JPS6216362B2 - - Google Patents

Info

Publication number
JPS6216362B2
JPS6216362B2 JP5788180A JP5788180A JPS6216362B2 JP S6216362 B2 JPS6216362 B2 JP S6216362B2 JP 5788180 A JP5788180 A JP 5788180A JP 5788180 A JP5788180 A JP 5788180A JP S6216362 B2 JPS6216362 B2 JP S6216362B2
Authority
JP
Japan
Prior art keywords
magnetic
output
alternating current
coil
phase angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5788180A
Other languages
Japanese (ja)
Other versions
JPS56154610A (en
Inventor
Kenzo Mori
Takeshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Musen Co Ltd
Original Assignee
Taiyo Musen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Musen Co Ltd filed Critical Taiyo Musen Co Ltd
Priority to JP5788180A priority Critical patent/JPS56154610A/en
Publication of JPS56154610A publication Critical patent/JPS56154610A/en
Publication of JPS6216362B2 publication Critical patent/JPS6216362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • G01C17/30Earth-inductor compasses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 従来の磁気コンパスは磁針のような機械的可動
部があるからその保持に複雑で大型な機構を必要
とし、かつこれを設置する船舶等の構造によつて
誤差を生ずる。また指示部を本体と分離して他の
場所に設け、あるいは指示値を遠隔地点に伝送す
るためには特別な附加装置を必要とする。従つて
船舶等の構造にもとづく誤差の小さい場所に本体
を設置し、かつその場所で観測を行わなければな
らない等の欠点がある。本発明は機械的な可動部
がなく、上述のような欠点を除去し得ると共に簡
単な構成によつて方位を無段階的に検出すること
のできる磁気コンパスを提供するものである。
[Detailed Description of the Invention] Conventional magnetic compasses have mechanically movable parts such as magnetic needles, so they require a complicated and large mechanism to hold them, and errors may occur depending on the structure of the ship etc. in which it is installed. . In addition, special additional equipment is required to separate the indicator from the main body and place it in another location, or to transmit the indicator value to a remote location. Therefore, there are drawbacks such as the need to install the main body in a location with small errors based on the structure of the ship, etc., and to conduct observations at that location. The present invention provides a magnetic compass that has no mechanically moving parts, can eliminate the above-mentioned drawbacks, and can detect orientation steplessly with a simple configuration.

図面は本発明の一実施例で、第1図は地球磁界
検出部の平面図、第2図はそのA−A断面図であ
る。すなわち、扇形をなした8枚の磁性体板1を
2枚宛垂直方向において平行に配置し、かつそれ
らを磁心2で連結して各磁心にコイル3を巻回し
てある。このような4組を90度間隔で水平面内に
おいて円環状に配列し、各扇形磁性体板の相対向
したかなめ部分を細い可飽和磁路4で連結してあ
る。従つて検出部の中心に4個の細い磁路4が形
成されるが、この4個の磁路に共通の1つの出力
コイル5を巻回して、その両端を端子T0に接続
し、また相対向する磁心2に巻回したコイルを上
記磁路の2つ宛に互に逆向きの磁束を加えるよう
な極性でそれぞれ直列に接続して、端子T1およ
びT2に接続してある。
The drawings show one embodiment of the present invention, in which FIG. 1 is a plan view of a geomagnetic field detection section, and FIG. 2 is a sectional view taken along line A-A. That is, two of eight sector-shaped magnetic plates 1 are arranged in parallel in the vertical direction, and are connected by a magnetic core 2, with a coil 3 wound around each magnetic core. Four such sets are arranged in an annular shape in a horizontal plane at 90 degree intervals, and the opposing latch portions of each sector-shaped magnetic plate are connected by a thin saturable magnetic path 4. Therefore, four narrow magnetic paths 4 are formed at the center of the detection section, and a common output coil 5 is wound around these four magnetic paths, both ends of which are connected to the terminal T0, and the relative Coils wound around magnetic cores 2 facing each other are connected in series with polarity so as to apply magnetic fluxes in opposite directions to the two magnetic paths, and are connected to terminals T1 and T2.

上述の地球磁界検出部において、例えば端子T
1に交流の励磁電流を加えると第2図に矢印pで
示したような磁束が発生する。この磁束が磁路4
において充分飽和するように上記励磁電流の振副
を選定しておくと、その飽和時には地球磁界の強
度に関係なく該磁路に飽和磁束が発生して、かつ
この磁束は出力コイル5の内側を逆向きに流れる
から、上記コイル5に出力を生じない。しかし励
磁電流が消滅する時点においては、地球磁界にも
とづく磁束のみが例えば矢印qのように2つの磁
路に同方向に流れる。すなわち位相角が0度およ
び180度における励磁電流の消滅時点において、
地球磁界による磁束が前記磁路に矢印qのように
同一方向に発生するものとみなされるから上記位
相角の時点において端子T0にパルス出力が発生
する。このパルス出力の振幅は前記矢印qの磁束
量、従つて磁性体板1を配置した方位角に対応す
るから、上記パルス出力の振幅によつてこの方位
角を知ることができる。かつ第4図のようなB−
H磁化特性をもつ磁性体を角周波数がωで振幅の
充分大きい低周波電流で磁化した場合における誘
磁率μは時間tと共に第5図aのように変化する
からその平均値をμとするとμはμ(cos2ω
t+1)で与えられ、また前記出力パルス電流i
は同図bで表される。このように誘磁率μは磁化
電流の2倍の周波数をもつて変化するが、その変
化の基本波成分についてみると、第6図のように
磁界強度H0の磁北N対してθの角度で配置され
た磁性体板1のコイル5には、比例定数をKとす
ると if=Kμ0H0cosθsin2ωt の電流が発生する。同様に上記磁性体板と直交す
るように配置した磁性体板を設けると、そのコイ
ル電流は i2=Kμ0H0sinθcos2ωt で与えられる。従つて第1図のコイル5には I=i1+i2=Kμ0H0sin(2ωt+θ) で示される電流が生ずる。このように端子T1,
T2に同一の周波数で、45度の位相差を有する交
流を加えて磁路4,4…………を励磁すると、出
力端子T0には上記交流の2倍の周波数を有し、
位相角が地球磁界の方向に対応した交流出力が発
生する。本発明はこの交流出力の位相角によつて
地球磁界の方向を検出するものである。
In the above-mentioned earth magnetic field detection section, for example, the terminal T
When an alternating current excitation current is applied to 1, a magnetic flux as shown by the arrow p in FIG. 2 is generated. This magnetic flux is the magnetic path 4
If the amplitude of the excitation current is selected so that the excitation current is sufficiently saturated, a saturation magnetic flux is generated in the magnetic path regardless of the strength of the earth's magnetic field at the time of saturation, and this magnetic flux flows inside the output coil 5. Since the current flows in the opposite direction, no output is generated in the coil 5. However, at the time when the excitation current disappears, only the magnetic flux based on the earth's magnetic field flows in the two magnetic paths in the same direction, for example, as shown by arrow q. In other words, at the point in time when the excitation current disappears when the phase angle is 0 degrees and 180 degrees,
Since the magnetic flux due to the earth's magnetic field is considered to be generated in the same direction in the magnetic path as indicated by the arrow q, a pulse output is generated at the terminal T0 at the above phase angle. Since the amplitude of this pulse output corresponds to the amount of magnetic flux indicated by the arrow q, and therefore to the azimuth at which the magnetic plate 1 is arranged, this azimuth can be determined from the amplitude of the pulse output. and B- as shown in Figure 4.
When a magnetic material with H magnetization characteristics is magnetized by a low-frequency current with an angular frequency of ω and a sufficiently large amplitude, the magnetic permittivity μ changes with time t as shown in Figure 5a, so if the average value is taken as μ 0 . μ is μ 0 (cos2ω
t+1), and the output pulse current i
is represented by b in the same figure. In this way, the magnetic permittivity μ changes with twice the frequency of the magnetizing current, but if we look at the fundamental wave component of this change, as shown in Figure 6, it changes at an angle θ with respect to the magnetic north N with a magnetic field strength H 0 . In the coil 5 of the arranged magnetic plate 1, a current of if =Kμ 0 H 0 cosθsin2ωt is generated, where K is the proportionality constant. Similarly, if a magnetic plate is provided perpendicularly to the magnetic plate, the coil current is given by i 2 =Kμ 0 H 0 sinθcos2ωt. Therefore, a current shown as I=i 1 +i 2 =Kμ 0 H 0 sin(2ωt+θ) is generated in the coil 5 of FIG. In this way, terminal T1,
When magnetic paths 4, 4...... are excited by adding an alternating current with the same frequency and a phase difference of 45 degrees to T2, the output terminal T0 has a frequency twice that of the above alternating current,
An alternating current output whose phase angle corresponds to the direction of the earth's magnetic field is generated. The present invention detects the direction of the earth's magnetic field based on the phase angle of this AC output.

第3図は上記位相角のデイジタル測定を行う回
路の構成を示した図で、第1図の端子T1,T2
に加える励磁電流の周波数をfとすると、クロツ
クパルス発生器0は1/720fの周期のパルスを送
出する。このパルスをフルスケール360の基準計
数器Nsで繰返して計数し、その計数値が0およ
び270になる毎に発生するパルスでフリツプ・フ
ロツプF1,F2を駆動し、その出力を増幅する
と共に波形整形を行つて第1図の端子T1,T2
に加えてある。従つて上記端子に、互に45度の位
相差を有する周波数fの交流が加わる。また第1
図の端子T0から得られる出力を狭帯域増幅器
G、移送回路P、波形整形回路Sに加えて、前述
のように周波数が2fで、位相角が地球磁界の方向
に対応したパルスを形成し、このパルスを位相比
較器Mに加えてある。更に制御器Kを介して前記
クロツクパルス発生器0の出力パルスをフルスケ
ールが360の追尾計数器Npに加えることにより、
繰返して計数させると共にその桁上パルスを前記
位相比較器Mおよびフリツプ・フロツプF3に加
えてある。上述の追尾計数器Npは1/2fの周期を
もつて桁上パルスを送出し、位相比較器Mはこの
パルスと整形回路Sから加えられる同一周期のパ
ルスと前後関係を検出して、可逆計数器Nrを加
算または減算の状態に設定する。計数器Nrは比
較器Mの出力の漂動による影響を除去するための
もので、例えば数十程度のフルスケールを有し、
クロツクパルス発生器0の出力パルスを加算また
は減算して、その桁上または桁下げパルスを前記
制御器Kに加える。制御器Kは桁上げパルスが加
わると、例えば計数器Npの入力パルスを微小の
一定時間だけ遮断し、桁下げパルスが加わると入
力パルスの中間に追加パルスを挿入して計数器
Npに加える。従つて追尾計数器Npは、その桁上
パルスが整形回路Sの出力パルスと同時に送出さ
れるように自動制御されて、この桁上げパルスで
フリツプ・フロツプF3が駆動されて出力を送出
する。計数器Nvはそのフルスケールを任意に調
整し得るもので、上記出力が加えられらるとクロ
ツクパルス発生器0の出力パルスの計数を開始す
るから設定されたフルスケールに対応した時間遅
れをもつて桁上パルスが送出される。その桁上パ
ルスで前記フリツプ・フロツプF3がリセツトさ
れると同時にラツチ回路L1が駆動される。ラツ
チ回路L1には前記基準計数器Nsの計数値が加
えられているから、該ラツチ回路が駆動される
と、その時点における計数値が記憶されて表示器
D1で表示される。計数器Nsは周波数2fをもつ
て繰返し動作を行つているから、上述の表示値に
よつて端子T0に加わるパルスの位相角に計数器
Nvのフルスケール設定値に相当する補正を加え
た位相角、従つて地球磁界の方向を知ることがで
きる。
FIG. 3 is a diagram showing the configuration of a circuit for digitally measuring the phase angle.
When the frequency of the excitation current applied to is f, the clock pulse generator 0 sends out pulses with a period of 1/720f. This pulse is repeatedly counted by a reference counter Ns with a full scale of 360, and the pulses generated every time the count value reaches 0 and 270 drive flip-flops F1 and F2, amplify their output, and form a waveform. After shaping, the terminals T1 and T2 in Fig.
In addition to. Therefore, an alternating current of frequency f having a phase difference of 45 degrees is applied to the terminal. Also the first
The output obtained from the terminal T0 in the figure is added to the narrowband amplifier G, the transfer circuit P, and the waveform shaping circuit S to form a pulse with a frequency of 2f and a phase angle corresponding to the direction of the earth's magnetic field as described above. This pulse is applied to a phase comparator M. Furthermore, by applying the output pulse of the clock pulse generator 0 to the tracking counter Np with a full scale of 360 via the controller K,
It is repeatedly counted and its significant pulse is applied to the phase comparator M and flip-flop F3. The tracking counter Np described above sends out a carry pulse with a period of 1/2f, and the phase comparator M detects the sequential relationship between this pulse and the pulse of the same period applied from the shaping circuit S, and performs reversible counting. Set the device Nr to addition or subtraction state. The counter Nr is used to remove the influence of drift in the output of the comparator M, and has a full scale of, for example, several tens.
The output pulses of clock pulse generator 0 are added or subtracted and the carry or carry-down pulses thereof are applied to the controller K. When a carry pulse is added, the controller K interrupts the input pulse of the counter Np for a small fixed period of time, for example, and when a carry down pulse is added, an additional pulse is inserted between the input pulses to start the counter.
Add to Np. Therefore, the tracking counter Np is automatically controlled so that its carry pulse is sent out simultaneously with the output pulse of the shaping circuit S, and the flip-flop F3 is driven by this carry pulse to send out an output. The counter Nv can adjust its full scale arbitrarily, and when the above output is applied, it starts counting the output pulses of the clock pulse generator 0, with a time delay corresponding to the set full scale. A carry pulse is sent. The flip-flop F3 is reset by the carry pulse, and at the same time the latch circuit L1 is driven. Since the count value of the reference counter Ns is added to the latch circuit L1, when the latch circuit is driven, the count value at that time is stored and displayed on the display D1. Since the counter N s performs a repetitive operation with a frequency of 2f, the counter changes the phase angle of the pulse applied to the terminal T0 according to the above-mentioned display value.
It is possible to know the phase angle with a correction corresponding to the full scale setting of Nv, and therefore the direction of the earth's magnetic field.

なお上述の磁気コンパスを船舶等に設置する場
合に、計数器Nvまたは移相器Pを適当に調整し
ておくことによつて、船の進行方向を直接表示し
得ると共に地磁気の偏角に対する補正等を行い得
る。また船舶の構造等にもとづく誤差は、これを
角度毎に予め固定記憶装置に記憶しておくことに
よつて容易に補正することができる。更に必要に
応じては、例えば360個の発光素子を円形に配列
して、測定された方位に対応する素子を発光させ
ることにより、アナログ的表示を行うことも可能
である。
When installing the above-mentioned magnetic compass on a ship, etc., by appropriately adjusting the counter Nv or phase shifter P, it is possible to directly display the ship's heading direction and to correct for the declination of the earth's magnetic field. etc. Further, errors due to the structure of the ship, etc. can be easily corrected by storing them in advance in a fixed storage device for each angle. Furthermore, if necessary, it is also possible to perform analog display by arranging, for example, 360 light emitting elements in a circle and causing the elements corresponding to the measured orientation to emit light.

また第3図の実施例においては、例えば船舶を
進行させようとする方位角を設定する設定器Bを
設けて、基準計数器Nsの計数値がその設定角と
一致したとき一致回路Cから出力パルスが送出さ
れるようにしてある。すなわちこのパルスでフリ
ツプ・フロツプF4を駆動し、その出力でフルス
ケールが360の計数器Naを動作状態にしてクロツ
クパルス発生器0の出力パルスの計数を開始させ
る。また計数器Nvの桁上パルスで上記フリツ
プ・フロツプをリセツトして計数器Naの動作を
停止させると共にこれをリセツトし、かつ同時に
ラツチ回路L2を駆動してそのときの計数値を記
憶させる。この計数値を表示器D2で表示すると
同時にデイジタル・アナログ変換器Aによつてア
ナログ量の電圧に変換する。従つて表示器D2に
よつて船を進行させようとする方向と、実際の船
の向きとの間の偏差角が表示される。また上記電
圧で船の自動操舵機を制御することによつて、船
の自動操舵を行い得る。
In addition, in the embodiment shown in FIG. 3, a setting device B is provided to set the azimuth angle at which the ship is to proceed, and when the counted value of the reference counter N s matches the set angle, the matching circuit C Output pulses are arranged to be sent out. That is, this pulse drives the flip-flop F4, and its output activates the counter Na with a full scale of 360 to start counting the output pulses of the clock pulse generator 0. Further, the flip-flop is reset by the carry pulse of the counter Nv to stop and reset the operation of the counter Na, and at the same time, the latch circuit L2 is driven to store the count value at that time. This counted value is displayed on the display D2 and simultaneously converted into an analog voltage by the digital-to-analog converter A. Therefore, the angle of deviation between the direction in which the ship is intended to proceed and the actual direction of the ship is displayed on the display D2. Furthermore, by controlling the automatic steering system of the ship with the above-mentioned voltage, the ship can be automatically steered.

以上説明したように本発明の磁気コンパスは、
磁針のような機械的な可動部が無いから、装置を
簡単で小型軽量に構成し得る。また表示部を本体
から離して任意の複数個所に設けることができる
と共に誤差の補正あるいは自動操舵信号の送出等
も容易であり、かつ検出信号を処理する装置の構
成によつて分解能を任意に向上し得る。
As explained above, the magnetic compass of the present invention has
Since there is no mechanically moving part such as a magnetic needle, the device can be configured to be simple, small and lightweight. In addition, the display section can be separated from the main body and installed at any number of locations, and it is also easy to correct errors or send automatic steering signals, and the resolution can be improved arbitrarily by changing the configuration of the device that processes the detection signal. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例で、第1図は検出部の平
面図、第2図は第1図のA−A断面図、第3図は
電気回路の、第4図は本発明の原理を説明するた
めの特性曲線、第5図は同じく波形図、第6図は
同じく磁性体板の配置を示した図である。なお図
においては、1は磁性体板、2は磁心、3はコイ
ル、4は可飽和磁路、5は出力コイル、F1,F
2,F3,F4はフリツプ・フロツプ、Ns
Np,Nr,Nv,Naは計数器、L1,L2はラツチ
回路、Kは制御器、Mは位相比較器、Gは帯域増
幅器、Pは移相回路、Sは整形回路、D1,D2
は表示器、Aはデイジタル・アナログ変換器、C
は一致回路、Bは設定器である。
The drawings show embodiments of the present invention; Fig. 1 is a plan view of the detection unit, Fig. 2 is a sectional view taken along line A-A in Fig. 1, Fig. 3 is an electric circuit, and Fig. 4 is a diagram showing the principle of the present invention. FIG. 5 is a waveform diagram for explaining characteristic curves, and FIG. 6 is a diagram showing the arrangement of magnetic plates. In the figure, 1 is a magnetic plate, 2 is a magnetic core, 3 is a coil, 4 is a saturable magnetic path, 5 is an output coil, F1, F
2, F3, F4 are flip-flops, N s ,
Np, Nr, Nv, Na are counters, L1, L2 are latch circuits, K is a controller, M is a phase comparator, G is a band amplifier, P is a phase shift circuit, S is a shaping circuit, D1, D2
is the display, A is the digital-to-analog converter, C
is a matching circuit, and B is a setter.

Claims (1)

【特許請求の範囲】 1 水平面内において互に直交するように配置し
た2つの可飽和磁路を互に45度の位相差を有し該
磁路を充分飽和させるような振幅の交流で励磁す
るコイルを設けると共に前記2つの磁路に共通の
1つの出力コイルを巻回して、上記交流の2倍の
周波数を有し地球磁界と前記磁路の方向との間の
角度に対応した位相角の出力交流を前記出力コイ
ルに発生させることにより該出力交流の位相角を
検出するようにしたことを特徴とする磁気コンパ
ス。 2 出力交流の位相角に所望の誤差補正を加える
ようにした特許請求の範囲第1項の磁気コンパ
ス。 3 出力交流の位相角と任意に設定された位相角
との間の偏差角を表示するようにした特許請求の
範囲第1項の磁気コンパス。 4 偏差角に対応したアナログ制御出力を送出す
るようにした特許請求の範囲第3項の磁気コンパ
ス。
[Claims] 1. Two saturable magnetic paths arranged perpendicularly to each other in a horizontal plane are excited with an alternating current having a phase difference of 45 degrees and an amplitude sufficient to saturate the magnetic paths. A coil is provided and a single output coil common to the two magnetic paths is wound to generate a coil having a frequency twice that of the alternating current and a phase angle corresponding to the angle between the earth's magnetic field and the direction of the magnetic path. A magnetic compass characterized in that the phase angle of the output alternating current is detected by generating the output alternating current in the output coil. 2. The magnetic compass according to claim 1, wherein a desired error correction is applied to the phase angle of the output alternating current. 3. The magnetic compass according to claim 1, which displays the deviation angle between the phase angle of the output alternating current and an arbitrarily set phase angle. 4. The magnetic compass according to claim 3, which sends out an analog control output corresponding to a deviation angle.
JP5788180A 1980-05-02 1980-05-02 Magnetic compass Granted JPS56154610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5788180A JPS56154610A (en) 1980-05-02 1980-05-02 Magnetic compass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5788180A JPS56154610A (en) 1980-05-02 1980-05-02 Magnetic compass

Publications (2)

Publication Number Publication Date
JPS56154610A JPS56154610A (en) 1981-11-30
JPS6216362B2 true JPS6216362B2 (en) 1987-04-13

Family

ID=13068323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5788180A Granted JPS56154610A (en) 1980-05-02 1980-05-02 Magnetic compass

Country Status (1)

Country Link
JP (1) JPS56154610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049185U (en) * 1990-05-15 1992-01-27

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3335333A1 (en) * 1983-09-29 1985-04-11 Siemens AG, 1000 Berlin und 8000 München MAGNETIC FIELD PROBE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH049185U (en) * 1990-05-15 1992-01-27

Also Published As

Publication number Publication date
JPS56154610A (en) 1981-11-30

Similar Documents

Publication Publication Date Title
US4859944A (en) Single-winding magnetometer with oscillator duty cycle measurement
US5519318A (en) Triaxial magnetic heading sensing apparatus having magnetaresistors and nulling coils
US4277751A (en) Low-power magnetometer circuit with constant current drive
EP0437545A4 (en) Electronic digital compass
US2373096A (en) Magnetic pick-off for sensitive instruments
US4439732A (en) Electrically balanced fluxgate gradiometers
US3568052A (en) Time interval magnetometer
JPS6216362B2 (en)
US4495467A (en) Apparatus for simultaneous measurement of magnetic field components in mutually perpendicular directions
US4590679A (en) Compass systems
US3601899A (en) Single core solid-state compass
JPH0311665B2 (en)
US3355705A (en) Electronic directional error indicating system
US3118059A (en) Apparatus for computing aircraft position with respect to flight tracks
US2749506A (en) Magnetometer
EP0040205B1 (en) Solenoid torquer system
JPS5925441B2 (en) magnetic scale device
JPH0125286Y2 (en)
JPH0157726B2 (en)
US2741853A (en) Magnetometer compass
US3258687A (en) Wide range linear fluxgate magnetometer
SU495528A1 (en) Electronic compass
US2776403A (en) Induced magnetization compensator
SU139367A1 (en) Magnetic Field Indicator Zero
US3210654A (en) Direct current flux detector