JPS62163933A - Intensity distribution measuring apparatus of laser beam flux - Google Patents

Intensity distribution measuring apparatus of laser beam flux

Info

Publication number
JPS62163933A
JPS62163933A JP609386A JP609386A JPS62163933A JP S62163933 A JPS62163933 A JP S62163933A JP 609386 A JP609386 A JP 609386A JP 609386 A JP609386 A JP 609386A JP S62163933 A JPS62163933 A JP S62163933A
Authority
JP
Japan
Prior art keywords
light
laser beam
pinhole
light shielding
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP609386A
Other languages
Japanese (ja)
Inventor
Kensho Tokuda
憲昭 徳田
Hideo Hara
秀雄 原
Shinichiro Kawamura
信一郎 河村
Hitoshi Takeuchi
仁 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP609386A priority Critical patent/JPS62163933A/en
Publication of JPS62163933A publication Critical patent/JPS62163933A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To enable the measurement of flux intensity distribution very easily regardless of laser beam of any light intensity, by moving a light shielding means having a pinhole, a light attenuating means and photoelectric conversion means within a vertical plane with respect to the optical axis of the laser beam. CONSTITUTION:This apparatus is made up of a first light shielding means 1 having a pinhole set vertical to the optical axis of a laser beam, a light attenu ating means 2 placed therebehind, for example, a diffusion plate comprising a high purity quartz plate with a roughed surface, further, a second light shielding means 1 placed therebehind, a photoelectric conversion means 3 for receiving light passing through the pinhole of the second light shielding means 1 and a moving means 4 for moving the said means 1-3 vertical to the optical axis. With such an arrangement, a desired dimmer rate can be obtained by varying the combination of the bore diameters of the pinholes or adjusting the distance between the light shielding means 1 and the light attenuating means 2. Thus, this invention can apply to laser lights over a wide energy range and various photoelectric conversion means 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザビームの断面元強度分布を測定する技
術分野に関するものである、 〔従来の技術〕 レーザビームを露元々源、元CVD法の光源等に使用す
る試みが提案されており、この場合には元来断面が大き
く、かつ断面の光強度分布の均一なレーザビームが求め
られる。特に紫外領域のレーザビームを出力するエキシ
マレーザにおいて、そうである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the technical field of measuring the cross-sectional original intensity distribution of a laser beam. [Prior Art] A laser beam is used as an exposure source, and the original CVD method is used. Attempts have been made to use the laser beam as a light source, etc., and in this case, a laser beam that originally has a large cross section and a uniform light intensity distribution in the cross section is required. This is especially true for excimer lasers that output laser beams in the ultraviolet region.

従来、断面元強度分布を測定てる場合、レーザビームを
感元紙又は印画紙に照射し、得られた写真の#iを各位
置について測定する方法が採られていた@ しかし、写真は濃度が光強度に比例するのは、極(限ら
れ九九強度範囲であるし、また現像及び濃i測定という
工程があるので、断面大強度分布の測定は極めて繁雑で
あった。
Conventionally, when measuring the cross-sectional original intensity distribution, a method was adopted in which a laser beam was irradiated onto photosensitive paper or photographic paper, and #i of the obtained photograph was measured at each position. Since the intensity range is limited to a very limited range and is proportional to the light intensity, and there are steps such as development and density measurement, measurement of the cross-sectional large intensity distribution is extremely complicated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記の如き繁雑な夕1」定方性を解決するこ
とにある。
The object of the present invention is to solve the above-mentioned complicated problems.

〔問題点を解決するための手段〕[Means for solving problems]

そのため、本発明は、ピンホールを有する遮光手段、該
ピンホールの前又は後に配置された光減衰手段、前記ピ
ンホールを透過し前記光減衰手段で減光されたレーザビ
ームを受光する光電変換手段、並びに前記遮光手段、光
減衰手段及び九1!変換手段をレーザビーム光軸に対し
て垂直平面内で移動させる移動手段からなることを特徴
とするレーザビーム断面元強度分布測定装置を提供する
Therefore, the present invention provides a light shielding means having a pinhole, a light attenuation means disposed before or after the pinhole, and a photoelectric conversion means for receiving a laser beam transmitted through the pinhole and attenuated by the light attenuation means. , and the light blocking means, the light attenuating means, and 91! Provided is a laser beam cross-sectional original intensity distribution measuring device characterized by comprising a moving means for moving the converting means in a plane perpendicular to the laser beam optical axis.

〔作用〕[Effect]

本発明では、ピンホールな有する逍元手段で、レーザビ
ームの垂直断面方向の任意の点に於ける元のみを選別し
、それだけではまだ元強度が強すぎて正確に測定し難い
ので、前記遮光手段の前又は後に光減衰手段を配置して
波長特性を変えることなく元強度を減衰させ、次いで減
衰したレーザビームを光電変換手段で受光させて電気信
号に変換し、他方、これらの王者の手段をレーザビーム
光軸に対して垂直方向に移動させる移動手段で移動させ
る。
In the present invention, the source means having a pinhole is used to select only the source at an arbitrary point in the vertical cross-sectional direction of the laser beam, and since the source intensity is still too strong and difficult to accurately measure, the source means is a pinhole. A light attenuation means is placed before or after the means to attenuate the original intensity without changing the wavelength characteristics, and then the attenuated laser beam is received by a photoelectric conversion means and converted into an electrical signal. is moved by a moving means that moves in a direction perpendicular to the laser beam optical axis.

従って、移動手段の位置と電気信号を操作者が記録する
か、又は表示手段で表示させるか、又は記録手段で記録
することにより、レーザビームの断面元強度分布が簡便
に測定される。
Therefore, the cross-sectional intensity distribution of the laser beam can be easily measured by recording the position of the moving means and the electric signal by the operator, displaying it on the display means, or recording it with the recording means.

なお、光減衰手段としては、散乱板又は拡散板が好まし
い。これらの散乱板又は拡散板はレーザビームが強くて
も飽和したり、波長特性(スペクトル)を変えたりする
ことがないので好ましい−散乱板又は拡散板に入射した
レーザビームは、散乱又は拡散にエリ減元されるが、九
に変換手段に受元させる元は、散乱板又は拡散板の反射
元でも透過九でもどちらでもよいつ 〔実施例〕 第1図は、本実施例の測定装置の全体構成を示す概念図
である。
Note that as the light attenuation means, a scattering plate or a diffusion plate is preferable. These scattering plates or diffusers are preferable because they do not saturate or change the wavelength characteristics (spectrum) even when the laser beam is strong - the laser beam incident on the scattering plate or diffuser plate has no effect on scattering or diffusion. However, the source to be received by the conversion means may be either the reflection source of the scattering plate or the diffuser plate or the transmission source. [Example] Figure 1 shows the entire measuring device of this example. FIG. 2 is a conceptual diagram showing the configuration.

この装置は、レーザビームのIt軸に垂直に置かれたピ
ンホールを有する第1の蓮元手段(1・と、その後に置
かれ7を光減衰手段(2)例えば表面を粗面化し比高純
度石英板からなる拡散板、更にその後に置かれ7を第2
の遮光手段(1)、第2の遮光手段(1)のピンホール
を透過した元を受光する光電変換手段(3)例えばPI
Nフォトダイオード並びに前記手段(1)〜(3)を光
軸に対し垂直方向に移動させる移動手段(4)からなる
This device includes a first light source means (1) having a pinhole placed perpendicularly to the It axis of the laser beam, and a light attenuation means (2) placed after it, for example, by roughening the surface and increasing the specific height. A diffusion plate made of a pure quartz plate, and a second diffuser plate 7 placed after it.
a light shielding means (1), a photoelectric conversion means (3) for receiving the light transmitted through the pinhole of the second light shielding means (1), for example, a PI
It consists of a moving means (4) for moving N photodiodes and the means (1) to (3) in a direction perpendicular to the optical axis.

図の上刃から入射し定レーザビームは、第1の遮光手段
(1)で絞りこまれ、光減衰手段(2)で拡散に1つ拡
げられ、i2の!!元手段(1)で絞られ、そして光電
変換手段(3)に導かれる。
A constant laser beam incident from the upper blade in the figure is narrowed down by the first light shielding means (1), diffused by one light attenuating means (2), and then i2! ! The light is narrowed down by the source means (1) and guided to the photoelectric conversion means (3).

この第1及び第2の趣元手段(1)と拡散板(2)によ
る減光率は次のように耐昇できる。第1.第2の逅元手
段(1)のピンホールの開口径をそれぞれ為。
The light attenuation rate by the first and second source means (1) and the diffuser plate (2) can be increased as follows. 1st. Determine the opening diameter of the pinhole of the second source means (1).

φ家とし・拡散板(2)と第2の遮光手段(1)との距
離をd%また簡単のために拡散板(2)は完全拡散板と
仮定すると、ピンホールでの回折は無視できるので欠式
の関係が面立する。
Assuming that the distance between the diffuser plate (2) and the second light shielding means (1) is d%, and for simplicity, assuming that the diffuser plate (2) is a perfect diffuser plate, the diffraction at the pinhole can be ignored. Therefore, the relationship of lack of expression stands out.

ここに於いて、P、(W/i)は入射光の強度で。Here, P and (W/i) are the intensity of the incident light.

Pは光電変換手段(3)に入射てる元強度である。P is the original intensity incident on the photoelectric conversion means (3).

また、上式の左辺はft、′rlL変換手段(3)に入
射するブL量(W)であり、例えばP、=20W/cy
J。
Furthermore, the left side of the above equation is the amount of light (W) incident on the ft,'rlL conversion means (3), for example, P, = 20W/cy
J.

佑=Q、lH1φt= 0.5111 、 d = 2
01mノ(!:き、約2 X 10’Wとなり、十分P
IN7オトダイオード(3)の入力レベルまで減光する
ことが可能である。
Yu = Q, lH1φt = 0.5111, d = 2
01m (!: about 2 x 10'W, enough P
It is possible to dim the light up to the input level of the IN7 otodiode (3).

この工うな構造であるから、この実施例では、ピンホー
ルの人後の組合せを変えることや、遮尤手段(1)と光
減衰手段(2)の距離を調整したりすることにエリ任意
の減光率を得ることができるので、広いエネルギー範囲
のレーザ元と種々の光電変換手段(3) K対して応用
できる。
Because of this simple structure, in this embodiment, it is possible to freely change the combination of pinholes and adjust the distance between the shielding means (1) and the light attenuating means (2). Since it is possible to obtain a light attenuation rate, it can be applied to laser sources with a wide energy range and various photoelectric conversion means (3).

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、どのような元強度のレー
ザビームであっても、極めて簡便に断面九強度分石を測
定することができる。
As described above, according to the present invention, it is possible to extremely easily measure the nine-intensity section of a laser beam of any original intensity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の測定装置の全体構成を説明てる概念図
でろろ。 〔生皮部分の符号の説明〕 1・・ピンホールを育てる遮九手段。 2・・・光減衰手段又はその−例としての拡散板。 3・・・ff:、電変換手段。 4・・・移動手段、
FIG. 1 is a conceptual diagram illustrating the overall configuration of the measuring device of the embodiment. [Explanation of codes for rawhide parts] 1. A shielding means for growing pinholes. 2... Light attenuation means or a diffusion plate as an example thereof. 3...ff: Electrical conversion means. 4... means of transportation,

Claims (1)

【特許請求の範囲】[Claims] ピンホールを有する遮光手段、該ピンホールの前又は後
に配置された光減衰手段、前記ピンホールを透過し前記
光減衰手段で減光されたレーザビームを受光する光電変
換手段、並びに前記遮光手段、光減衰手段及び光電変換
手段をレーザビーム光軸に対して垂直平面内で移動させ
る移動手段からなることを特徴とするレーザビーム断面
光強度分布測定装置。
A light shielding means having a pinhole, a light attenuation means disposed before or after the pinhole, a photoelectric conversion means for receiving a laser beam transmitted through the pinhole and attenuated by the light attenuation means, and the light shielding means, A laser beam cross-sectional light intensity distribution measuring device comprising a moving means for moving an optical attenuation means and a photoelectric conversion means in a plane perpendicular to the laser beam optical axis.
JP609386A 1986-01-14 1986-01-14 Intensity distribution measuring apparatus of laser beam flux Pending JPS62163933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP609386A JPS62163933A (en) 1986-01-14 1986-01-14 Intensity distribution measuring apparatus of laser beam flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP609386A JPS62163933A (en) 1986-01-14 1986-01-14 Intensity distribution measuring apparatus of laser beam flux

Publications (1)

Publication Number Publication Date
JPS62163933A true JPS62163933A (en) 1987-07-20

Family

ID=11628901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP609386A Pending JPS62163933A (en) 1986-01-14 1986-01-14 Intensity distribution measuring apparatus of laser beam flux

Country Status (1)

Country Link
JP (1) JPS62163933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375097A2 (en) 1988-04-18 1990-06-27 3D Systems, Inc. Stereolithographic beam profiling
US5495328A (en) * 1988-04-18 1996-02-27 3D Systems, Inc. Apparatus and method for calibrating and normalizing a stereolithographic apparatus
EP0860267A2 (en) * 1988-04-18 1998-08-26 3D Systems, Inc. Stereolithographic beam profiling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0375097A2 (en) 1988-04-18 1990-06-27 3D Systems, Inc. Stereolithographic beam profiling
US5495328A (en) * 1988-04-18 1996-02-27 3D Systems, Inc. Apparatus and method for calibrating and normalizing a stereolithographic apparatus
EP0860267A2 (en) * 1988-04-18 1998-08-26 3D Systems, Inc. Stereolithographic beam profiling
EP0860267A3 (en) * 1988-04-18 1999-01-20 3D Systems, Inc. Stereolithographic beam profiling

Similar Documents

Publication Publication Date Title
CA1230370A (en) Solar simulator
TW368713B (en) Optical film thickness measurement method, filming method and manufacturing method for semiconductor laser apparatus
JPH0335206A (en) Light beam incident and emitting instrument with integrated optical element
WO2000011509A1 (en) Apparatus for manufacturing long-period fiber gratings and apparatus for manufacturing two-band long-period fiber gratings using the same
US4952226A (en) Lightguide coating control
GB2352576A (en) Arrangement for adjusting the laser power and/or the pulse length of a short-pulse laser in a microscope
JPS62163933A (en) Intensity distribution measuring apparatus of laser beam flux
JPS5660375A (en) Radiation dose measuring device
JPS536059A (en) Measuring method and apparatus for optical fiber transmission characteristics
DE69214340T2 (en) Electro-optical measuring device
JP2002310789A (en) Method and instrument for measuring light intensity and projection aligner
JPS57157130A (en) Measuring method for surface stress of curved surface reinforced glass
JPS5767815A (en) Measuring method for position of reflector using light
JPS59166821A (en) Device for measuring spot-size of beam
JPS57129037A (en) Optical transmission device
JPS59149024A (en) Semiconductor exposing device
JP2744763B2 (en) Optical attenuator
EP0696746A1 (en) Spectral sensitometer for a photosensitive surface
JPS5483872A (en) Laser speed meter
JPS62187815A (en) Light quantity controller
JPH07225151A (en) Laser output measuring instrument
JPS5749804A (en) Method and apparatus for measuring length
RU2077754C1 (en) Method and device for detection of physical characteristics of semiconductor plate
JP3483723B2 (en) Laser processing equipment
JPS5374084A (en) Measuring method for refractive index distribution of optical transmission path