JPS62163323A - Infrared heater - Google Patents

Infrared heater

Info

Publication number
JPS62163323A
JPS62163323A JP543786A JP543786A JPS62163323A JP S62163323 A JPS62163323 A JP S62163323A JP 543786 A JP543786 A JP 543786A JP 543786 A JP543786 A JP 543786A JP S62163323 A JPS62163323 A JP S62163323A
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
infrared
detecting section
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP543786A
Other languages
Japanese (ja)
Inventor
Naoki Suzuki
直樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP543786A priority Critical patent/JPS62163323A/en
Publication of JPS62163323A publication Critical patent/JPS62163323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control a temperature precisely with excellent response without being affected by an outside air temperature by vacuum-sealing a temperature detecting section for a thermocouple into a tube and isolating the temperature detecting section from outside atmospheric air. CONSTITUTION:Nitrogen gas fed from a gas supply port 11 is discharged from a gas exhaust port 12. Semiconductor substrates 13 are heated by an infrared-ray lamp 15. A temperature is controlled to a fixed temperature by a thermocouple 17 in an silica reaction vessel 10. A temperature detecting section 17a for the thermocouple 17 excellently receives the heating temperatures of the semiconductor substrates 13 in the silica reaction vessel 10 through an infrared transmitting protective tube 19 and carbon 18 coated with silicon carbide easy to absorb infrared rays at that time. Since the temperature detecting section 17a is sealed in a vacuum, the heat of the carbon 18, which is coated with silicon carbide and coats the temperature detecting section 17a for the thermocouple 17, is discharged to the outside only by heat radiation, and heat exchange with the outside atmosphere of the silica reaction vessel 10 can be ignored approximately. Accordingly, the temperature of the temperature detecting section 17a is brought to a temperature extremely close to the temperatures of the semiconductor substrates 13.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、赤外線加熱装置、特に半導体工業でアニール
工程や気相成長工程等に利用されるシリコン(Si)ウ
ェハの赤外線加熱装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an infrared heating device, and particularly to an infrared heating device for silicon (Si) wafers used in annealing processes, vapor phase growth processes, etc. in the semiconductor industry.

従来の技術 従来の加熱装置は、電気炉で加熱するという方法が採用
されていた。この方法を大気中で行った場合、蓋を開け
た状態で、目的温度に容器を加熱し、半導体ウェハの出
し入れを行えば、急速加熱、急速冷却も可能となる。し
かし大気にさらすことによって、ウェハが酸化するとい
う問題があり、ウェハの空気との接触を避けるためにガ
ス雰囲気中で加熱、冷却を行わなければならない。しか
しながら通常の電気炉では熱容量が大きいため、ガス雰
囲気中で急速加熱、急速冷却ができないという問題点が
あった。そこで近年、装置自体の熱容量を小さくするこ
とによって急速加熱、急速冷却を可能にした赤外線加熱
装置が注目されている3゜以下図面を参照しながら上述
した従来の赤外線加熱装置・Ω−例について説明する。
Prior Art Conventional heating devices employ a method of heating with an electric furnace. When this method is performed in the atmosphere, rapid heating and cooling can be achieved by heating the container to the desired temperature with the lid open and loading and unloading semiconductor wafers. However, there is a problem in that the wafer oxidizes when exposed to the atmosphere, and heating and cooling must be performed in a gas atmosphere to avoid contact of the wafer with air. However, because a normal electric furnace has a large heat capacity, there is a problem that rapid heating and rapid cooling cannot be performed in a gas atmosphere. Therefore, in recent years, infrared heating devices that enable rapid heating and rapid cooling by reducing the heat capacity of the device itself have been attracting attention. do.

第3図は従来の赤外線加熱装置を示すものである。第3
図において、1は石英反応容器であって、左右にガス供
給口4およびガス排出口5を持ち、内部に半導体基板3
を保持するサセプタ2が設けられている。反応容器1の
上方には赤外線ランプ6を設けて反応容器1内を輻射加
熱するようにしである。また反応容器1内には外部から
熱電対7を臨ませ、赤外線を吸収しやすい物質8で覆わ
れた温度検出部をサセフリ2の近傍に位置させている。
FIG. 3 shows a conventional infrared heating device. Third
In the figure, 1 is a quartz reaction vessel, which has a gas supply port 4 and a gas discharge port 5 on the left and right sides, and has a semiconductor substrate 3 inside.
A susceptor 2 is provided to hold the susceptor 2. An infrared lamp 6 is provided above the reaction vessel 1 to heat the inside of the reaction vessel 1 by radiation. Further, a thermocouple 7 is provided inside the reaction vessel 1 from the outside, and a temperature detection portion covered with a substance 8 that easily absorbs infrared rays is located near the suspenner 2.

反応容器1内にはガス供給口4から加熱する目的工程に
応じ、例えば窒素ガスが供給され、ガス排出口5から排
出される。この状態で反応容器1内の半導体基板3は所
定温度、たとえば約1000°Cに赤外線ランプ6によ
って輻射加熱される。温度の制御は、石英反応容器1内
の熱電対7によって半導体基板3が所定温度になるよう
に行なわれている。
For example, nitrogen gas is supplied into the reaction vessel 1 from a gas supply port 4 according to the intended heating process, and is discharged from a gas discharge port 5. In this state, the semiconductor substrate 3 in the reaction vessel 1 is radiantly heated by the infrared lamp 6 to a predetermined temperature, for example, about 1000°C. The temperature is controlled by a thermocouple 7 in the quartz reaction vessel 1 so that the semiconductor substrate 3 reaches a predetermined temperature.

しかし上記のような構成では、石英反応容器1内に熱電
対7が露出しているため、高温にした場合あるいは気相
成長のように減圧中で高温にした場合、熱電対7から石
英反応容器1内への不純物の飛び出しが起こる。そのた
め石英反応容器1内に載置された半導体基板3が汚染さ
れる。
However, in the above configuration, since the thermocouple 7 is exposed inside the quartz reaction vessel 1, when the temperature is raised to high temperature or under reduced pressure such as in vapor phase growth, the thermocouple 7 is exposed to the inside of the quartz reaction vessel 1. 1. Impurities fly out into the interior. Therefore, the semiconductor substrate 3 placed in the quartz reaction vessel 1 is contaminated.

これを解消する赤外線加熱装置として、第4図に示すよ
うに、第3図とまったく同じ構成の上に、熱電対7を石
英ガラス製の保護管9に挿入し、温度制御すること(例
えば特許公告57−45054)が既に提案されている
As shown in FIG. 4, an infrared heating device that solves this problem can be constructed by inserting a thermocouple 7 into a quartz glass protective tube 9 to control the temperature (for example, patented Publication No. 57-45054) has already been proposed.

発明が解決しようとする問題点 しかしながら上記のような構成では、熱電対7は石英反
応容器1内とは石英ガラス製の保護管9で完全にンール
されていて、石英反応容器1内には露出しないけれども
、保護管9内が石英反応容器1外に連通しているため熱
電対7は外側の大気と接触していることになる。つまり
、熱電対7は赤外線ランプ6からの熱輻射を受は温度が
上昇するが、外気と直接接触しているため外部雰囲気へ
の熱伝導や熱伝達によって、半導体基板3の温度に比べ
て低い値となるし外気温如何によって値(てバラツキが
生じる。さらに、同じ理由によって、半導体基板3の温
度上昇率と比べて、熱電対7の温度上昇の応答性が悪く
なる。そのため温度の制(財)がしに<<、再現性が悪
いという問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, the thermocouple 7 is completely enclosed within the quartz reaction vessel 1 by a protective tube 9 made of quartz glass, and is not exposed inside the quartz reaction vessel 1. Although not, since the inside of the protective tube 9 communicates with the outside of the quartz reaction vessel 1, the thermocouple 7 is in contact with the outside atmosphere. In other words, the temperature of the thermocouple 7 increases when it receives heat radiation from the infrared lamp 6, but since it is in direct contact with the outside air, the temperature is lower than that of the semiconductor substrate 3 due to heat conduction and transfer to the outside atmosphere. The value will vary depending on the outside temperature.Furthermore, for the same reason, the responsiveness of the temperature rise of the thermocouple 7 will be worse than the temperature rise rate of the semiconductor substrate 3.Therefore, the temperature control ( The problem was that reproducibility was poor.

問題点を解決するための手段 本発明は上記問題点を解決するために、少なくとも一部
分が赤外線透過性の容器と、該容器の外部にあって、そ
の容器の内部を輻射加熱する赤外線発生源と、前記容器
の内部にあって半導体基板を載置する基台と、前記半導
体基板の温度を検出するために、前記半導体基板の近傍
に位置した熱電対とを備えた赤外線加熱装置において、
温度検出部が赤外線を吸収しやすい物質や前記半導体基
板と同じ物質と云った温度検出し易い物質で被覆検出B
1’(を前記管内に真空封入していることを特徴とする
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a container at least partially transparent to infrared rays, and an infrared generation source located outside the container for radiant heating of the inside of the container. , an infrared heating device comprising: a base located inside the container on which a semiconductor substrate is placed; and a thermocouple located near the semiconductor substrate to detect the temperature of the semiconductor substrate.
Detection B in which the temperature detection part is coated with a material that easily absorbs infrared rays or a material that is easy to detect temperature, such as the same material as the semiconductor substrate.
1' is vacuum sealed in the tube.

作  用 本発明は上記した構成であり、熱電対は容器内で赤外線
透過性物質からなる管および温度検出し易い物質を介し
た温度検出し易い不純物飛出し防止状態において、熱電
対の温度検出部が前記管内に真空封入されて外部大気と
隔絶されているため、赤外線ランプからの輻射熱を受け
た熱電対の温度の制御性は、熱電対自体の熱輻射以外に
は、熱伝導、熱伝達はほとんどないので、外気との熱交
換がある場合に比べて良くなる。つまり、外気の温度に
は影響を受けないし、かつ応答性も良くなりまた、半導
体基板の温度に近くなるため正確な温度制御が可能とな
る。
Function The present invention has the above-described configuration, and the temperature detection part of the thermocouple is in a state in which impurities are prevented from flying out so that the temperature can be easily detected through the tube made of an infrared-transparent substance and the temperature-detectable substance in the container. Since the thermocouple is vacuum-sealed within the tube and isolated from the outside atmosphere, the controllability of the temperature of the thermocouple that receives the radiant heat from the infrared lamp is limited to heat conduction and heat transfer other than the heat radiation of the thermocouple itself. Since there is almost no heat exchange, it is better than when there is heat exchange with the outside air. In other words, it is not affected by the temperature of the outside air, has good responsiveness, and is close to the temperature of the semiconductor substrate, so accurate temperature control is possible.

実施例 以下本発明の一実施例の赤外線加熱装置について、図面
を参照しながら説明する。
EXAMPLE Hereinafter, an infrared heating device according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例ておける赤外線加熱装置の断面
図を示すものである。
FIG. 1 shows a sectional view of an infrared heating device in an embodiment of the present invention.

図において、10は石英反応容器であって、右側にガス
の供給口11か、また左側にガスの排出口12が設けら
れている。石英反応容器10内には半導体基板13を載
置するためのサセプタ14が設けられている。石英反応
容器10の上方には前記半導体基板13を輻射加熱する
だめの赤外線ランプが設けられ、その背部に赤外線ラン
プ15の照射光を効率良く反射させて半導体基板13側
に向けるための反射鏡が設けられている。カーボン(C
)1石英反応容器10内には、赤外線透過性物質である
石英ガラス製の保護管19に収容した状態の熱電対17
が側方より挿入され、熱電対17の温度検出部17aは
サセプタ14の近傍に位置させられ、赤外線を吸収し易
い物質炭化シリコン(SiC)をコーティングしたカー
ボン(C’)で被覆されている。熱電対17の温度検出
部17aはまた、保護管19の先端部分で第2図に見ら
れるように真空部2oとして封入さ扛ている。
In the figure, 10 is a quartz reaction vessel, which is provided with a gas supply port 11 on the right side and a gas discharge port 12 on the left side. A susceptor 14 on which a semiconductor substrate 13 is placed is provided within the quartz reaction vessel 10 . An infrared lamp for radiant heating of the semiconductor substrate 13 is provided above the quartz reaction vessel 10, and a reflecting mirror is provided at the back of the infrared lamp 15 to efficiently reflect the irradiated light from the infrared lamp 15 and direct it toward the semiconductor substrate 13. It is provided. Carbon (C
)1 Inside the quartz reaction vessel 10, there is a thermocouple 17 housed in a protective tube 19 made of quartz glass, which is an infrared transparent material.
is inserted from the side, and the temperature detection part 17a of the thermocouple 17 is located near the susceptor 14 and is covered with carbon (C') coated with silicon carbide (SiC), a material that easily absorbs infrared rays. The temperature detecting portion 17a of the thermocouple 17 is also enclosed as a vacuum portion 2o at the tip of the protective tube 19, as seen in FIG.

ガス供給口11から供給された窒素ガスは、ガス排出口
12から排出される。半導体基板13は所定僑度約10
00″Cに赤外ランプ15によって加熱される。扇度利
御は、石英反応容器10内の熱電対17によって所定の
温度になるように行なわれる。この場合、熱電対17の
温度検出部17aは、赤外線透過性保護管19と赤外線
を吸収し易い炭化シリコンをコーティングしたカーボン
18を通し、石英反応容器1o内の半導体基板13の加
熱温度をよく受ける。この温度検出部17aは真空に封
入されているため、熱電対17の温度検出部17aを被
覆した炭化シリコンをコーティングしたカーボン18の
熱の外部への放出は、熱輻射だけとなり石英反応容器1
o外部の雰囲気との熱交換はほとんど無視し得る。その
ため半導体基板13の温度に非常に近い温度となり、さ
らに半導体基板13と同じ程度の温度応答性を得ること
ができ、正確な温度制御が可能となる。
Nitrogen gas supplied from the gas supply port 11 is discharged from the gas discharge port 12. The semiconductor substrate 13 has a predetermined thickness of about 10
It is heated to 00''C by an infrared lamp 15. The temperature is controlled by a thermocouple 17 in the quartz reaction vessel 10 to a predetermined temperature. In this case, the temperature detection part 17a of the thermocouple 17 receives the heating temperature of the semiconductor substrate 13 in the quartz reaction vessel 1o through an infrared-transparent protection tube 19 and carbon 18 coated with silicon carbide that easily absorbs infrared rays.This temperature detection part 17a is sealed in a vacuum. Therefore, the heat of the carbon 18 coated with silicon carbide that coats the temperature detection part 17a of the thermocouple 17 is only released through thermal radiation, and the quartz reaction vessel 1
o Heat exchange with the outside atmosphere is almost negligible. Therefore, the temperature is very close to that of the semiconductor substrate 13, and furthermore, it is possible to obtain the same level of temperature response as the semiconductor substrate 13, and accurate temperature control is possible.

以上のように本実施例によれば、炭化シリコンをコーテ
ィングしたカーボン18で被覆された熱電対17の温度
検出部17aを真空封入した石英ガラス製の保護管19
を設けることにより、応答性の良い正確な温度制御を行
なうことができる。
As described above, according to this embodiment, the protection tube 19 made of quartz glass vacuum-seals the temperature detection part 17a of the thermocouple 17 coated with carbon 18 coated with silicon carbide.
By providing this, it is possible to perform accurate temperature control with good responsiveness.

なお、本実施例において、熱電対17の温度検出部17
aは炭化シリコンをコーティングしたカーボン18で被
覆したが、被覆材は赤外線を吸収しやすい物質であれば
良く、カーボン(C)あるいはシリコン(Si)として
もよい。
Note that in this embodiment, the temperature detection section 17 of the thermocouple 17
Although a is coated with carbon 18 coated with silicon carbide, the coating material may be any material that easily absorbs infrared rays, and may be carbon (C) or silicon (Si).

また、本実施例において、石英反応容器10゜石英ガラ
ス製保護管19を採用したが、それらは、他の赤外線透
過性の物質であればよい。
Further, in this embodiment, the quartz reaction vessel 10 and the quartz glass protection tube 19 were used, but they may be made of other materials that transmit infrared rays.

発明の効果 本発明によれば、少なくとも一部分が赤外線透過性の容
器内にあって温度検出部が半導体基板の近傍に位置した
熱電対は、容器内で赤外線透過物質からなる管および温
度検出し易い物質を介した温度検出し易い不純物飛び出
し防止状態において、温度検出部が前記管内に真空で外
気と隔絶されているから、外気へは輻射熱以外の熱の逃
げがほとんどなく、応答性の良いしかも外気温の影響を
受けない正確な温度制御を行なうことができる。
Effects of the Invention According to the present invention, a thermocouple in which at least a portion of the thermocouple is inside an infrared-transparent container and whose temperature detection portion is located near a semiconductor substrate has a tube made of an infrared-transmissive material and a thermocouple that is easy to detect temperature within the container. In the state where impurities are prevented from jumping out, which makes it easy to detect temperature through substances, the temperature detection part is isolated from the outside air by a vacuum inside the tube, so there is almost no escape of heat other than radiant heat to the outside air, and it is highly responsive and Accurate temperature control that is unaffected by air temperature is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における赤外線加熱装置の断面
図、第2図は第1図の熱電対および石英ガラス製保護管
の先端部分の拡大図、第3図は従来の赤外線加熱装置の
断面図、第4図は他の従来の赤外線加熱装置の断面図で
ある。 13・・・・・・半導体基板、14・・・・・・サセプ
タ、15・・・・・・赤外線ランプ、16・・・・・・
反射鏡、17・・・・・・熱電対、17a・・・・・・
温度検出部、18・・・・・・炭化シリコy(SiC)
をコーティングしたカーボン(C)、19・・・・・・
石英ガラス製の保護管、20・・・・・・真空部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名f3
−一一ず専イIミJ(叛 14−−−グゼデデ +7−−・楯虞灯 +71L−壜A纜乞(す J8−−−fcシンJytsrb)EJ−++ングIr
t17f、yLCノイ9−−一石処。・う2%1t4(
V fδ 第 2 図         20−に作男3図 第4図
Fig. 1 is a sectional view of an infrared heating device according to an embodiment of the present invention, Fig. 2 is an enlarged view of the tip portion of the thermocouple and quartz glass protection tube shown in Fig. 1, and Fig. 3 is a cross-sectional view of a conventional infrared heating device. 4 is a cross-sectional view of another conventional infrared heating device. 13...Semiconductor substrate, 14...Susceptor, 15...Infrared lamp, 16...
Reflector, 17...Thermocouple, 17a...
Temperature detection part, 18...Silico carbide (SiC)
Carbon coated with (C), 19...
Quartz glass protection tube, 20... Vacuum section. Name of agent: Patent attorney Toshio Nakao and 1 other person f3
-11zu exclusive I MiJ (Rebellion 14--Gzedede +7--・Tategyoto +71L-Bottle A pure request (SuJ8--fc Shin Jytsrb) EJ-++ Ng Ir
t17f, yLC Noi 9--Ikkidokoro.・U2%1t4(
V fδ Figure 2 Figure 20-Sakuo Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも一部分が赤外線透過性の容器と、該容
器の外部にあって、その容器の内部を輻射加熱する赤外
線発生源と、前記容器の内部にあって半導体基板を載置
する基台と、前記半導体基板の温度を検出するために、
前記半導体基板の近傍に位置した熱電対とを備えた赤外
線加熱装置において、温度検出部が赤外線を吸収しやす
い物質や前記半導体基板と同じ部材と云った温度検出し
易い物質で被覆された状態の熱電対を赤外線透過性物質
からなる管でおおって前記容器内に臨ませると共に、前
記温度検出部を前記管内に真空封入していることを特徴
とする赤外線加熱装置。
(1) A container at least partially transparent to infrared rays; an infrared generation source located outside the container for radiant heating of the inside of the container; and a base located inside the container on which a semiconductor substrate is placed. , to detect the temperature of the semiconductor substrate,
In the infrared heating device equipped with a thermocouple located near the semiconductor substrate, the temperature detection part is coated with a material that easily absorbs infrared rays or a material that is easy to detect temperature, such as the same material as the semiconductor substrate. An infrared heating device characterized in that the thermocouple is covered with a tube made of an infrared transparent material so as to face the inside of the container, and the temperature detection section is vacuum sealed inside the tube.
(2)前記赤外線の吸収しやすい物質は、カーボンまた
は、炭化シリコンまたは、シリコンであることを特徴と
する特許請求の範囲第1項記載の赤外線加熱装置。
(2) The infrared heating device according to claim 1, wherein the substance that easily absorbs infrared rays is carbon, silicon carbide, or silicon.
JP543786A 1986-01-14 1986-01-14 Infrared heater Pending JPS62163323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP543786A JPS62163323A (en) 1986-01-14 1986-01-14 Infrared heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP543786A JPS62163323A (en) 1986-01-14 1986-01-14 Infrared heater

Publications (1)

Publication Number Publication Date
JPS62163323A true JPS62163323A (en) 1987-07-20

Family

ID=11611171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP543786A Pending JPS62163323A (en) 1986-01-14 1986-01-14 Infrared heater

Country Status (1)

Country Link
JP (1) JPS62163323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325927A (en) * 1989-06-23 1991-02-04 Nec Kyushu Ltd Production device for semiconductor integrated circuit
JP2010536185A (en) * 2007-08-13 2010-11-25 アルカテル−ルーセント Method for processing a transport support for transport and storage in the air of a semiconductor substrate, and a processing station for carrying out such a method
JP2011002242A (en) * 2009-06-16 2011-01-06 Ulvac Japan Ltd Temperature sensor
KR20210075585A (en) * 2019-12-13 2021-06-23 (주)울텍 Rapid thermal processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037116A (en) * 1983-08-09 1985-02-26 Ushio Inc Optical irradiating furnace
JPS60228932A (en) * 1984-04-27 1985-11-14 Komatsu Denshi Kinzoku Kk Temperature measuring apparatus for light heating furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037116A (en) * 1983-08-09 1985-02-26 Ushio Inc Optical irradiating furnace
JPS60228932A (en) * 1984-04-27 1985-11-14 Komatsu Denshi Kinzoku Kk Temperature measuring apparatus for light heating furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325927A (en) * 1989-06-23 1991-02-04 Nec Kyushu Ltd Production device for semiconductor integrated circuit
JP2010536185A (en) * 2007-08-13 2010-11-25 アルカテル−ルーセント Method for processing a transport support for transport and storage in the air of a semiconductor substrate, and a processing station for carrying out such a method
JP2013070097A (en) * 2007-08-13 2013-04-18 Alcatel-Lucent Method of processing transportation support for transporting and storing semiconductor substrate in atmosphere, and processing station for carrying out such method
US8898930B2 (en) 2007-08-13 2014-12-02 Alcatel Lucent Method for treating a transport support for the conveyance and atmospheric storage of semiconductor substrates, and treatment station for the implementation of such a method
JP2011002242A (en) * 2009-06-16 2011-01-06 Ulvac Japan Ltd Temperature sensor
KR20210075585A (en) * 2019-12-13 2021-06-23 (주)울텍 Rapid thermal processing apparatus

Similar Documents

Publication Publication Date Title
US5315092A (en) Apparatus for heat-treating wafer by light-irradiation and device for measuring temperature of substrate used in such apparatus
US5892886A (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
US6399921B1 (en) System and method for thermal processing of a semiconductor substrate
JP3241401B2 (en) Rapid heat treatment equipment
US20080248657A1 (en) Method and system for thermally processing a plurality of wafer-shaped objects
US7820118B2 (en) Substrate processing apparatus having covered thermocouple for enhanced temperature control
JP2000501242A (en) Equipment and methods for thermal processing
JPS62163323A (en) Infrared heater
JPH08139047A (en) Heat treatment apparatus
JPS61129834A (en) Heat treatment apparatus
JPS60189927A (en) Vapor phase reactor
JPS6294925A (en) Heat treatment device
JP2889649B2 (en) Heat treatment equipment
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
JP2001196322A (en) Auxiliary heating plate
JP2000058455A (en) Substrate heating method and equipment thereof
JPH09171967A (en) Semiconductor manufacturing apparatus
JP2509817B2 (en) Processing equipment
JPS6032317A (en) Method for heat treatment of semiconductor wafer and device thereof
JPH0848595A (en) Sheet type vapor growth device
JPH05306458A (en) Wafer treatment device
JPH07106274A (en) Specimen heating method and specimen heat-treating equipment
JPH0554691B2 (en)
JPH0521367A (en) Thermal processing apparatus
JPS61121431A (en) Gaseous phase growth device