JPS621639B2 - - Google Patents

Info

Publication number
JPS621639B2
JPS621639B2 JP2668880A JP2668880A JPS621639B2 JP S621639 B2 JPS621639 B2 JP S621639B2 JP 2668880 A JP2668880 A JP 2668880A JP 2668880 A JP2668880 A JP 2668880A JP S621639 B2 JPS621639 B2 JP S621639B2
Authority
JP
Japan
Prior art keywords
oil
electrode
electrostatic
impurities
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2668880A
Other languages
Japanese (ja)
Other versions
JPS56122889A (en
Inventor
Makoto Shimoda
Tooru Inada
Keizo Ootsuka
Taiji Inui
Takeshi Kanbayashi
Tadao Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2668880A priority Critical patent/JPS56122889A/en
Publication of JPS56122889A publication Critical patent/JPS56122889A/en
Publication of JPS621639B2 publication Critical patent/JPS621639B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は静電脱塩装置に係り、特に、ガスター
ビン等の火炉に供給される燃料油の浄化に好適な
静電脱塩装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrostatic desalination apparatus, and more particularly to an electrostatic desalination apparatus suitable for purifying fuel oil supplied to a furnace such as a gas turbine.

一般に、ガスタービンにおいては燃焼ガスの温
度が高いため、排気タービン付近で高温腐食が発
生することがある。これは燃料油中のバナジウム
化合物が燃焼により五酸化バナジウム等の低融点
の化合物となり、これら化合物が融解状態のまま
タービン翼等に付着し腐食を発生させるためであ
る。しかも、この高温腐食は燃料中にナトリウ
ム、カリウム等のアルカリ金属が含有されると促
進される。このため、燃料油には腐食促進要因で
あるナトリウム、カリウム等の不純物を除去する
ように前処理が施されている。
Generally, in gas turbines, the temperature of combustion gas is high, so high-temperature corrosion may occur near the exhaust turbine. This is because the vanadium compounds in the fuel oil are combusted into low melting point compounds such as vanadium pentoxide, and these compounds adhere to turbine blades and the like in a molten state, causing corrosion. Moreover, this high-temperature corrosion is accelerated when alkali metals such as sodium and potassium are contained in the fuel. For this reason, fuel oil is pretreated to remove impurities such as sodium and potassium, which are factors that promote corrosion.

従来、燃料油の前処理には静電脱塩装置が使用
されている。この従来の静電脱塩装置は水洗浄方
式といわれるもので、特公昭50−36310号公報、
特公昭50−36505号、あるいは米国特許第3839176
号に開示されている如く、燃料油を水で洗浄する
方法である。即ち、第1図に示すように、燃料油
1に静電脱塩槽2の前段で洗浄水3を燃料油1に
対して5〜10重量%程度注入し、油水混合器4で
油と水を混合する。この水を混合させた油5を静
電脱塩槽2に導き、静電脱塩槽2内の静電界中
で、燃料油中に存在するナトリウム、カリウム等
が含まれた水滴の接触合体を繰り返させながら水
滴と油が重力沈降で分離可能な粒径まで成長させ
て油と水とを分離させ、燃料油の脱塩を図つてい
る。分離された排水6中には油分が含まれている
ために、油分除去用の排水処理装置7が設けられ
ている。脱塩処理された燃料油8は図示しない火
炉に供給される。
Conventionally, electrostatic demineralization equipment has been used for pretreatment of fuel oil. This conventional electrostatic desalination equipment is called a water washing method, and is disclosed in Japanese Patent Publication No. 50-36310,
Special Publication No. 50-36505 or U.S. Patent No. 3839176
This is a method of washing fuel oil with water, as disclosed in No. That is, as shown in FIG. 1, washing water 3 is injected into the fuel oil 1 in an amount of about 5 to 10% by weight based on the fuel oil 1 before the electrostatic demineralization tank 2, and the oil and water are mixed in the oil-water mixer 4. Mix. The oil 5 mixed with this water is led to the electrostatic demineralization tank 2, and in the electrostatic field in the electrostatic demineralization tank 2, the water droplets containing sodium, potassium, etc. present in the fuel oil are brought into contact and coalesced. This process is repeated to grow water droplets and oil to a particle size that allows them to be separated by gravity sedimentation, thereby separating the oil and water and desalting the fuel oil. Since the separated waste water 6 contains oil, a waste water treatment device 7 for removing oil is provided. The desalinated fuel oil 8 is supplied to a furnace (not shown).

しかしながら、上記従来の静電脱塩装置では、
油中不純物の分離作用は不純物を含有する水滴の
重力沈降に依存しているため、分離速度が遅く、
しかも、静電脱塩槽2内で水滴沈降が水を混合し
た油5の流れにより抵抗を受けるため、分離速度
の遅れが助長され、脱塩性能が悪いという問題点
を有している。また、従来装置では油水混合合器
4を設け、かつ、高価な排水処理装置7を別途に
設ける必要があり、装置規模が大型化する欠点が
ある。
However, in the above conventional electrostatic desalination equipment,
Separation of impurities in oil relies on gravity settling of water droplets containing impurities, so the separation speed is slow;
Moreover, since the settling of water droplets in the electrostatic demineralization tank 2 is resisted by the flow of the water-mixed oil 5, a delay in separation speed is promoted, resulting in a problem of poor demineralization performance. Further, in the conventional device, it is necessary to provide the oil/water mixer 4 and to separately provide an expensive wastewater treatment device 7, which has the drawback of increasing the size of the device.

本発明は上記従来の問題点に着目し、燃料油の
脱塩に当つて、特に、洗浄水を混合させることな
く油中のエマルジヨンやナトリウム、カリウム等
の不純物を除去する作用力を効果的に発揮させ、
もつて脱塩性能の向上を図ることができる静電脱
塩装置を提供することを目的とする。
The present invention has focused on the above-mentioned conventional problems, and in desalination of fuel oil, in particular, effectively removes emulsions and impurities such as sodium and potassium from oil without mixing washing water. Let it show,
It is an object of the present invention to provide an electrostatic desalination device that can improve desalination performance.

上記目的を達成するために、本発明に係る静電
脱塩装置は、静電脱塩槽内に電界を形成する高電
圧電極及び接地電極を備えた装置において、前記
電界形成用の両電極の上流側に放電々極及び当該
電極に対設した接地電極を備えて静電脱塩装置を
構成し、燃料油等に対し、予め油中放電させて油
中不純物に帯電させ、その後、電界中を通過させ
て油と不純物を分離し、脱塩させるように、帯電
した不純物のクーロン力を効果的に利用すること
によつて良好な脱塩性能を得ることができるよう
にした。
In order to achieve the above object, an electrostatic desalination apparatus according to the present invention is an apparatus equipped with a high voltage electrode and a ground electrode for forming an electric field in an electrostatic desalination tank, in which both electrodes for forming an electric field are connected to each other. An electrostatic desalination device is constructed by equipping an upstream electrode with a discharge electrode and a ground electrode opposite the electrode, and discharges fuel oil, etc. into the oil in advance to charge impurities in the oil, and then deionizes it in an electric field. It is possible to obtain good desalting performance by effectively utilizing the Coulombic force of charged impurities.

本発明に係る静電脱塩装置の原理は次のように
なる。即ち、従来装置の如き静電場における油中
エマルジヨンや不純物を捕集し除去する際の作用
力は次式で示される。
The principle of the electrostatic desalination apparatus according to the present invention is as follows. That is, the acting force when collecting and removing the emulsion in oil and impurities in an electrostatic field as in the conventional device is expressed by the following equation.

F1=D /4・ε−1/ε+2・K・E2 ……(1) ここで、F1はは油中エマルジヨン及び油中不
純物が受ける力、DPは油中エマルジヨン及び油
中不純物の粒子径、εは油中エマルジヨン及び油
中不純物の誘電率、Kは比例定数、Eは電界強度
である。
F 1 = D P 3 /4・ε−1/ε+2・K・E 2 ...(1) Here, F 1 is the force exerted on the emulsion in oil and impurities in oil, and D P is the force exerted on the emulsion in oil and the impurities in oil. The particle diameter of the impurity in the oil, ε is the dielectric constant of the emulsion in oil and the impurity in the oil, K is the proportionality constant, and E is the electric field strength.

このように、静電場におけるエマルジヨン、不
純物、即ち、粒子の作用力F1は電界強度Eの2
乗に比例し、粒子径DPの3乗に比例する。した
がつて、作用力F1を大きくするためには、粒子
径DPを大きくするか、あるいは、電界強度Eを
大きくしなければならない。粒子径DPは処理対
象となる油によつて異なるものであるため、一般
的には電界強度Eを大きくする方法がとられてい
る。しかしながら、この方法では、処理対象の油
により印加できる最大の電界強度Eが定まつてい
るので、電界強度Eを大きくするには限度があ
る。
In this way, the acting force F 1 of an emulsion, impurity, or particle in an electrostatic field is 2 of the electric field strength E.
It is proportional to the third power of the particle diameter D P. Therefore, in order to increase the acting force F 1 , either the particle diameter D P must be increased or the electric field strength E must be increased. Since the particle diameter D P varies depending on the oil to be treated, a method is generally adopted in which the electric field strength E is increased. However, in this method, the maximum electric field strength E that can be applied is determined depending on the oil to be treated, so there is a limit to how much the electric field strength E can be increased.

斯かる問題の解決方法として発明者らは油中部
分放電を生起させることにより、油中エマルジヨ
ン及び不純物に電荷を与えるものとした。この電
荷付与による粒子の受ける作用力は次式で表わさ
れる。
As a solution to this problem, the inventors created a partial discharge in oil to give an electric charge to the emulsion in oil and impurities. The force exerted on the particles due to this charging is expressed by the following equation.

F2=q・E+D /4・ε−1/ε+2・K・E2
……(2) ここでqは油中エマルジヨン及び油中不純物の
帯電量である。
F 2 =q・E+D P 3 /4・ε−1/ε+2・K・E 2
...(2) Here, q is the amount of charge of the emulsion in oil and the impurities in oil.

(2)式から理解できるように、作用力F2は(1)式
における誘電作用力F1と電荷に伴なうクーロン
力q・Eとの和となり、同等の電界強度Eにおい
ても油中エマルジヨンや不純物の受ける作用力が
大きくなり効果的な除去作用を施すことが可能と
なる。
As can be understood from equation (2), the acting force F 2 is the sum of the dielectric acting force F 1 in equation (1) and the Coulomb force q・E associated with the electric charge, and even at the same electric field strength E, The force exerted on the emulsion and impurities is increased, making it possible to effectively remove them.

斯かる原理を適用した本発明の実施例を図面を
参照しながら詳細に説明する。
Embodiments of the present invention applying this principle will be described in detail with reference to the drawings.

第2図に本実施例に係る静電脱塩装置を示す。
この装置は接地油槽としての静電脱塩槽10を備
えている。この脱塩槽10の上端部には被処理油
を脱塩槽10に供給するための給油管12が接続
され、また、下端部には処理された清浄油を導出
するための抜出管14が接続され、油が脱塩槽1
0内で上方から下方に流下するようにしている。
FIG. 2 shows an electrostatic desalination apparatus according to this embodiment.
This device is equipped with an electrostatic demineralization tank 10 as a grounded oil tank. An oil supply pipe 12 for supplying the oil to be treated to the desalination tank 10 is connected to the upper end of the desalination tank 10, and an extraction pipe 14 for drawing out the treated clean oil is connected to the lower end. is connected and the oil is sent to desalination tank 1.
The flow is made to flow from above to below within 0.

脱塩槽10と給油管12との接合箇所である給
油管12の開口部16中央には、脱塩槽10の外
部に設けられた高電圧電源18に接続された放電
電極20が配設されている。この放電々極20
は、給油管12と導通しないように碍子22を介
して外部導線24に接続されている。また、開開
口部16における脱塩槽10には、放電々極20
の先端と近接状態で対向する接地電極26が延設
され、放電々極20とともに荷電部28を構成し
ている。このため、脱塩槽10に処理対象である
油の流入時に放電々極20に高電圧を印加するこ
とにより、接地電極26との間で油中部分放電が
生起される。
A discharge electrode 20 connected to a high-voltage power source 18 provided outside the desalination tank 10 is disposed at the center of the opening 16 of the oil supply pipe 12, which is the joint between the desalination tank 10 and the oil supply pipe 12. ing. This discharge pole 20
is connected to an external conducting wire 24 via an insulator 22 so as not to be electrically connected to the oil supply pipe 12. In addition, a discharge electrode 20 is provided in the desalination tank 10 in the open opening 16.
A ground electrode 26 is extended to face the tip of the discharge electrode 20 in close proximity, and forms a charging section 28 together with the discharge electrode 20 . Therefore, by applying a high voltage to the discharge electrode 20 when the oil to be treated flows into the desalting tank 10, a partial discharge in the oil is generated between the discharge electrode 20 and the ground electrode 26.

斯かる荷電部28の下流側であつて、脱塩槽1
0の上部には、油に対して不溶性のガラス玉やプ
ラスチツク等合成樹脂の玉、及び、鉄、アルミニ
ウム等の導電性の玉が充填された分配層30が配
設されている。分配層30は脱塩槽10を上下に
区画するように脱塩槽10の横断面全体に亘つて
設けられ、給油管12から供給される油を均一に
分散させて整流するものである。
On the downstream side of the charging section 28, the desalination tank 1
A distribution layer 30 filled with oil-insoluble glass beads, beads made of synthetic resin such as plastic, and conductive beads made of iron, aluminum, etc. is disposed on the top of 0. The distribution layer 30 is provided over the entire cross section of the demineralization tank 10 so as to divide the demineralization tank 10 into upper and lower sections, and uniformly disperses and rectifies the oil supplied from the oil supply pipe 12.

このような分配層30の下流側には、平板状の
高電圧電極32及び接地電極34を交互に多数立
設状態で配置された凝集部36が備えられてい
る。即ち、所定間隔で平行配置している接地電極
34の中間位置に高電圧電極32をそれぞれ離間
させて配置し、高電圧電極32のみを相互に電気
的に接続して外部の高電圧電源18に接続し、他
方、接地電極34はそれぞれ脱塩槽10に接続し
ている。したがつて、高電圧電極32に高電圧を
印加することにより、両電極32,34間に電界
が形成されるものとなつている。
The downstream side of such a distribution layer 30 is provided with an aggregation section 36 in which a large number of flat high voltage electrodes 32 and ground electrodes 34 are alternately arranged in an upright manner. That is, the high-voltage electrodes 32 are spaced apart from each other in the middle of the ground electrodes 34 that are arranged in parallel at predetermined intervals, and only the high-voltage electrodes 32 are electrically connected to each other to connect to the external high-voltage power source 18. On the other hand, the ground electrodes 34 are respectively connected to the desalination tank 10. Therefore, by applying a high voltage to the high voltage electrode 32, an electric field is formed between the two electrodes 32 and 34.

凝集部36の更に下流位置には、高電圧電極3
2の直下に清浄油導出口38を形成している不純
物抜出部40が脱塩槽10を上下に区画して設け
られている。この不純物抜出部40は脱塩槽10
の側壁に形成された取出口42に連通され、抜き
出された不純物を外部に排出できるようにしてい
る。また、清浄油導出口38は、処理された油を
脱塩槽10下部に流下させるように抜出部40を
貫通して形成されている。脱塩槽10の下端部に
設けられた抜出管14には、導電性の充填物を有
する電荷捕集部44が形成され、処理油に残留し
ている電荷を捕集させた後、清浄油として抜出管
14から装置外に導出させるものとしている。
A high voltage electrode 3 is located further downstream of the aggregation section 36.
An impurity extraction section 40 forming a clean oil outlet 38 directly below the demineralization tank 2 is provided to divide the desalination tank 10 into upper and lower sections. This impurity extraction part 40 is a desalination tank 10
It communicates with an outlet 42 formed in the side wall of the tank, so that the extracted impurities can be discharged to the outside. Moreover, the clean oil outlet 38 is formed to penetrate the extraction part 40 so that the treated oil flows down to the lower part of the desalination tank 10. A charge collection section 44 having a conductive filler is formed in the extraction pipe 14 provided at the lower end of the desalination tank 10, and after collecting the charge remaining in the treated oil, the cleaning It is assumed that the oil is led out of the device from the extraction pipe 14 as oil.

このような静電脱塩装置により被処理油からエ
マルジヨンやナトリウム、カリウム等不純物を除
去する作用は次のように行なわれる。
The action of removing impurities such as emulsion, sodium, and potassium from the oil to be treated using such an electrostatic desalting device is performed as follows.

被処理油が給油管12から供給されると、予め
被処理油に対し、開口部16の荷電部28により
油中部分放電が施される。この放電により、油中
エマルジヨン及び不純物が帯電することとなる。
荷電部28で電荷を与えられたエマルジヨン及び
不銃物を含む油は、分配層30において整流され
た後、凝集部36に導入される。この凝集部36
の高電圧電極32と接地電極34間には電界が生
じているので、エマルジヨン及び不純物は、前記
(2)式における作用力、即ち、静電場における作用
力とクーロン力による作用力の相乗された作用力
により速やかに接地電極34の電極表面近傍に捕
集される。接地電極34の近傍に集められた不純
物は電極表面で薄い平板状の塊となり、処理油の
流れとともに下降し、接地電極34の下部に設け
られた不純物抜出部40に集められ、不純物の塊
として取出口42から外部に排出される。一方、
エマルジヨンや不純物を除去された清浄油は高電
圧電極32の近傍に集められ、導出口38から脱
塩槽10下部に流下し、電荷捕集部44にて清浄
油の流動帯電を除去した後、装置外に出される。
When the oil to be treated is supplied from the oil supply pipe 12, a partial discharge in the oil is applied to the oil to be treated by the charging section 28 of the opening 16 in advance. This discharge causes the emulsion-in-oil and impurities to become electrically charged.
The oil containing the emulsion and non-gun materials charged in the charging section 28 is rectified in the distribution layer 30 and then introduced into the aggregation section 36 . This aggregation part 36
Since an electric field is generated between the high voltage electrode 32 and the ground electrode 34, the emulsion and impurities are
It is quickly collected in the vicinity of the electrode surface of the ground electrode 34 by the acting force in equation (2), that is, the acting force that is the sum of the acting force in the electrostatic field and the acting force due to the Coulomb force. The impurities collected near the ground electrode 34 form a thin plate-shaped lump on the electrode surface, descend with the flow of the treated oil, and are collected in the impurity extractor 40 provided at the bottom of the ground electrode 34, forming a lump of impurities. It is discharged to the outside from the outlet 42 as a liquid. on the other hand,
The clean oil from which emulsion and impurities have been removed is collected near the high-voltage electrode 32, flows down from the outlet 38 to the lower part of the demineralization tank 10, and after the flowing charge of the clean oil is removed by the charge collection section 44, taken out of the device.

このように、本実施例によれば、水を混入する
ことなく直接的に油を脱塩処理することができ、
油水混合器等を設置する必要がなく、また、処理
後に除去された不純物、エマルジヨンから水を分
離するための高価な排水処理装置も設ける必要が
ない。したがつて、脱塩装置の小型化を図ること
ができる。また、荷電部28の設置もきわめて容
易にでき、単に、凝集部36の前段に設けて、予
め油中放電させるようにすることによつて非常に
効果的に不純物除去を行なうことが可能である。
しかも、除去処理過程が油の流れ方向と一致して
いるので油の流れにより作用力が抵抗を受けな
い。
In this way, according to this example, oil can be directly desalted without mixing water,
There is no need to install an oil-water mixer or the like, and there is no need to install an expensive wastewater treatment device to separate water from the impurities and emulsion removed after treatment. Therefore, it is possible to downsize the desalination apparatus. Further, the charging section 28 can be installed very easily, and impurities can be removed very effectively by simply installing it before the aggregating section 36 and discharging it into the oil in advance. .
Furthermore, since the removal process coincides with the oil flow direction, the acting force is not resisted by the oil flow.

第3図には、静電脱塩装置の他の実施例を示
す。この実施例では、荷電部28を分配層30の
下流側であつて、凝集部36の直前に設置し、放
電々極20と対設すべき接地電極26を凝集部3
6の接地電極34に兼用させているものである。
他の構成は前実施例と同様であるため同番号を付
して説明を省略する。
FIG. 3 shows another embodiment of the electrostatic desalination apparatus. In this embodiment, the charging section 28 is installed on the downstream side of the distribution layer 30 and immediately before the condensing section 36, and the ground electrode 26, which is to be disposed opposite to the discharge electrode 20, is placed in the condensing section 36.
This is also used as the ground electrode 34 of No. 6.
The other configurations are the same as those in the previous embodiment, so the same numbers are given and explanations are omitted.

この実施例によれば、油中のエマルジヨンや不
純物が帯電した直後に凝集部36に導入されるの
で、電荷の漏洩がなく、荷電が更に有効に利用さ
れる効果がある。
According to this embodiment, since the emulsion and impurities in the oil are introduced into the aggregation section 36 immediately after being charged, there is no charge leakage and the charge is effectively utilized.

以上の如く、本発明に係る静電脱塩装置によれ
ば、油中のエマルジヨンやナトリウム、カリウム
等の不純物が予め帯電させられるため、凝集部に
おいて油から分離する作用力が増大し、極めて効
率的かつ有効的に除去できる効果がある。
As described above, according to the electrostatic desalination apparatus of the present invention, since the emulsion and impurities such as sodium and potassium in the oil are charged in advance, the action force for separating them from the oil in the agglomeration section increases, making it extremely efficient. It has the effect of being able to remove it in a targeted and effective manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の静電脱塩装置の構成図、第2図
は本発明の実施例に係る静電脱塩装置の構成図、
第3図は同他の実施例の構成図を示す。 10……静電脱塩槽、12……給油管、14…
…抜出管、20……放電々極、26,34……接
地電極、28……荷電部、32……高電圧電極、
36……凝集部。
FIG. 1 is a block diagram of a conventional electrostatic desalination apparatus, FIG. 2 is a block diagram of an electrostatic desalination apparatus according to an embodiment of the present invention,
FIG. 3 shows a configuration diagram of another embodiment. 10... Electrostatic demineralization tank, 12... Oil supply pipe, 14...
... extraction tube, 20 ... discharge electrode, 26, 34 ... ground electrode, 28 ... charging section, 32 ... high voltage electrode,
36...Agglutination part.

Claims (1)

【特許請求の範囲】[Claims] 1 流路に高電圧電極及び接地電極を備え、当該
電極により形成される電界中に油を通過させて油
中不純物を除去する静電脱塩装置において、前記
電界を形成する高電圧電極及び接地電極の上流位
置に放電々極及び該放電々極に対設した接地電極
からなる荷電部を備えたことを特徴とする静電脱
塩装置。
1. In an electrostatic desalination device that is equipped with a high voltage electrode and a ground electrode in a flow path and removes impurities in the oil by passing oil through an electric field formed by the electrode, the high voltage electrode that forms the electric field and the ground electrode An electrostatic desalination device comprising a charging section comprising a discharge electrode and a ground electrode provided opposite to the discharge electrode at a position upstream of the electrode.
JP2668880A 1980-03-05 1980-03-05 Method and apparatus for electrostatic demineralization Granted JPS56122889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2668880A JPS56122889A (en) 1980-03-05 1980-03-05 Method and apparatus for electrostatic demineralization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2668880A JPS56122889A (en) 1980-03-05 1980-03-05 Method and apparatus for electrostatic demineralization

Publications (2)

Publication Number Publication Date
JPS56122889A JPS56122889A (en) 1981-09-26
JPS621639B2 true JPS621639B2 (en) 1987-01-14

Family

ID=12200328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2668880A Granted JPS56122889A (en) 1980-03-05 1980-03-05 Method and apparatus for electrostatic demineralization

Country Status (1)

Country Link
JP (1) JPS56122889A (en)

Also Published As

Publication number Publication date
JPS56122889A (en) 1981-09-26

Similar Documents

Publication Publication Date Title
US6228148B1 (en) Method for separating particles from an air flow
KR101423016B1 (en) Exhaust gas treatment equipment for diesel engine
JPH0712447B2 (en) Method and device for dedusting a gas stream containing solid or liquid particles in suspension by means of an electric field
US9751092B2 (en) Electrostatic coalescer and method for electrostatic coalescence
KR102050262B1 (en) Apparatus for High-efficiency Valuable Particle Recovery
US4579637A (en) Method and apparatus for separating impurities from low conductivity liquids
US1766422A (en) Method and apparatus for electrical precipitation
US4661226A (en) Separation of dispersed phase from phase mixture
CA1100096A (en) Methods and apparatus for separation of fluids with an electric field
EP0159909B1 (en) Charging a dispersed phase-laden fluid
JPH0468002B2 (en)
JPS621639B2 (en)
US4224124A (en) Electrostatic coalescing system
US3314872A (en) Electric treating process and apparatus
JP2952664B1 (en) Method and apparatus for removing water from oil phase
EP0159910B1 (en) Method and apparatus for centrifugal separation of dispersed phase from continuous liquid phase
JP2766720B2 (en) Electric desalination equipment
SU559726A1 (en) Inertia-electrostatic dust concentrator
SU1269804A1 (en) Apparatus for purifying dielectric liquids
US1667954A (en) Fluid purifier
CN118725897A (en) Electric rotational flow oil dehydration device and method with enhanced charging
US4629546A (en) Method and apparatus for centrifugal separation of dispersed phase from a continuous liquid phase
SU1263285A1 (en) Apparatus for separating water/oil emulsions
SU1194444A1 (en) Apparatus for degassing liquid
JPS60150855A (en) Electrostatic desalting apparatus