JPS6216284B2 - - Google Patents

Info

Publication number
JPS6216284B2
JPS6216284B2 JP12257380A JP12257380A JPS6216284B2 JP S6216284 B2 JPS6216284 B2 JP S6216284B2 JP 12257380 A JP12257380 A JP 12257380A JP 12257380 A JP12257380 A JP 12257380A JP S6216284 B2 JPS6216284 B2 JP S6216284B2
Authority
JP
Japan
Prior art keywords
water
water intake
intake tube
inner cylinder
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12257380A
Other languages
Japanese (ja)
Other versions
JPS5748010A (en
Inventor
Tooru Moriwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Iron Works Ltd
Original Assignee
Kurimoto Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Iron Works Ltd filed Critical Kurimoto Iron Works Ltd
Priority to JP12257380A priority Critical patent/JPS5748010A/en
Publication of JPS5748010A publication Critical patent/JPS5748010A/en
Publication of JPS6216284B2 publication Critical patent/JPS6216284B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は幹線水路から支線水路に水位差を利
用して水を取水する定量分水装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quantitative water diversion device that takes water from a main waterway to a branch waterway using a water level difference.

従来のこの種装置としては第1図に示すよう
に、排水管2aの内側に取水筒1aを嵌挿する形
式のものがあるが、このものは取水筒1aを排水
管2aに配設したブツシユ3aに嵌挿し、またパ
ツキン4aにより排水管2aの外側の水(一次
側)と排水管2aの内側の水(二次側に連通)と
を水密的に隔離し、このような取水筒1aをその
上部に取付けたハンガーフレーム5aにより水面
H1に浮かぶフロート6aを介して垂直方向に昇
降可能に吊設していて、H1水位の高低に応じて
取水筒1aを同じだけ昇降させ、常に越流水深h
を一定に保つことにより、越流水量を一定に保
ち、定量分水を行なつていた。しかしながら、こ
のものにおいてはH1水位が上昇又は下降した場
合、パツキン4aの抵抗のために、直ちにはフロ
ート6aと取水筒1aからなる浮体は追随して上
昇又は下降することなく浮体の水没量の増加又は
減少により、浮体に作用する浮力Fと浮体の自重
Wの差がパツキン抵抗Rに等しくなつて始めて浮
体が上昇又は下降して、常に遅れができる。即
ち、H1水位上昇の場合F=W+Rになつて始め
て浮体が上昇する。H1水位下降の場合W=F+
Rになつて始めて浮体が下降する。また、パツキ
ン抵抗Rは常に一定と限らないため、必要な浮力
F(浮体の水没量に比例する)が変化し、従つて
越流水深hが一定しないことになる。
As shown in Fig. 1, there is a conventional device of this type in which a water intake tube 1a is fitted inside a drain pipe 2a; 3a, and the water on the outside of the drain pipe 2a (primary side) and the water on the inside of the drain pipe 2a (communicating to the secondary side) are separated in a watertight manner by the gasket 4a. The water surface is controlled by the hanger frame 5a attached to the top of the hanger frame 5a.
It is suspended so that it can be raised and lowered vertically via a float 6a floating on H1 , and the water intake tube 1a is raised and lowered by the same amount according to the height of the H1 water level, and the overflow water depth h is always maintained.
By keeping the amount constant, the amount of overflow water was kept constant and water was distributed in a fixed amount. However, in this case, when the H1 water level rises or falls, due to the resistance of the packing 4a, the floating body consisting of the float 6a and the water intake tube 1a does not immediately rise or fall, and the amount of water submerged in the floating body is reduced. Due to increase or decrease, the floating body only rises or descends when the difference between the buoyant force F acting on the floating body and the weight W of the floating body becomes equal to the packing resistance R, and there is always a delay. That is, in the case of H1 water level rise, the floating body does not rise until F=W+R. H If the water level drops by 1 , W=F+
The floating body begins to descend when it reaches R. Furthermore, since the packing resistance R is not always constant, the necessary buoyancy F (proportional to the amount of submersion of the floating body) changes, and therefore the overflow water depth h is not constant.

また前記形式のものにおいてはパツキン抵抗の
問題の他に、次の問題がある。即ち、パツキン抵
抗を除外すれば浮体に作用する外力はその自重W
と取水筒1aの外側の水による浮力F0と取水筒
1aの内側の水による浮力Fiであり、力の平衡
により W=Fo+Fi ……(1) の関係がある。ここでF0は主にフロート6aの
水没体積Boと同体積の水の重量であり、Fiは取
水筒1aの下側端面に上向きに作用する水圧Pに
よるもので、その大きさは内水の水位H2より下
方になる筒壁の占める体積Biに相当する水の重量
に等しい。今筒内の水位H2が下り、H2−ΔH2
なれば、体積BiはBi−ΔBiとなり、内水による浮
力FiはFi−ΔFiとなる。この場合でも(1)式の関
係は保たれねばならないから、浮体は前の位置よ
り沈み、フロート水没量BoがBo+ΔBoに増え、
外水による浮力FoがFo+ΔFoに増加することに
より(但しΔFi=ΔFo)(1)式の右辺は (Fo+ΔFo)+(Fi+ΔFi)=Fo+Fi となつて、以前の関係が保たれる。
In addition to the problem of packing resistance, the above-mentioned type has the following problem. In other words, if the packing resistance is excluded, the external force acting on the floating body is equal to its own weight W.
, the buoyancy force F 0 due to the water outside the water intake tube 1a, and the buoyancy force Fi due to the water inside the water intake tube 1a, and due to force balance, there is a relationship of W=Fo+Fi...(1). Here, F 0 is mainly the weight of water with the same volume as the submerged volume Bo of the float 6a, and Fi is due to the water pressure P acting upward on the lower end surface of the water intake tube 1a, and its magnitude is It is equal to the weight of water corresponding to the volume Bi occupied by the cylinder wall below the water level H2 . If the water level H 2 in the cylinder now falls and becomes H 2 −ΔH 2 , the volume Bi will become Bi − ΔBi and the buoyant force Fi due to the internal water will become Fi − ΔFi. Even in this case, the relationship in equation (1) must be maintained, so the floating body sinks from its previous position, and the float submergence amount Bo increases to Bo + ΔBo,
As the buoyant force Fo due to the open water increases to Fo + ΔFo (where ΔFi = ΔFo), the right side of equation (1) becomes (Fo + ΔFo) + (Fi + ΔFi) = Fo + Fi, and the previous relationship is maintained.

よつて浮体はH1水位に対して沈み量が増える
ので、越流水深hはh+Δhに増える。水位H2
が上る場合は同じ理由でh−Δhに縮まる。
Therefore, the amount of sinking of the floating body increases relative to the H1 water level, so the overflow water depth h increases to h+Δh. water level H 2
If it increases, it will be reduced to h - Δh for the same reason.

また取水筒1aに作用する浮力Biは該筒の内水
に浸る部分の長さlに比例し、取水筒1aの全長
をLとすれば l=L+h−(H1−H2) である。よつて正確には浮力Biは内外の水位差
H1−H2の変化によつて変動することがわかる。
従つて、前記形式のものにおいてはパツキン抵抗
の問題を除外しても、水位H1又はH2の変化によ
つて、力の平衡条件が変り、越流水深hが変わる
ために定量分水が事実上できない欠点があつた。
Further, the buoyant force Bi acting on the water intake tube 1a is proportional to the length 1 of the portion of the tube immersed in the internal water, and if the total length of the water intake tube 1a is L, then 1=L+h-(H 1 -H 2 ). Therefore, to be more precise, buoyancy Bi is the difference in water level between the inside and outside.
It can be seen that it fluctuates depending on the change in H 1H 2 .
Therefore, in the case of the above-mentioned type, even if the problem of packing resistance is excluded, changes in the water level H1 or H2 change the force equilibrium conditions and change the overflow water depth h, making it difficult to perform quantitative water diversion. There was a drawback that it was practically impossible.

また第2図に示すように、取水筒1bを上部の
開口部を除いてジヤバラ体2bで構成し、これを
排水管3bに接続した形式のものにおいても、上
記したと同様に取水筒1bの筒壁に作用する浮力
が変化し、またH1,H2水位の変化によつて取水
筒1bの受ける外圧、内圧が変化するので、ジヤ
バラの衣地に作用する張力が一定せず、取水筒1
bの上部を排水管3bに近づけようとする力が変
化するため、浮体に必要な浮力が変化し、越流水
深hが一定とならず、定量分水は事実上できない
欠点があつた。
Furthermore, as shown in Fig. 2, the water intake pipe 1b is constructed of a bellows body 2b except for the upper opening, and this is connected to the drain pipe 3b, in the same manner as described above. The buoyant force acting on the cylinder wall changes, and the external and internal pressures that the water intake tube 1b receives change due to changes in the H 1 and H 2 water levels, so the tension that acts on the jacket cloth is not constant, and the water intake tube 1
Since the force that tries to bring the upper part of the drain pipe 3b closer to the drain pipe 3b changes, the buoyancy force required for the floating body changes, the overflow water depth h is not constant, and there is a drawback that quantitative water diversion is virtually impossible.

さらに第3図に示すように、取水筒1c,1d
が排水管2cに対して外側に嵌挿する(1dはな
くともよい)形式のものもあるが、このものは筒
内の水から下向きの水圧P1,P2を受ける上向きの
面を有する取水筒を採用し、しかもこの場合は取
水筒の受ける水圧P1,P2が内水の水位H2の位置
によつて変るので、前記した第1図の形式のもの
と同様に仮りに水位H1が一定の場合でも水位H2
の変化によつてフロートの水没量が変化すること
によつてhが変化し、事実上定量分水ができない
欠点があつた。
Furthermore, as shown in FIG. 3, water intake tubes 1c and 1d
There is also a type in which the drain pipe 2c is inserted outwardly into the drain pipe 2c (1d is not necessary), but this type has an upward facing surface that receives the downward water pressure P 1 and P 2 from the water in the cylinder. In this case, the water pressures P 1 and P 2 received by the water intake tube vary depending on the position of the water level H 2 of the internal water. The water level H2 even if 1 is constant
As the amount of water submerged in the float changes due to a change in the amount of water, h changes, resulting in a drawback that it is virtually impossible to perform quantitative water distribution.

この発明は上記従来のもののもつ欠点を排除し
て、H1,H2水位が変化しても取水筒に作用する
外力を変化させないことによつて、越流水深hを
一定に保つようにして定量分水を可能とする定量
分水装置を提供することを目的とするものであ
る。
This invention eliminates the drawbacks of the above-mentioned conventional methods, and maintains the overflow water depth h constant by not changing the external force acting on the water intake pipe even if the H 1 and H 2 water levels change. The object of the present invention is to provide a quantitative water separation device that enables quantitative water separation.

以下、この発明の実施例を第4,5図を参照し
て説明する。図において1は上部が開口した取水
筒であつて、この取水筒1は上方をハンガーフレ
ーム15により吊設されている。ハンガーフレー
ム15は中央に下端が取水筒1内に突出する凹陥
部18を形成し、この凹陥部18にその開口端に
配設されたブツシユ19を介してフロート支持フ
レーム14の下面中央に取付けた中空ラム17を
嵌挿している。該ラム17にはフレーム14に垂
直に配設された調節棒16が挿通され、この調節
棒16は頭部が回動しやすいように角形になつて
いるとともに、雄ねじ部26を凹陥部18の底壁
に形成した雌ねじ部27に螺合させている。また
フレーム14の両側に一対となつて取付けられた
フロート13の一方の内側上部には、ハンガーフ
レーム15の回り止め用切片20が取付けられて
いる。したがつて調節棒16を回動することによ
り、取水筒1をハンガーフレーム15を介してフ
レーム14に対して垂直方向に相対的に昇降し、
越流水深hを所定の高さに微調節して設定できる
ようになつている。
Embodiments of the present invention will be described below with reference to FIGS. 4 and 5. In the figure, reference numeral 1 denotes a water intake tube with an open top, and the water intake tube 1 is suspended from above by a hanger frame 15. The hanger frame 15 has a recessed part 18 in the center whose lower end protrudes into the water intake tube 1, and is attached to the center of the lower surface of the float support frame 14 through a bush 19 provided at the open end of the recessed part 18. A hollow ram 17 is inserted. An adjustment rod 16 disposed perpendicularly to the frame 14 is inserted into the ram 17, and the head of the adjustment rod 16 is rectangular so that it can be easily rotated. It is screwed into a female threaded portion 27 formed on the bottom wall. Further, a piece 20 for preventing rotation of the hanger frame 15 is attached to the upper inner side of one of the floats 13 attached as a pair on both sides of the frame 14. Therefore, by rotating the adjustment rod 16, the water intake tube 1 is raised and lowered vertically relative to the frame 14 via the hanger frame 15,
The overflow water depth h can be finely adjusted and set to a predetermined height.

また、凹陥部18の下側壁には複数個の窓孔2
8が穿設され、凹陥部18が取水筒1の内部の水
に浸る場合でも凹陥部の内外は水が連通し、凹陥
部18の受ける浮力を最小に止められるようにな
つている。
Further, a plurality of window holes 2 are provided in the lower wall of the recessed portion 18.
8 is bored, so that even when the recessed part 18 is immersed in water inside the water intake tube 1, water is communicated between the inside and outside of the recessed part, and the buoyancy force applied to the recessed part 18 can be minimized.

フレーム14と、フロート13下端のそれぞれ
外向き端部にはホイール21が取付けられてい
て、このホイール21を水槽23の側板29に配
設したレール22に転動可能に遊合し、前記取水
筒1とフロート13から構成される浮体がH1
位の変化に伴い円滑に昇降できるようになつてい
る。そして、該浮体は全体が水槽23の天板24
との間に配設されたジヤツキ・アツプ・ボルトま
たは吊上げロープなどの吊上げ機構(図示せず)
により必要な場合に限り、浮体を吊上げることが
できるようになつている。但し、上記の吊上げ機
構は常時取水を行う場合には、取水筒の昇降を妨
げないように付設される。また取水筒1は下方
が、その上端開口部が外向きに傾斜して拡開した
内筒2にブツシユ3を介して遊合隙間Gをもつて
垂直に嵌挿されている。遊合隙間Gは取水筒1の
外径Dを1000mmと仮定すると、0.5〜1.5mmの範囲
内のものが最も好適である。
A wheel 21 is attached to the outer end of the frame 14 and the lower end of the float 13, and the wheel 21 is rotatably engaged with a rail 22 provided on a side plate 29 of the water tank 23, and The floating body consisting of H1 and float 13 can be smoothly raised and lowered as the water level changes. The entire floating body is placed on the top plate 24 of the water tank 23.
a lifting mechanism (not shown) such as a jack-up bolt or lifting rope installed between the
This allows the floating body to be lifted only when necessary. However, when the above-mentioned lifting mechanism is used for constant water intake, it is attached so as not to obstruct the raising and lowering of the water intake tube. Further, the lower part of the water intake tube 1 is vertically inserted into an inner tube 2 whose upper end opening is inclined outward and expanded, with a play gap G through a bush 3. Assuming that the outer diameter D of the water intake tube 1 is 1000 mm, the play gap G is most preferably within the range of 0.5 to 1.5 mm.

内筒2は排水管4の上向き開口部に可撓性材料
(ゴム板など)よりなる環状のスカート5によつ
て水密的に接続されて、前記拡開した傾斜部12
に設けた取付片の吊り孔7を介して天板24から
ロープ、リンクチエーンなど支持部材としての索
条8により吊下げられている。この際索条8はス
カート5が撓む程度に張設される。内筒2のスカ
ート5の最上部に面する筒壁には複数個の空気抜
き孔9が穿設され、空気の蓄積による突発的な噴
出により内筒2が振動を起すのを防ぐようになつ
ている。
The inner cylinder 2 is watertightly connected to the upward opening of the drain pipe 4 by an annular skirt 5 made of a flexible material (such as a rubber plate).
It is suspended from the top plate 24 by a cable 8 as a support member such as a rope or a link chain through a hanging hole 7 of a mounting piece provided in the top plate 24 . At this time, the cables 8 are stretched to such an extent that the skirt 5 is bent. A plurality of air vent holes 9 are bored in the cylinder wall facing the top of the skirt 5 of the inner cylinder 2 to prevent the inner cylinder 2 from vibrating due to sudden ejection due to accumulation of air. There is.

また取水筒1の下端には横向きで若干内側に突
出したパツキン10を押え板11により取付けら
れていて、前記のように必要に応じて浮体を吊上
げることによりパツキン10を内筒2の傾斜部1
2に密着させ、隙間Gを通る漏水を完全に遮断す
ることができるようになつている。
Further, a gasket 10 that is oriented horizontally and protrudes slightly inward is attached to the lower end of the water intake tube 1 by means of a holding plate 11, and as described above, by lifting the floating body as necessary, the gasket 10 can be moved to the inclined part of the inner tube 2. 1
2, so that water leakage through the gap G can be completely blocked.

なお、図中6は押え板である。尚、前記索条8
による内筒2の吊設に代え、第6図に示す弾性板
30を使用した構造のものとすることもできる。
この弾性板30は短冊型の薄い金属板からなり、
中央部をやや外側に膨出させて構成し、スカート
5の外周に押え板6によつて複数個取付ける。そ
して、弾性板30は全体として内筒2、ブツシユ
3の自重を支え、もし内筒2と浮体との芯違いの
ために内筒2に水平力がかかるときは弾性板30
は弾性により変形して容易に内筒2を水平方向に
動かし浮体の中心と合致させ、取水筒1の昇降を
妨げないようになつている。このように弾性板3
0を使用した場合は吊上げ機構を介してパツキン
10を内筒2の傾斜部12に密着させた場合、内
筒2に加わる上昇力を弾性板30の張力によつて
支えることができるのでスカート5に無理な力が
加わらない利点があり、また内筒2の中に索条8
のような邪魔物をなくすることができるので、水
の中の異物(ビニールシート、ひもなど)が引つ
かかるという心配がなくなる。また、第4図の符
号x,x′と越流水深(最大)hmaxの関係はhmax
<x<x′にする。また、水槽23の水受口25か
ら取り込んだ一次側(幹線水路)の水の水位H1
に対して浮体である取水筒1の高さを調節棒16
を回動することにより所定の越流水深hに設定す
れば、一次側水位の変動範囲H1〜H′1において一
次側の水は取水筒1内に一定流量で越流され、こ
の水は内筒2および排水管4を経て、槽外にある
二次側(支線水路)に排出されることになる。
In addition, 6 in the figure is a presser plate. In addition, the cable 8
Instead of suspending the inner cylinder 2, a structure using an elastic plate 30 shown in FIG. 6 may be used.
This elastic plate 30 is made of a rectangular thin metal plate,
The center part is configured to bulge out slightly to the outside, and a plurality of skirts are attached to the outer periphery of the skirt 5 by presser plates 6. The elastic plate 30 supports the weight of the inner cylinder 2 and the bush 3 as a whole, and if horizontal force is applied to the inner cylinder 2 due to misalignment between the inner cylinder 2 and the floating body, the elastic plate 30
is elastically deformed to easily move the inner cylinder 2 in the horizontal direction and align it with the center of the floating body, so that it does not interfere with the vertical movement of the water intake cylinder 1. In this way, the elastic plate 3
0, when the packing 10 is brought into close contact with the inclined part 12 of the inner cylinder 2 via the lifting mechanism, the lifting force applied to the inner cylinder 2 can be supported by the tension of the elastic plate 30, so the skirt 5 This has the advantage that no excessive force is applied to the inner tube 2, and the cable 8 is
Since you can eliminate obstacles such as , you no longer have to worry about foreign objects in the water (plastic sheets, strings, etc.) getting caught. In addition, the relationship between the symbols x, x' in Figure 4 and the overflow water depth (maximum) hmax is hmax
<x<x'. In addition, the water level H 1 of the water on the primary side (main waterway) taken in from the water inlet 25 of the water tank 23
The height of the water intake tube 1, which is a floating body, is adjusted using the adjustment rod 16.
If a predetermined overflow water depth h is set by rotating , the water on the primary side will overflow into the water intake tube 1 at a constant flow rate in the fluctuation range of the primary side water level H 1 to H' 1 , and this water will be It will be discharged to the secondary side (branch waterway) outside the tank via the inner cylinder 2 and drain pipe 4.

この発明は前記のようであつて、取水筒1を排
水管4と連結した内筒2の外側に嵌挿し、取水筒
1が筒内の水に接する面を垂直な筒内壁面(第4
図の′)に限定したので、筒内の水がA点以下
にある限りは取水筒1は垂直方向(上向き、下向
きを問わず)の水圧を受けず、内水の水圧は水平
方向の側圧だけになるので、取水筒1はH2水位
の位置に関係なく、内水からは垂直方向の浮力を
一切受けない。また取水筒1は筒外の水に接する
垂直筒壁以外の面から垂直方向の水圧P1,P2,P3
を受けることにより、これ等の代数和として外水
に浸積する筒の体積に相当する重量に等しい一定
の浮力を受ける。これらの結果として内水の水位
H2がA点以下である限りは取水筒1に作用する
浮力はH1,H2水位の位置に関係なく一定であ
る。
This invention is as described above, and the water intake tube 1 is fitted into the outside of the inner tube 2 connected to the drain pipe 4, and the surface of the water intake tube 1 that contacts the water inside the tube is the vertical inner wall surface (the fourth
') in the figure, so as long as the water in the cylinder is below point A, water intake cylinder 1 will not receive water pressure in the vertical direction (regardless of whether it is upward or downward), and the water pressure in the internal water will be the horizontal side pressure. Therefore, the water intake tube 1 does not receive any vertical buoyancy from the internal water, regardless of the position of the H2 water level. In addition, the water intake tube 1 has vertical water pressure P 1 , P 2 , P 3 from a surface other than the vertical tube wall that contacts the water outside the tube.
As a result, it receives a constant buoyant force equal to the weight equivalent to the volume of the cylinder immersed in the open water as an algebraic sum of these forces. As a result of these inland water levels
As long as H 2 is below point A, the buoyant force acting on the water intake tube 1 is constant regardless of the positions of the water levels H 1 and H 2 .

また、この際取水筒1と内筒2との間にはパツ
キンを使用しないためパツキン抵抗はなく、取水
筒1とブツシユ3との間の摩擦抵抗は隙間Gによ
り軽微となり、その抵抗の変化は無視できる程度
であるから、取水筒1に作用する外力は常に一定
であるので、一旦越流水深hを設定すれば取水筒
1のH1水位に対する垂直方向の相対位置は一定
し、hは一定に保たれる。したがつてH1または
H2水位の変化に関係なく越流による取水筒1内
に取りこまれる水量を常に一定に保つことが可能
となり、定量分水は事実上達成される。
In addition, since no gasket is used between the water intake tube 1 and the inner tube 2 at this time, there is no gasket resistance, and the frictional resistance between the water intake tube 1 and the bush 3 is slight due to the gap G, and the change in resistance is Since it is negligible, the external force acting on the water intake tube 1 is always constant, so once the overflow water depth h is set, the vertical position of the water intake tube 1 relative to the H1 water level is constant, and h is constant. is maintained. Therefore H 1 or
It becomes possible to always keep the amount of water taken into the water intake tube 1 by overflow constant regardless of changes in the H2 water level, and quantitative water diversion is practically achieved.

なお、前記の場合において越流水量がなく、取
水筒1の内外の水が静止の状態では取水筒1とブ
ツシユ3との隙間Gから漏入する水量はH1―H2
の値に比例するが、越流により取水筒1の外から
内へ水が流れる状態では落差H1―H2に比例する
落下水による動圧の作用により隙間Gの上下にか
かる水圧差はH1―H2の値の変化ほど大きくない
から、この隙間Gを経て取水筒1へ漏入して付加
される水量は越流水量に対して誤差範囲に抑える
ことができる。
In addition, in the above case, when there is no overflow water and the water inside and outside the water intake tube 1 is stationary, the amount of water leaking from the gap G between the water intake tube 1 and the bush 3 is H 1 - H 2
However, when water flows from the outside to the inside of the water intake tube 1 due to overflow, the water pressure difference between the top and bottom of the gap G is H 1 - Since it is not as large as the change in the value of H 2 , the amount of water leaking into the water intake pipe 1 through this gap G and being added can be kept within the error range with respect to the amount of overflow water.

また取水筒1による取水を取り止めたい場合に
は、吊上げ機構によつてフレーム14を吊上げ、
取水筒1の下端に設けたパツキン10を内筒2の
傾斜部12に密着させてシールし、隙間Gからの
漏水をなくするとともに、取水筒1の上部の開口
部を一次側の水位H1より上方に位置させ、取水
筒1の上部開口部からの越流を止めることによつ
て取水の中止が可能となる。
In addition, if you want to stop water intake by the water intake tube 1, lift the frame 14 using the lifting mechanism,
The gasket 10 provided at the lower end of the water intake tube 1 is brought into close contact with the inclined part 12 of the inner tube 2 to seal it, eliminating water leakage from the gap G, and keeping the opening at the top of the water intake tube 1 close to the water level H 1 on the primary side. By locating it higher up and stopping overflow from the upper opening of the water intake tube 1, water intake can be stopped.

この発明は以上のように構成され、かつ作用す
るので、次のような効果を奏するものである。
Since the present invention is configured and operates as described above, it has the following effects.

(1) 水槽又は排水管に設けた支持部材によつて支
持された内筒の外側に、上下端が開口した取水
筒を遊合隙間をもつて垂直に摺動自在に嵌挿
し、この取水筒を水槽内の水位の変化に応じて
昇降するフロートに接続したので、取水筒は該
筒内の水の水圧によつて浮力を受けることな
く、従つて、フロートとともに昇降する取水筒
に作用する外力を常に一定にできる。
(1) A water intake pipe with open upper and lower ends is vertically slidably inserted into the outer side of the inner cylinder supported by a support member installed in the water tank or drain pipe, and this water intake pipe is connected to a float that moves up and down according to changes in the water level in the water tank, so the water intake tube does not receive buoyancy due to the water pressure of the water in the tank, and therefore the external force acting on the water intake tube that moves up and down with the float can always be kept constant.

(2) 取水筒と内筒との間には従来のようなパツキ
ンを介装しないため、取水筒の内筒に対する摺
動に際し、摩擦抵抗を極めて少なく、かつその
大きさを殆ど一定にできる。
(2) Since there is no packing between the water intake cylinder and the inner cylinder as in the conventional case, when the water intake cylinder slides against the inner cylinder, the frictional resistance is extremely small and its size can be kept almost constant.

(3) 前記(1)、(2)の結果として越流水深hが一定に
保たれ、従つてH1,H2水位の変化に係らず越
流水量を常に一定にでき、従つて定量分水が可
能となる。
(3) As a result of (1) and (2) above, the overflow water depth h is kept constant, and therefore the overflow water amount can always be kept constant regardless of changes in the H 1 and H 2 water levels, and therefore the quantitative amount water becomes possible.

(4) 前記定量分水に際し、内筒を排水管の開口部
にゴム材料からなるスカートを介して水平方向
の移動が可能なように接続し、かつ前記支持部
材をこの内筒の移動と追随して移動可能に設け
たので、H1水位が急激に変動したりして取水
筒に水平方向の負荷がかかつたとき、この取水
筒が嵌挿する内筒を前記スカートの伸縮によ
り、水平方向に移動させて該負荷を吸収し、内
筒と取水筒の摺動面に前記負荷に基づく摩耗、
損傷等が生じるのを防止して、取水筒の円滑な
摺動を常に確保することができる。
(4) When performing the quantitative water diversion, the inner tube is connected to the opening of the drain pipe via a skirt made of rubber material so as to be movable in the horizontal direction, and the support member follows the movement of the inner tube. Since it is movable, when a horizontal load is applied to the water intake tube due to sudden changes in the water level, the inner tube into which the water intake tube is inserted can be moved horizontally by the expansion and contraction of the skirt. The sliding surface of the inner cylinder and the water intake cylinder is caused to wear due to the load by moving in the direction of
It is possible to prevent damage from occurring and ensure smooth sliding of the water intake tube at all times.

尚、上記発明は農水用幹線水路から幹線及び二
次側水位に係りなく二次側水路に定量分水する場
合とか、汚水を砂過するために汚水を過装置
に定量供給する場合など、各種の定量水供給の用
途に使用できる。
The invention described above can be used in various applications, such as when distributing a fixed amount of water from a main agricultural canal to a secondary canal regardless of the main and secondary water levels, or when supplying a fixed amount of sewage to a filtration device for filtering sewage. Can be used for metered water supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2,3図はそれぞれ従来の定量分水装置
の要部を示す縦断面図、第4図はこの発明に係る
定量分水装置の縦断面図、第5図は第4図のV―
V線に沿つて見て示す横断面図、第6図は内筒の
支持部の他の実施例を示す要部拡大断面図であ
る。 1…取水筒、2…内筒、3…ブツシユ、4…排
水管、5…スカート、6…押え板、7…吊り孔、
8…索条、9…空気抜き孔、10…パツキン、1
1…押え板、12…傾斜部、30…弾性板。
1, 2, and 3 are longitudinal cross-sectional views showing the main parts of a conventional quantitative water distributing device, FIG. 4 is a vertical cross-sectional view of a quantitative water dividing device according to the present invention, and FIG. ―
FIG. 6 is a cross-sectional view taken along line V, and FIG. 6 is an enlarged cross-sectional view of essential parts showing another embodiment of the support portion of the inner cylinder. 1... Water intake cylinder, 2... Inner cylinder, 3... Bush, 4... Drain pipe, 5... Skirt, 6... Holding plate, 7... Hanging hole,
8... Cable, 9... Air vent hole, 10... Packing, 1
DESCRIPTION OF SYMBOLS 1... Presser plate, 12... Inclined part, 30... Elastic plate.

Claims (1)

【特許請求の範囲】[Claims] 1 水槽内に、開口部が上向きに配置された排水
管を設け、この排水管の開口部に、上下端が開口
した内筒をゴム材料からなるスカートを介して水
平方向の移動が可能に水密的に接続し、かつこの
内筒を前記水槽又は排水管に内筒の移動と追随し
て移動可能に設けた支持部材によつて支持し、前
記内筒の外側に、遊合隙間をもつて上下端が開口
した取水筒を垂直に摺動自在に嵌挿し、この取水
筒を前記水槽内の水位の変化に応じて昇降するフ
ロートに接続したことを特徴とする定量分水装
置。
1 A drain pipe with an opening facing upward is provided in the aquarium, and an inner cylinder with open upper and lower ends is placed in the opening of the drain pipe to allow horizontal movement via a skirt made of rubber material, making it watertight. and supporting this inner cylinder by a supporting member that is movable in accordance with the movement of the inner cylinder in the water tank or drain pipe, and having a play gap on the outside of the inner cylinder. A quantitative water distribution device characterized in that a water intake tube with open upper and lower ends is slidably inserted vertically, and the water intake tube is connected to a float that moves up and down according to changes in the water level in the water tank.
JP12257380A 1980-09-04 1980-09-04 Fixed-quantity diversion device Granted JPS5748010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12257380A JPS5748010A (en) 1980-09-04 1980-09-04 Fixed-quantity diversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12257380A JPS5748010A (en) 1980-09-04 1980-09-04 Fixed-quantity diversion device

Publications (2)

Publication Number Publication Date
JPS5748010A JPS5748010A (en) 1982-03-19
JPS6216284B2 true JPS6216284B2 (en) 1987-04-11

Family

ID=14839241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12257380A Granted JPS5748010A (en) 1980-09-04 1980-09-04 Fixed-quantity diversion device

Country Status (1)

Country Link
JP (1) JPS5748010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082041A (en) * 1996-09-10 1998-03-31 Kubota Corp Method and equipment for measuring diversion flow rate in diversion work

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781261B2 (en) * 1989-09-13 1995-08-30 株式会社三和技術コンサルタント Water diversion device
US6213684B1 (en) * 1998-10-26 2001-04-10 Jack Fowler Telescoping weir
JP4966511B2 (en) * 2005-04-28 2012-07-04 積水化学工業株式会社 Aquarium
JP7276729B2 (en) * 2018-08-13 2023-05-18 国立研究開発法人農業・食品産業技術総合研究機構 Water supply and drainage control device for managing rainwater storage in farmland

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082041A (en) * 1996-09-10 1998-03-31 Kubota Corp Method and equipment for measuring diversion flow rate in diversion work

Also Published As

Publication number Publication date
JPS5748010A (en) 1982-03-19

Similar Documents

Publication Publication Date Title
US4405458A (en) Continuous flow, variable capacity self-compensating floating weir
KR0172451B1 (en) Automatic swing fishway apparatus
CA1120349A (en) Apparatus for floating and sinking fish breeding netted tanks
US4132238A (en) Automatic separator valve
JP3828935B2 (en) Method and apparatus for scooping a floating surface layer from a water surface
CN101678953B (en) Overflow drainage system for floating roof storage tank
US8591148B2 (en) Multi-rate flow control system for a detention pond
NO20191155A1 (en) Submersible cage
JPS6216284B2 (en)
JPH1193148A (en) Upper stream water level regulation sluice gate
JPS6137044Y2 (en)
JPS6137045Y2 (en)
US4242009A (en) Apparatus for automatically and selectively discharging saline water
JPS63309123A (en) Sinking and floating culture apparatus
US2103871A (en) Canal lock
CN216616067U (en) Water tank overflow device and water tank
JP2935699B1 (en) Automatic overflow weir using buoyancy
SU1021706A1 (en) Apparatus for maintaining water level in hydrotechnical structure
CA2757363C (en) Multi-rate flow control system for a detention pond
JP3993713B2 (en) Underwater pollution control device
JPS63820Y2 (en)
JP4082260B2 (en) Float type selective water intake equipment
JP3300959B2 (en) Gate switchgear
JPS6027517Y2 (en) Suction device for floating objects on liquid surface
KR20030083620A (en) A dam with water level automatic control fuction