JPS62163702A - Interfacially polymerized reverse osmosis membrane - Google Patents

Interfacially polymerized reverse osmosis membrane

Info

Publication number
JPS62163702A
JPS62163702A JP61004265A JP426586A JPS62163702A JP S62163702 A JPS62163702 A JP S62163702A JP 61004265 A JP61004265 A JP 61004265A JP 426586 A JP426586 A JP 426586A JP S62163702 A JPS62163702 A JP S62163702A
Authority
JP
Japan
Prior art keywords
membrane
epiamine
reverse osmosis
diisocyanate
interfacially polymerized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61004265A
Other languages
Japanese (ja)
Inventor
Masao Goto
正男 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP61004265A priority Critical patent/JPS62163702A/en
Publication of JPS62163702A publication Critical patent/JPS62163702A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve the separation rate and coefficient of water permeability and to obtain the titled reverse osmosis membrane of stabilized quality by coating the surface of a polymeric porous supporting membrane with the interfacially polymerized membrane formed with an epiamine and a diisocyanate. CONSTITUTION:The interfacially polymerized membrane formed with an epiamine and a diisocyanate is coated on the polymeric porous supporting membrane having about 10Angstrom -1mum pore diameter. The epiamine is the polymerization product of an alkylenediamine and an epihalohydrin. The polymeric porous supporting membrane is immersed in about 1-20% aq. soln. of the epiamine for about 1-24hr, and then air-dried for about 2-5min. The membrane is again immersed in the aq. epiamine soln. for about 10-120sec, air-dried for about 2-5min, and then brought into contact with about 0.05-0.5% diisocyanate soln. for about 1-10min. The membrane is then heat-treated for about 5-20min in an oven at about 90-110 deg.C. The membrane has the separation rate and coefficient of water permeability superior to the interfacially polymerized membrane using an acid halide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、界面重合逆浸透膜に関する。更に詳しくは、
分離率および透水率を安定的に向上せしめた界面重合逆
浸透膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an interfacially polymerized reverse osmosis membrane. For more details,
This invention relates to an interfacial polymerization reverse osmosis membrane that stably improves separation rate and water permeability.

〔従来の技術〕[Conventional technology]

水溶液系に含まれる物質がエチレンジアミンとエピクロ
ルヒドリンとの水溶性重合物であるエピアミンを用いた
界面重合逆浸透膜としては、n−ヘキサン系でイソフタ
ロイルクロライドを適用したPA−300膜が知られて
いる。
As an interfacial polymerized reverse osmosis membrane using epiamine, which is a water-soluble polymer of ethylenediamine and epichlorohydrin, as a substance contained in an aqueous solution system, PA-300 membrane, which is n-hexane based and isophthaloyl chloride applied, is known. There is.

しかしながら、この界面重合逆浸透膜の場合には、イソ
フタロイルクロライドを用いているため、次のような問
題点を有している。即ち、n−へキサンに対するインフ
タロイルクロライドの溶解度が常温では0.1%以下と
低く、かつ第1アミン、第2アミンとの反応性も低いた
め、界面重合を行なった際相手方の反応体であるエピア
ミンと十分に反応せず、そのために形成された界面重合
膜にピンホールなどが生じ易く、結果として分離率、透
水率の値に大きなバラツキが見られるなど(後記比較例
の場合1分離率99.4.82.5.92.6%、透水
率0.107.0.112.0,110ci/atm−
hr−cJ)、安定した製膜を不可能とさせている。
However, since this interfacially polymerized reverse osmosis membrane uses isophthaloyl chloride, it has the following problems. That is, the solubility of inphthaloyl chloride in n-hexane is as low as 0.1% or less at room temperature, and the reactivity with primary and secondary amines is also low, so when interfacial polymerization is performed, the other reactant is It does not react sufficiently with epiamine, which is the epiamine, and as a result, pinholes are likely to occur in the interfacial polymerized film formed, resulting in large variations in separation rate and water permeability (in the case of the comparative example below, 1 separation rate 99.4.82.5.92.6%, water permeability 0.107.0.112.0, 110ci/atm-
hr-cJ), making stable film formation impossible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は、界面重合逆浸透膜の分離率および透水率を
向上せしめると共に、これらが安定した値を示すような
膜、換言すれば常に安定した品質の膜が得られるような
ものを求めて種々検討した結果、水溶液系に含まれる物
質がエピアミンである界面重合膜形成の他方の成分とし
て、インフタロイルクロライドの代わりにジイソシアネ
ートを用いることにより、かかる課題が効果的に解決さ
れることを見出した。
The present inventor sought to improve the separation rate and water permeability of an interfacially polymerized reverse osmosis membrane, and to provide a membrane that exhibits stable values, in other words, a membrane that can always have stable quality. As a result of various studies, we have found that this problem can be effectively solved by using diisocyanate instead of inphthaloyl chloride as the other component for forming an interfacial polymerized film in which the substance contained in the aqueous solution is epiamine. Ta.

〔問題点を解決するための手段〕および〔作用〕従って
、本発明は界面重合逆浸透膜に係り、この界面重合逆浸
透膜は、高分子多孔質支持膜表面にアルキレンジアミン
とエビハロヒドリンとの重合物であるエピアミンおよび
ジイソシアネートから形成された界面重合膜を被覆させ
てなる。
[Means for Solving the Problems] and [Operation] Accordingly, the present invention relates to an interfacially polymerized reverse osmosis membrane, and this interfacially polymerized reverse osmosis membrane has polymerization of alkylene diamine and shrimp halohydrin on the surface of a polymeric porous support membrane. It is coated with an interfacial polymeric film formed from epiamine and diisocyanate.

ジイソシアネートは、界面重合反応の有機溶液系の溶媒
として一般に用いられるn−ヘキサンに対する溶解度が
高く、かつエピアミン中に存在する第1アミンおよび第
2アミンとの反応性も高く、従ってインフタロイルクロ
ライドに代って用いた場合、逆浸透膜にとって重要な特
性である分離率および透水率を安定的に高めることにな
る(後記実施例の場合、分離率99.5.99.5.9
9.2%、透水率0.113.0.114.0.116
a&/atm−hr−a#)。
Diisocyanate has high solubility in n-hexane, which is generally used as a solvent for organic solution systems in interfacial polymerization reactions, and also has high reactivity with primary and secondary amines present in epiamine. When used instead, the separation rate and water permeability, which are important characteristics for reverse osmosis membranes, can be stably increased (in the case of the example described later, the separation rate is 99.5.99.5.9).
9.2%, water permeability 0.113.0.114.0.116
a&/atm-hr-a#).

そこに界面重合膜を形成させる高分子多孔質支持膜とし
ては、ポリスルホン、酢酸セルロース、トリ酢酸セルロ
ース、酢酸酪酸セルロース、ポリアクリロニトリル、ポ
リカーボネート、ポリウレタン、ポリ塩化ビニシレ、ポ
リビニルブチラール、ナイロン、コーネックス、ポリア
クリレート、ポリエーテルスルホンなどの多孔質膜が用
いられ、多孔質膜の性状としては孔径が約0.001μ
m(10人)〜1μm程度であって、多孔質構造が非対
称または対称なものが用いられる。
Polymer porous support membranes for forming interfacial polymerized membranes include polysulfone, cellulose acetate, cellulose triacetate, cellulose acetate butyrate, polyacrylonitrile, polycarbonate, polyurethane, polyvinyl chloride, polyvinyl butyral, nylon, Conex, and polyvinyl butyral. Porous membranes such as acrylate and polyether sulfone are used, and the porous membrane has a pore diameter of approximately 0.001μ.
m (10 people) to about 1 μm, and the porous structure is asymmetrical or symmetrical.

界面重合の水溶液系成分であるエピアミンは、エチレン
ジアミンによって代表されるアルキレンジアミンとエピ
クロルヒドリンによって代表されるエピハロヒドリンと
の重合物であり、これは次のような反応式によって形成
される。
Epiamine, which is an aqueous component of interfacial polymerization, is a polymer of alkylene diamine represented by ethylene diamine and epihalohydrin represented by epichlorohydrin, and is formed by the following reaction formula.

→fCH2CHO)Tr ■ CH,−NHCH,CH,NH2 かかるエピアミンと反応するジイソシアネートとしては
、例えばトルエンジイソシアネート、イソホロンジイソ
シアネート、ヘキサメチレンジイソシアネートなどが挙
げられ、好ましくはトルエンジイソシアネートが用いら
れる。
→fCH2CHO)Tr CH, -NHCH,CH,NH2 Examples of the diisocyanate that reacts with the epiamine include toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, and preferably toluene diisocyanate.

これらの各原料を用いての界面重合反応は、次のようし
て行われる。
The interfacial polymerization reaction using each of these raw materials is carried out as follows.

まず、前記高分子多孔質支持膜を、エピアミンの約1〜
20%水溶液中に約1〜24時間浸漬後、約0.5〜2
時間風乾する。この支持膜を、再度エピアミン水溶液中
に約10〜120秒間浸漬し、その後約2〜5分間風乾
する。次いで、この支持膜の界面を、約0.05〜0.
5%ジイソシアネート溶液と約1〜10分間接触させる
。このジイソシアネート溶液は、n−ヘキサン、シクロ
ヘキサン、クロロホルム、ベンゼンなどの水不溶性有機
溶媒の溶液として調製されるが、好ましくはn−ヘキサ
ンが用いられる。ジイソシアネート溶液と接触せさた支
持膜は、約90〜110℃のオーブン中で約5〜20分
間熱処理される。
First, the polymeric porous support membrane is coated with about 1 to 100% of epiamine.
After immersion in 20% aqueous solution for about 1 to 24 hours, about 0.5 to 2
Air dry for an hour. This support membrane is again immersed in the epiamine aqueous solution for about 10 to 120 seconds, and then air-dried for about 2 to 5 minutes. The interface of this support membrane is then adjusted to about 0.05-0.
Contact with 5% diisocyanate solution for about 1-10 minutes. This diisocyanate solution is prepared as a solution of a water-insoluble organic solvent such as n-hexane, cyclohexane, chloroform, benzene, etc., but preferably n-hexane is used. The support membrane contacted with the diisocyanate solution is heat treated in an oven at about 90-110°C for about 5-20 minutes.

このような界面重合反応の結果、次のような構造の界面
重合膜が支持膜界面に形成されるものと考えられる。
As a result of such an interfacial polymerization reaction, an interfacial polymerized film having the following structure is thought to be formed at the interface of the support film.

でI(2CHO汁 CH。DeI (2CHO soup CH.

〔発明の効果〕 高分子多孔質支持膜表面にエピアミンとジイソシアネー
トとから形成された界面重合膜を被覆させた本発明の界
面重合逆浸透膜は、従来のエピアミンとインフタロイル
クロライドとから形成された界面重合膜を被覆させたも
のと比較して、分離率および透水率の向上が図られるだ
けではなく。
[Effects of the Invention] The interfacially polymerized reverse osmosis membrane of the present invention, in which the surface of the polymeric porous support membrane is coated with an interfacially polymerized membrane formed from epiamine and diisocyanate, is different from the conventional interfacially polymerized reverse osmosis membrane formed from epiamine and inphthaloyl chloride. Compared to those coated with an interfacial polymerized membrane, the separation rate and water permeability are not only improved.

これらが常に一定した値を示すものが得られ、つまり品
質の面でも一定した逆浸透膜が得られる。
A membrane in which these values always remain constant can be obtained, which means that a reverse osmosis membrane with constant quality can be obtained.

従って、この界面重合逆浸透膜は、進水、半導体、食品
1発酵、医薬、医療などの各種技術分野で、有効に使用
することができる。
Therefore, this interfacially polymerized reverse osmosis membrane can be effectively used in various technical fields such as launching, semiconductors, food fermentation, medicine, and medical care.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する6実施例 0℃に冷却されたエチレンジアミン5I111にエピク
ロルヒドリン5mlを滴下し、攪拌状態で重合させた。
Next, 5 ml of epichlorohydrin was added dropwise to ethylenediamine 5I111 cooled to 0° C. and polymerized under stirring.

得られたエピアミン10m1に蒸留水90m1を添加し
て調製した水溶液中に、ポリスルホン製支持膜(ポリス
ルホン15gをジメチルホルムアミド85m1に溶解し
、ガラス板上に展開して30秒間放置後、水中に浸漬し
てゲル化させたもの)を24時間浸漬後、1時間風乾し
た。その後、この支持膜を再度エピアミン水溶液中に3
0秒間浸漬し、4分間風乾した。次いで、この支持膜の
界面をトルエンジイソシアネートの0.1%n−ヘキサ
ン溶液と5分間接触させ、その後この膜を105℃のオ
ーブン中で10分間熱処理した。
In an aqueous solution prepared by adding 90 ml of distilled water to 10 ml of the obtained epiamine, a polysulfone support membrane (15 g of polysulfone was dissolved in 85 ml of dimethylformamide, spread on a glass plate, left for 30 seconds, and then immersed in water. After soaking for 24 hours, it was air-dried for 1 hour. After that, this support film was re-immersed in an epiamine aqueous solution for 3
It was immersed for 0 seconds and air-dried for 4 minutes. Next, the interface of this support membrane was brought into contact with a 0.1% n-hexane solution of toluene diisocyanate for 5 minutes, and then the membrane was heat-treated in an oven at 105°C for 10 minutes.

このようにして製造された膜を逆浸透装置にとり付け、
操作圧カフ0kg/d、温度25℃、塩濃度3.5%、
有効膜面積8.97a+fの測定条件下で、水溶液から
の塩化ナトリウムの分離率および透水率をそれぞれ測定
し、3回の測定値の平均値を算出した。
The membrane manufactured in this way is attached to a reverse osmosis device,
Operating pressure cuff 0 kg/d, temperature 25°C, salt concentration 3.5%,
Under measurement conditions with an effective membrane area of 8.97a+f, the separation rate of sodium chloride from an aqueous solution and water permeability were each measured, and the average value of three measurements was calculated.

分M率 99.4% 透水率 0.114a(/atm−hr−cJ比較例 実施例において、トルエンジイソシアネートの0.1%
n−ヘキサン溶液の代りに、イソフタロイルクロライド
の0.1%n−ヘキサン溶液が用いられた。
Part M ratio 99.4% Water permeability 0.114a (/atm-hr-cJ Comparative example In the example, 0.1% of toluene diisocyanate
A 0.1% n-hexane solution of isophthaloyl chloride was used instead of the n-hexane solution.

製造された逆浸透膜の分離率および透水率の平均値は、
次の如くであった6 分離率 91.5%
The average separation rate and water permeability of the manufactured reverse osmosis membranes are:
It was as follows 6 Separation rate 91.5%

Claims (1)

【特許請求の範囲】 1、高分子多孔質支持膜表面に、アルキレンジアミンと
エピハロヒドリンとの重合物であるエピアミンおよびジ
イソシアネートから形成された界面重合膜を被覆させて
なる界面重合逆浸透膜。 2、エピアミンがエチレンジアミンとエピクロルヒドリ
ンとの重合物である特許請求の範囲第1項記載の界面重
合逆浸透膜。 3、ジイソシアネートがトルエンジイソシアネートであ
り、n−ヘキサン系として界面重合膜形成に用いられた
ものである特許請求の範囲第1項記載の界面重合逆浸透
膜。
[Claims] 1. An interfacially polymerized reverse osmosis membrane formed by coating the surface of a polymeric porous support membrane with an interfacially polymerized membrane formed from epiamine, which is a polymer of alkylene diamine and epihalohydrin, and diisocyanate. 2. The interfacially polymerized reverse osmosis membrane according to claim 1, wherein the epiamine is a polymer of ethylenediamine and epichlorohydrin. 3. The interfacially polymerized reverse osmosis membrane according to claim 1, wherein the diisocyanate is toluene diisocyanate and is used as an n-hexane type for forming the interfacially polymerized membrane.
JP61004265A 1986-01-14 1986-01-14 Interfacially polymerized reverse osmosis membrane Pending JPS62163702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61004265A JPS62163702A (en) 1986-01-14 1986-01-14 Interfacially polymerized reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61004265A JPS62163702A (en) 1986-01-14 1986-01-14 Interfacially polymerized reverse osmosis membrane

Publications (1)

Publication Number Publication Date
JPS62163702A true JPS62163702A (en) 1987-07-20

Family

ID=11579708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61004265A Pending JPS62163702A (en) 1986-01-14 1986-01-14 Interfacially polymerized reverse osmosis membrane

Country Status (1)

Country Link
JP (1) JPS62163702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002212A2 (en) * 1990-08-07 1992-02-20 Pfizer Inc. Use of interfacially-polymerized membranes in delivery devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002212A2 (en) * 1990-08-07 1992-02-20 Pfizer Inc. Use of interfacially-polymerized membranes in delivery devices

Similar Documents

Publication Publication Date Title
US4606943A (en) Method for preparation of semipermeable composite membrane
US5009824A (en) Process for preparing an asymmetrical macroporous membrane polymer
US5543465A (en) Process for the production of hydrophilic membranes
US5082565A (en) Semipermeable membrane made from polyether ketones
ATE31248T1 (en) MEMBRANE AND PROCESS OF PRODUCTION.
EP0061782B1 (en) Composite semipermeable membrane and process for preparation thereof
Chen et al. Formalized poly (vinyl alcohol) membranes for reverse osmosis
JPS62163702A (en) Interfacially polymerized reverse osmosis membrane
EP0356208B1 (en) Membrane filter material having excellent organic solvent resistance, method for formation of membrane filter and process for preparation of bismaleimide polymer to be used for membrane filter
JPH0559776B2 (en)
JP2984716B2 (en) Aromatic separation membrane
US4695383A (en) Permselective membrane
JP2900184B2 (en) Aromatic copolymer separation membrane
JPH0760085A (en) Acrylonitrile copolymer membrane and preparation and use thereof
JPH0516291B2 (en)
JPS5850121B2 (en) Microporous permeable membrane
JPH0331493B2 (en)
CA2007273A1 (en) "p-xylylenediamide/diimide composite ro membranes"
JP2971941B2 (en) Optical splitting film
GB2139113A (en) Reverse osmosis membrane and method for the preparation thereof
KR950007321B1 (en) Manufacturing method of osmosis membrane for components
US4390455A (en) Catalytic membranes in artificial organs
JPH0318492B2 (en)
RU2010594C1 (en) Polyamide ultrafiltration membrane
JPH05329346A (en) Composite semipermeable membrane