD FOR PREPARING CRYSTALLINE METALLOALUMINOPHOSPHATE (MeAPO) MOLECULAR SIEVE FROM AMORPHOUS MATERIALS
TWI511952B (en) Dehydrocyclodimerization using uzm-44 aluminosilicate zeolite
JPH049775B2 (en)
JP7222743B2 (en) Zeolite catalyst and method for producing lower olefins using the zeolite catalyst
JPS58210030A (en) Manufacture of ethyl benzene
JPS6215288A (en) Production of hydrocarbon
JPH0379330B2 (en)