JPS62163947A - State monitor for optical fiber - Google Patents

State monitor for optical fiber

Info

Publication number
JPS62163947A
JPS62163947A JP61005419A JP541986A JPS62163947A JP S62163947 A JPS62163947 A JP S62163947A JP 61005419 A JP61005419 A JP 61005419A JP 541986 A JP541986 A JP 541986A JP S62163947 A JPS62163947 A JP S62163947A
Authority
JP
Japan
Prior art keywords
optical fiber
light
reflected light
reflection angle
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61005419A
Other languages
Japanese (ja)
Other versions
JPH0551093B2 (en
Inventor
Kazuhiro Kayashima
萓嶋 一弘
Tadahiro Fukui
福井 忠弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61005419A priority Critical patent/JPS62163947A/en
Publication of JPS62163947A publication Critical patent/JPS62163947A/en
Publication of JPH0551093B2 publication Critical patent/JPH0551093B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To simplify the emission construction while assuring the monitoring of the state of an optical fiber, by providing a reflection angle distribution detecting element of a reflected light from the optical fiber at the position where a laser light is focused to be made incident into the optical fiber. CONSTITUTION:As a laser light is reflected at an emission end 9b of an infrared rays fiber 9 and emitted at an incident end 9a again at a slightly greater angle than an incident angle, a reflected light 11 from an infrared ray fiber 9 is made to irradiate a reflection angle distribution detection element 12 arranged outside the incident angle. When the infrared ray fiber 9 is normal, a reflected light distribution parameter shows a fixed value (area I). When the infrared ray fiber is deteriorated, the reflected light distribution parameter decreases significantly (area III) owing to a scattered light at this deteriorated part. Thus, the damaged condition of the infrared ray fiber can be recognized by always comparing the value of the reflected light distribution parameter and a value set as threshold.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光線を光ファイバにて加工部あるいは
、患部に導き、溶接・切断あるいは、患部の切開・蒸散
等を行うレーザ加工装置に用いられる光ファイバの状態
監視装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is used in a laser processing device that guides a laser beam through an optical fiber to a processed part or a diseased part, and performs welding, cutting, incision, evaporation, etc. of the diseased part. This invention relates to an optical fiber condition monitoring device.

従来の技術 YAGレーザ光、あるいはC○2レーザ光を用いるレー
ザ加工装置またはレーザメスには導光路としてミラー関
節方式と現在実用化されつつある光フアイバ方式とがあ
る。ミラー関節方式は、加工または手術に対する操作性
の問題や、内視鏡への展開が不可能である事から、導光
路として光ファイバの実用化が望やれている。C○2レ
ーザ光に対しては沃化タリウムと臭化タリウムとの混晶
物KR3−5等に挙げられている。
BACKGROUND OF THE INVENTION Laser processing apparatuses or laser scalpels using YAG laser light or C*2 laser light include a mirror joint type and an optical fiber type, which are currently being put into practical use, as light guide paths. The mirror joint method has problems with operability in processing or surgery, and cannot be applied to endoscopes, so it is desired to put optical fiber into practical use as a light guide path. For C*2 laser light, a mixed crystal of thallium iodide and thallium bromide, KR3-5, is listed.

KH2−5は、ある曲率以上に曲げると折れるという欠
点をもつため、曲率制限をして慎重に使わなければなら
ない。
KH2-5 has the disadvantage that it will break if bent beyond a certain curvature, so it must be used carefully with curvature limits.

曲率制限にもかかわらずファイバが折損したり部分的に
熱集中により溶融したような場合には、高出力のレーザ
光線が外被を貫通し、患者あるいは術者に、照射される
という危険がおこる可能性がある。
If the fiber breaks or partially melts due to heat concentration despite the curvature limit, there is a risk that the high-power laser beam will penetrate the jacket and irradiate the patient or operator. there is a possibility.

また、KH2−5が溶融する時に生じる蒸気は人体にと
って何らかの影響を与える可能性がある為、先に述べた
ファイバ破損を防ぐとともに、光ファイバの劣化状態を
、常時監視する事は、ファイバを使用する上で絶対必要
であった。
In addition, the vapor generated when KH2-5 melts may have some effect on the human body, so it is important to prevent the fiber damage mentioned above and constantly monitor the deterioration state of the optical fiber. It was absolutely necessary to do so.

ところが、監視の手段として従来から種々のものが試み
られてきたが、いろいろな欠点を持ち、完全であるもの
はなかった。
However, although various monitoring methods have been tried in the past, they have various drawbacks and none are perfect.

例えば第4図(特開昭58−103623号公報参照)
に示されているように、光ファイバ1の出射側2に、光
ファイバ1から出射される光エネルギー3の数条4を、
光検出器5で受光検出する事によって光ファイバの状態
を監視する手段があった。
For example, Fig. 4 (see Japanese Patent Application Laid-open No. 58-103623)
As shown in FIG.
There is a means for monitoring the state of the optical fiber by detecting the light received by the photodetector 5.

発明が解決しようとする問題点 ところが、出射側に、光検出器を設ける為に出射側の構
成が複雑になり、近年の小型化して?テくハンドピース
に対応できなかった。
Problems to be Solved by the Invention However, since a photodetector is provided on the output side, the configuration on the output side becomes complicated, and with recent miniaturization. It was not possible to use a high-tech handpiece.

また、出射側に電気回路の一部分となる光検出器がある
ので、人体表面に、リーク電流を流す事がない様に、ハ
ンドピースの設計上、絶縁またはアースに対して充分に
注意を払わなければいけなかった。
Additionally, since there is a photodetector on the output side that becomes part of the electrical circuit, careful attention must be paid to insulation and grounding when designing the handpiece to prevent leakage current from flowing to the surface of the human body. I shouldn't have.

問題点を解決するだめの手段 本発明はレーザ光発生手段と、このレーザ光発生手段よ
り発生するレーザ光を伝送する光ファイバと、前記レー
ザ光を集光して前記光ファイバに入射させる集光レンズ
とこの集光レンズにより集光される円錐状光束を取り巻
く位置に配置されて前記光ファイバからの反射光の反射
角度分布を受光検出する反射角度分布検出素子と、この
反射角度分布検出素子の出力から、前記光ファイバの劣
化状態を監視する制御部とを備えた光ファイバの状態監
視装置である。
Means for Solving the Problems The present invention provides a laser beam generating means, an optical fiber for transmitting the laser beam generated by the laser beam generating means, and a condenser for condensing the laser beam and making it enter the optical fiber. a lens; a reflection angle distribution detection element disposed at a position surrounding the conical light beam condensed by the condensing lens to receive and detect the reflection angle distribution of the reflected light from the optical fiber; The present invention is an optical fiber condition monitoring device including a control unit that monitors the deterioration condition of the optical fiber from the output.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、光ファイバから反射してくる反射光の反射角
度分布を入射側に設けた反射角度分布検出素子により検
出し、光ファイバの状態を認識することにより出射側の
構成は簡単になり、また、光ファイバの状態の監視は確
実なものとなる。
That is, by detecting the reflection angle distribution of the reflected light reflected from the optical fiber by a reflection angle distribution detection element provided on the input side and recognizing the state of the optical fiber, the configuration on the output side can be simplified. Monitoring of the condition of the optical fiber becomes reliable.

実施例 以下、本発明の一実施例について、図面に基づいて説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings.

第1図は、本発明による光ファイバの状態監視装置の一
実施例の構成図である。
FIG. 1 is a block diagram of an embodiment of an optical fiber condition monitoring device according to the present invention.

C○2レーザ発振管6より出射されたCo2レーザ光線
7ば、赤外透過材料であるジンクセレンからなる集光レ
ンズ8により集光される。集光されだレーザ光線アば、
赤外透過材料であるKH2−5を熱間押出成型した赤外
光ファイバ9を導波し、赤外光ファイバの出射側にある
出射側集光レンズ10により集光されて、患部の切開及
び蒸散等を行う。一般に、KH2−5等の多結晶赤外光
ファイバを通過した光は、結晶境界面での散乱や、赤外
光ファイバ表面状態等の影響で、光ファイバに入射する
時の角度よりも広がって出射される。
The Co2 laser beam 7 emitted from the C2 laser oscillation tube 6 is condensed by a condenser lens 8 made of zinc selenium, which is an infrared transparent material. If the laser beam is focused,
The light is guided through an infrared optical fiber 9 made of hot extrusion molded KH2-5, which is an infrared transmitting material, and is condensed by an output condenser lens 10 on the output side of the infrared optical fiber to incise and incise the affected area. Perform transpiration etc. In general, light that passes through a polycrystalline infrared optical fiber such as KH2-5 is spread out at a greater angle than the angle at which it enters the optical fiber due to scattering at crystal boundaries and the surface condition of the infrared optical fiber. It is emitted.

一方、赤外光ファイバ9の入射端9aで反射するレーザ
光線は、フレネル反射により、入射端9aに入射される
入射角θ1とほぼ同じ角度で反射する。
On the other hand, the laser beam reflected at the input end 9a of the infrared optical fiber 9 is reflected at substantially the same angle as the incident angle θ1 at the input end 9a due to Fresnel reflection.

ところが赤外光ファイバ9の出射端9bで反射し再び入
射端9aより出射してくるレーザ光線は入射角より若干
拡がって出射される。赤外光ファイバ9からの反射光1
1は、入射角の外側に配置された反射角度分布検出素子
12に照射される。この出力は演算回路13により演算
され反射角度分布が求められる。
However, the laser beam reflected at the output end 9b of the infrared optical fiber 9 and emitted again from the input end 9a is emitted with a slightly wider angle than the incident angle. Reflected light 1 from infrared optical fiber 9
1 is irradiated onto a reflection angle distribution detection element 12 arranged outside the incident angle. This output is calculated by the calculation circuit 13 to determine the reflection angle distribution.

第2図は本発明による反射角度分布検出素子の構成図で
ある。
FIG. 2 is a configuration diagram of a reflection angle distribution detection element according to the present invention.

アルミナセラミックからなる熱伝導性の高いドーナツ形
基板14の表側には、赤外光ファイバ9からの反射光1
1を光吸収する受光面16があり、裏側には、SiCか
らなるサーミスタ材料をスパッタリング後焼成したリン
グ型の3個の熱感温素子16が形成されている。エネル
ギ分布P(r)をもっ反射光11が受光面に照射される
と、エネルギ分布P(r)に対応する径方向の温度分布
T (r)を生じる。
Reflected light 1 from the infrared optical fiber 9 is placed on the front side of the donut-shaped substrate 14 made of alumina ceramic and having high thermal conductivity.
There is a light-receiving surface 16 that absorbs light from the sensor 1, and on the back side, three ring-shaped thermosensitive elements 16 are formed by sputtering and firing a thermistor material made of SiC. When the reflected light 11 having an energy distribution P(r) is irradiated onto the light receiving surface, a radial temperature distribution T(r) corresponding to the energy distribution P(r) is generated.

一般に、空気への熱伝達を無視すると、エネルギ分布P
 (r)は温度分布T(r)と以下の関係がある。
In general, if heat transfer to the air is ignored, the energy distribution P
(r) has the following relationship with temperature distribution T(r).

ここで、dは基板の厚さ、には熱伝導率である。Here, d is the thickness of the substrate, and d is the thermal conductivity.

すなわち、温度差(Ti+1”−Ti)をサーミスタ熱
感温素子を用いて検出する事によって、半径(r、+T
i+1)/2内に照射されるレーザ光線のエネルギが求
められ、このエネルギから受光面15に照射される反射
光の角度分布P(のを導くことが出来る。
In other words, the radius (r, +T
The energy of the laser beam irradiated within i+1)/2 is determined, and the angular distribution P(of the reflected light irradiated onto the light-receiving surface 15) can be derived from this energy.

次に動作と原理を第3図を用いて説明する。Next, the operation and principle will be explained using FIG.

横軸は経過時間、縦軸には赤外光ファイバからの出射エ
ネルギと、光ファイバからの反射光の分布をパラメータ
化した値P(300Σ−P(40’)−を示しP(30
°) である。
The horizontal axis shows the elapsed time, and the vertical axis shows the output energy from the infrared optical fiber and the value P(300Σ-P(40')-) which parameterizes the distribution of the reflected light from the optical fiber.P(30
°).

赤外光ファイバが正常な場合には、反射光分布パラメー
タは、0.35の一定の値を示す(領域■)。
When the infrared optical fiber is normal, the reflected light distribution parameter shows a constant value of 0.35 (region ■).

また赤外光7アイパへの入射エネルギを増加しても反射
光分布パラメータは変化がない(領域■)。
Furthermore, even if the incident energy to the infrared light 7-eyeper is increased, the reflected light distribution parameter does not change (region ■).

ところが、赤外光ファイバに劣化が生じ徐々に赤外光フ
ァイバの出射エネルギが減少していった場合には、劣化
箇所からの散乱光により反射光分布パラメータは、大き
な減少を生じる(領域■)。
However, if the infrared optical fiber deteriorates and the output energy of the infrared optical fiber gradually decreases, the reflected light distribution parameter will greatly decrease due to scattered light from the deteriorated part (area ■). .

また、赤外光ファイバが焼損した場合には、焼損箇所か
らの乱反射光により、反射光分布パラメータは、約0.
06の値に減少する(領域■)。
Furthermore, when the infrared optical fiber is burnt out, the reflected light distribution parameter will be approximately 0.
It decreases to a value of 06 (area ■).

以上の結果から、反射光分布パラメータの値と、例えば
0.36の約半分の0.12を閾値として設定した値と
を常時比較する事によって赤外光ファイバの損傷状態が
認識出来、これによって損傷と認識されれば、レーザ発
振出力を停止などの処理がされ赤外光ファイバを用いた
装置の安全を確保する事が出来る。
From the above results, the damaged state of the infrared optical fiber can be recognized by constantly comparing the value of the reflected light distribution parameter with the value set as the threshold value, for example, 0.12, which is about half of 0.36. If damage is recognized, processing such as stopping the laser oscillation output can be carried out to ensure the safety of equipment using infrared optical fibers.

尚、反射角度分布検出素子の熱感温素子としてサーミス
タを用いたが、熱電対を使用しても同等の検出が可能で
ある。
Note that although a thermistor was used as the thermal temperature sensing element of the reflection angle distribution detection element, equivalent detection is possible by using a thermocouple.

また、基板材料としてボロンナイトライドセラミックを
用いて説明したが、アルミ基板にアルマイトの表面絶縁
膜処理した基板材料を使用しても良い。
Furthermore, although boron nitride ceramic is used as the substrate material in the description, a substrate material in which an aluminum substrate is treated with an alumite insulating film may also be used.

また、基板材料の形状をドーナツ型を用いたが、Cの字
形でも、同等の検出が可能である。
Further, although a doughnut-shaped substrate material is used, equivalent detection is possible with a C-shaped substrate material.

また、赤外光ファイバに反射防止膜等のコーティングが
ほどこされていても、検出は簡単である。
Furthermore, even if the infrared optical fiber is coated with an antireflection film or the like, detection is easy.

発明の詳細 な説明したように本発明によれば、光ファイバからの反
射光を常時反射光分布検出素子で受け、検出された反射
分布により光ファイバの損傷状態を認識する事が可能で
ある。また、ハンドピース部には、何も置かないのでア
ース、絶縁に対して考慮する必要がなくいろいろなタイ
プのハンドピースに対応する事が出来る。
As described in detail, according to the present invention, reflected light from an optical fiber is constantly received by a reflected light distribution detection element, and the damaged state of the optical fiber can be recognized from the detected reflection distribution. Furthermore, since nothing is placed on the handpiece section, there is no need to consider earthing and insulation, and it is possible to accommodate various types of handpieces.

更に、この検出方法は、損傷検出感度が高く、また、損
傷の初期段階で検出出来るので、赤外光ファイバを焼損
する前に、レーザ光線の入射を停止する事が出来、安全
且つ確実な光ファイバの状態監視方法である。
Furthermore, this detection method has high damage detection sensitivity and can detect damage at an early stage, so it is possible to stop the laser beam incidence before the infrared optical fiber is burned out, allowing safe and reliable light transmission. This is a fiber condition monitoring method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における光ファイバの状態監
視装置の構成図、第2図は同装置の反射角度分布検出素
子の構成図、第3図は本発明の光ファイバの状態監視装
置の動作原理を説明する動作図、第4図は従来の光ファ
イバの状態監視装置の断側面図である。 6・・・・・・CO2レーザ発振管、7・・・・・・C
○2レーザ光線、8・・・・・・集光レンズ、9・・・
・・・赤外光ファイバ、11・・・・・・反射光、12
・・・・・・反射角度分布検出素子、14・・・・・・
ドーナツ型基板、15・・川・受光面、16・・・・・
・熱感温素子群。
FIG. 1 is a block diagram of an optical fiber condition monitoring device according to an embodiment of the present invention, FIG. 2 is a block diagram of a reflection angle distribution detection element of the same device, and FIG. 3 is a block diagram of an optical fiber condition monitoring device of the present invention. FIG. 4 is a cross-sectional side view of a conventional optical fiber condition monitoring device. 6...CO2 laser oscillation tube, 7...C
○2 Laser beam, 8... Condensing lens, 9...
...Infrared optical fiber, 11...Reflected light, 12
...Reflection angle distribution detection element, 14...
Donut-shaped substrate, 15... River/light receiving surface, 16...
・Heat temperature sensing element group.

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ光発生手段と、このレーザ光発生手段によ
り発生するレーザ光を伝送する光ファイバと、前記レー
ザ光を集光して前記光ファイバに入射させる集光レンズ
と、この集光レンズにより集光される円錐状光束を取り
巻く位置に配置されて前記光ファイバからの反射光の反
射角度分布を受光検出する反射角度分布検出素子と、こ
の反射角度分布検出素子の出力から前記光ファイバの劣
化状態を監視する制御部とを備えた光ファイバの状態監
視装置。
(1) A laser beam generating means, an optical fiber that transmits the laser beam generated by the laser beam generating means, a condensing lens that condenses the laser beam and makes it enter the optical fiber, and this condensing lens. A reflection angle distribution detection element is arranged at a position surrounding the condensed conical light beam and receives and detects the reflection angle distribution of the reflected light from the optical fiber, and the deterioration of the optical fiber is detected from the output of this reflection angle distribution detection element. An optical fiber condition monitoring device comprising a control unit that monitors the condition.
(2)反射角度分布検出素子は熱伝導性のドーナツ型基
板と、この基板の表面に設けられた光吸収面である受光
面と前記基板の表面または裏面にあり前記受光面の内側
に同心円状に2個以上N個配置されたリング状の熱感温
素子とを有する特許請求の範囲第1項記載の光ファイバ
の状態監視装置。
(2) The reflection angle distribution detection element consists of a thermally conductive donut-shaped substrate, a light-receiving surface that is a light-absorbing surface provided on the surface of this substrate, and a concentric circle located inside the light-receiving surface on the front or back surface of the substrate. 2. The optical fiber condition monitoring device according to claim 1, further comprising a ring-shaped thermal sensing element having two or more N ring-shaped thermal sensing elements arranged in the optical fiber.
JP61005419A 1986-01-14 1986-01-14 State monitor for optical fiber Granted JPS62163947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61005419A JPS62163947A (en) 1986-01-14 1986-01-14 State monitor for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61005419A JPS62163947A (en) 1986-01-14 1986-01-14 State monitor for optical fiber

Publications (2)

Publication Number Publication Date
JPS62163947A true JPS62163947A (en) 1987-07-20
JPH0551093B2 JPH0551093B2 (en) 1993-07-30

Family

ID=11610634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61005419A Granted JPS62163947A (en) 1986-01-14 1986-01-14 State monitor for optical fiber

Country Status (1)

Country Link
JP (1) JPS62163947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756053A1 (en) * 1996-11-21 1998-05-22 Quantel DEVICE FOR DETECTING DAMAGE IN AN OPTICAL FIBER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997785A (en) * 1982-11-24 1984-06-05 Matsushita Electric Ind Co Ltd Laser working device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997785A (en) * 1982-11-24 1984-06-05 Matsushita Electric Ind Co Ltd Laser working device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2756053A1 (en) * 1996-11-21 1998-05-22 Quantel DEVICE FOR DETECTING DAMAGE IN AN OPTICAL FIBER

Also Published As

Publication number Publication date
JPH0551093B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US4556875A (en) Irradiated power monitoring system for optical fiber
US5154707A (en) Method and apparatus for external control of surgical lasers
US6932809B2 (en) Safety shut-off device for laser surgical instruments employing blackbody emitters
US4423726A (en) Safety device for laser ray guide
US5354323A (en) Optical heating system
US4695697A (en) Fiber tip monitoring and protection assembly
US5098427A (en) Surgical laser instrument
EP1772096B1 (en) Endoscopic light source safety and control system with optical sensor
JP2005500528A (en) Fiber optic equipment
JPS6233486A (en) Apparatus and method for preventing heat damage to laser system
JPS6351698B2 (en)
JP2000221108A (en) Soundness inspection instrument for optical fibers
JPS62163947A (en) State monitor for optical fiber
KR20230107383A (en) Systems and methods for alignment of a laser beam
US5004338A (en) Method and apparatus for attenuation and measurement of laser power at the end of a laser guide
Ishiwatari et al. An optical cable for a CO 2 laser scalpel
JP2003245789A (en) Laser machining head
JPH02107939A (en) State monitor for optical fiber
JPS62183980A (en) Laser machining device
JPS6141676B2 (en)
JPH0442025A (en) Method and apparatus for measuring temperature of wafer
JPS63248586A (en) Laser beam machine
WO2020175622A1 (en) Laser device
JP2001149380A (en) Laser therapeutic device
JPH0579934B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees