JPS62162648A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPS62162648A
JPS62162648A JP532686A JP532686A JPS62162648A JP S62162648 A JPS62162648 A JP S62162648A JP 532686 A JP532686 A JP 532686A JP 532686 A JP532686 A JP 532686A JP S62162648 A JPS62162648 A JP S62162648A
Authority
JP
Japan
Prior art keywords
optical fiber
quartz tube
carbon
preform
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP532686A
Other languages
Japanese (ja)
Inventor
Makoto Tsukamoto
誠 塚本
Koji Okamura
浩司 岡村
Masaji Miki
三木 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP532686A priority Critical patent/JPS62162648A/en
Publication of JPS62162648A publication Critical patent/JPS62162648A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/74Means for moving at least a part of the draw furnace, e.g. by rotation or vertical or horizontal movement

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:The preform for optical fiber is heated in a quartz tube reciprocating in the vertical direction to inhibit contaminants from furnace materials from depositing on the preform or on the resultant optical fiber whereby the strength of the drawn optical fiber is increased. CONSTITUTION:When the preform 1 is drawn into optical fiber 1A, a vertically reciprocating quartz tube is set on the axis of the furnace which is composed of carbon heaters 2 and carbon core tube 3. Then, the preform 1 is inserted into the quartz tube 10 and the objective optical fiber is formed by drawing. According to the process of the present invention, the fine particles or impurities flying out of the carbon core tube 3 and the carbon heaters 2 precipitate on the outer surface of the quartz tube 10 and carbon heaters 2 precipitate on the outer surface of the quartz tube 10 and the contamination of the preform 1 or the optical fiber 1A can be completely avoided. Thus, the resultant fiber is made free from impurities and damages and has increased strength. Moreover, the quartz tube 10 vertically reciprocates without local heating, resulting in prolonged life.

Description

【発明の詳細な説明】 〔概要〕 光ファイバ母材を加熱して光ファイバに線引きするにあ
たり、垂直方向に往復運動する石英管内で、光ファイバ
母材を加熱することにより、炉材の不純物が、光ファイ
バ母材、或いは光ファイバに付着することを阻止して、
線引きした光ファイバの強度を向上させる。
[Detailed Description of the Invention] [Summary] When heating an optical fiber base material and drawing it into an optical fiber, impurities in the furnace material are removed by heating the optical fiber base material in a quartz tube that reciprocates in the vertical direction. , preventing it from adhering to the optical fiber base material or the optical fiber,
Improves the strength of drawn optical fiber.

〔産業上の利用分野〕[Industrial application field]

本発明は光ファイバの製造方法に関する。 The present invention relates to a method of manufacturing an optical fiber.

石英系の光ファイバは、光ファイバと導波構造が相似な
棒状の光ファイバ母材を製造し、この光ファイバ母材を
、はぼ2000℃に加熱して軟化し、外径が100 t
tm−150μm、長さが数十iになるように引き伸ば
すことにより製造される。
For silica-based optical fibers, a rod-shaped optical fiber base material with a waveguide structure similar to that of an optical fiber is manufactured, and this optical fiber base material is heated to about 2000°C to soften it and have an outer diameter of 100 t.
tm-150 μm, and is manufactured by stretching it to a length of several tens of meters.

一方、光通信技術の進歩とともに、海底ケーブルに光フ
ァイバが使用されるようになり、このような海底ゲーブ
ル用の光ファイバは、光機器内に用いる光ファイバ、或
いは陸上布設用の光ファイバに較べて、より強度の高い
ことが要求されている。
On the other hand, with the advancement of optical communication technology, optical fibers have come to be used for submarine cables, and optical fibers for submarine cables are more expensive than optical fibers used in optical equipment or optical fibers for land-based installations. Therefore, higher strength is required.

〔従来の技術〕[Conventional technology]

第2図は従来の光ファイバの製造方法を示す側断面図で
あり、第3図はカーボンヒータの斜視図である。
FIG. 2 is a side sectional view showing a conventional optical fiber manufacturing method, and FIG. 3 is a perspective view of a carbon heater.

第2図、第3図において、光ファイバ母材を局部的に加
熱する加熱炉は、カーボン材よりなり、円筒壁に千鳥状
にスリ7)2Aを有するカーボンヒータ2と、カーボン
ヒータ2内に、同心円状に装着された円筒形のカーボン
炉心管3とより構成されている。カーボンヒータ2には
、一対の電極2Bを備え、通電することにより、カーボ
ン炉心管3内を所望の温度(例えばほぼ2000℃)に
保持するように制御される。
In FIGS. 2 and 3, the heating furnace that locally heats the optical fiber base material is made of carbon material, and includes a carbon heater 2 having staggered slots 7) 2A on the cylindrical wall, and , and cylindrical carbon furnace core tubes 3 mounted concentrically. The carbon heater 2 includes a pair of electrodes 2B, and is controlled to maintain the inside of the carbon furnace tube 3 at a desired temperature (for example, approximately 2000° C.) by applying electricity.

カーボン炉心管3は、温度分布を均一にするものである
。なお、カーボンヒータ2.カーボン炉心管3の消耗を
防ぐために、窒素ガス等の不活性ガスを、加熱炉内に注
入している。
The carbon furnace core tube 3 makes the temperature distribution uniform. Note that carbon heater 2. In order to prevent consumption of the carbon furnace core tube 3, an inert gas such as nitrogen gas is injected into the heating furnace.

このように構成された加熱炉の軸心部に、外径が数十能
、長さが百数十Gの光ファイバ母材1を垂直に、3.5
 w /分、前後の降下速度で送り込みと、光ファイバ
母材1の下先端が局部的に加熱されて軟化し、紡錘形と
なり、その先端部より所望に細い外径の、光ファイバL
Aが線引きされる。
An optical fiber base material 1 with an outer diameter of several tens of G and a length of 100 G is vertically placed at the axial center of the heating furnace configured in this way.
When the optical fiber preform 1 is fed at a descending speed of about 100 yen/min, the lower tip of the optical fiber preform 1 is locally heated and softened to form a spindle shape, and an optical fiber L having a desirably smaller outer diameter than the tip is formed.
A is delineated.

なお、線引きされた光ファイバIAは、図示してないが
、加熱炉の直下で一次被覆され、キャンプスクンを介し
て巻取りドラムに巻回される。
Although not shown, the drawn optical fiber IA is primarily coated directly under the heating furnace, and then wound around a winding drum via a camp screen.

このようにして製造された光ファイバ1八は、0.5%
のスクリーニング試験(光ファイバに0.5%の伸びを
与えて、光ファイバの全長にわたり、破断の有無を検査
する)に、殆どが合格するものであって、陸上布設の光
ファイバとして、充分に強度がある。
The optical fiber 18 manufactured in this way has a 0.5%
Most of them pass the screening test (applying an elongation of 0.5% to the optical fiber and inspecting the entire length of the optical fiber for the presence or absence of breakage), and are sufficient for use as optical fibers installed on land. It has strength.

上述のように、加熱炉にカーボンヒータ2、カーボン炉
心管3を用いることは、陸上布設の光ファイバとして、
充分に強度があり、且つ炉の構造が簡単で、低コストで
あり、また温度制御が容易である等というメリットが多
いので、広く使用されている。
As mentioned above, using the carbon heater 2 and the carbon furnace core tube 3 in the heating furnace makes it possible to use an optical fiber installed on land.
It is widely used because it has many advantages such as sufficient strength, simple furnace structure, low cost, and easy temperature control.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来手段により得られた光ファイバは
、線引き時の高温加熱により、カーボンヒータ、カーボ
ン炉心管等より、カーボンの微粒子、或いは含有されて
いる不純物が飛び出して、光ファイバ母材、或いは光フ
ァイバに付着することに起因して、2%のスクリーニン
グ試験で、数個所の破断が認められる。
However, in the optical fiber obtained by the above-mentioned conventional means, due to high temperature heating during drawing, fine carbon particles or contained impurities fly out from the carbon heater, carbon furnace tube, etc. In the 2% screening test, several fractures were observed due to adhesion to the surface.

即ち、従来の光ファイバの製造方法は、より強度の高い
ことが要求される海底ケーブル用の光ファイバに適用し
て、強度の信頼度が低いという問題点がある。
That is, the conventional optical fiber manufacturing method has a problem in that the reliability of the strength is low when applied to optical fibers for submarine cables, which require higher strength.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の問題点を解決するため本発明方法は、第1図
の如くに、光ファイバ母材1より光ファイバIAに線引
きするにあたり、カーボンヒータ2とカーボン炉心管3
とより構成された加熱炉の軸心部に、垂直方向に往復運
動する石英管10を設けて、石英管10内に光ファイバ
母材1を挿通して、光ファイバを線引きするようにした
ものである。
In order to solve the above-mentioned conventional problems, the method of the present invention, as shown in FIG.
A quartz tube 10 that reciprocates in the vertical direction is provided at the axial center of a heating furnace, and an optical fiber base material 1 is inserted into the quartz tube 10 to draw the optical fiber. It is.

〔作用〕[Effect]

上記本発明方法によれば、カーボン炉心管3及びカーボ
ンヒータ2より飛び出たカーボンの微粒子、或いは不純
物は、石英管10の外周面に付着するので、光ファイバ
IA、或いは光ファイバ母材1に付着する恐れがない。
According to the method of the present invention, the carbon particles or impurities ejected from the carbon furnace core tube 3 and the carbon heater 2 adhere to the outer circumferential surface of the quartz tube 10, so that they do not adhere to the optical fiber IA or the optical fiber base material 1. There is no fear of it happening.

したがって、線引きされた光ファイバIAに、石英以外
の不純物が含有される恐れがなく、また傷の発生も殆ど
なくて、光ファイバIAの強度が向上する。
Therefore, there is no possibility that impurities other than quartz may be contained in the drawn optical fiber IA, and there is almost no occurrence of scratches, so that the strength of the optical fiber IA is improved.

また、石英管10は上下に往復運動しているので、局部
的に高温になることが阻止され、長寿命である。
Furthermore, since the quartz tube 10 reciprocates up and down, local high temperatures are prevented, resulting in a long life.

〔実施例〕〔Example〕

以下図示実施例により、本発明方法を具体的に説明する
。なお、全図を通じて同一符号は同一対象物を示す。
The method of the present invention will be specifically explained below with reference to the illustrated examples. Note that the same reference numerals indicate the same objects throughout the figures.

第1図は本発明方法の1実施例の側断面図であって、加
熱炉は、カーボンヒータ2.カーボン炉心管3.カーボ
ン炉心管3の下部に配設した下部シール管4、及び、カ
ーボン炉心管3内で同心円状に配設され、上下に往復運
動する石英管1oとより、構成されている。
FIG. 1 is a side sectional view of one embodiment of the method of the present invention, in which the heating furnace includes a carbon heater 2. Carbon furnace tube 3. It is composed of a lower seal tube 4 disposed at the lower part of the carbon furnace core tube 3, and a quartz tube 1o that is disposed concentrically within the carbon furnace core tube 3 and reciprocates up and down.

また、この加熱炉の全体は、例えば窒素ガス等の不活性
ガスの雰囲気中に設置されている。
Further, the entire heating furnace is installed in an atmosphere of an inert gas such as nitrogen gas.

下部シール管4は、カーボン炉心管3とほぼ同じ内径の
石英よりなる円筒状であって、管壁より不活性ガス、例
えば窒素ガスを注入するように構成され、上部のカーボ
ン炉心管33石英管10の消耗を阻止している。
The lower seal tube 4 has a cylindrical shape made of quartz and has an inner diameter approximately the same as that of the carbon core tube 3, and is configured to inject an inert gas, such as nitrogen gas, from the tube wall. It prevents the consumption of 10.

石英管10は、中空孔の内径が光ファイバ母材1の外径
よりも充分に太き(、長ざがカーボン炉心管3よりも充
分に長い円筒形である。
The quartz tube 10 has a cylindrical shape in which the inner diameter of the hollow hole is sufficiently thicker than the outer diameter of the optical fiber preform 1 (and the length is sufficiently longer than the carbon core tube 3).

石英管10に上下の往復運動を付与する手段は下記の如
(である。
The means for imparting vertical reciprocating motion to the quartz tube 10 is as follows.

石英管10の上部を、把持具11で把持し、把持具11
の端部に垂直にねじ孔を設ける。図示してないモーター
により正逆回転するネジ軸12が、このねじ孔に螺合す
るように装着し、把持具11が水平面内で回転すること
を阻止するため、ネジ軸12に平行して、把持具11の
挿通孔を遊貫するガイドバー13を設けである。
The upper part of the quartz tube 10 is gripped by the gripper 11, and the gripper 11
Provide a vertical screw hole at the end of the A screw shaft 12, which is rotated forward and backward by a motor (not shown), is mounted so as to be screwed into this screw hole, and in order to prevent the gripping tool 11 from rotating in a horizontal plane, a A guide bar 13 is provided to loosely pass through the insertion hole of the gripper 11.

このように構成しであるので、ネジ軸12を例えば正回
転すると、石英管10は降下し、逆回転すると、石英管
10は上昇する。
With this structure, when the screw shaft 12 is rotated forward, for example, the quartz tube 10 descends, and when the screw shaft 12 is rotated in the reverse direction, the quartz tube 10 rises.

この石英管10の往復速度は、光ファイバ母材lの送り
速度のほぼ5倍の速い速度である。即ち、石英管10の
管壁のカーボンヒータ2に対応する部分は常時移動して
いる。     ″ したがって、石英管10が局部的に高温になることが阻
止され、石英管10が軟化したり、或いは変形する恐れ
が少な(、損傷が阻止される。
The reciprocating speed of this quartz tube 10 is approximately five times faster than the feeding speed of the optical fiber preform l. That is, the portion of the tube wall of the quartz tube 10 corresponding to the carbon heater 2 is constantly moving. ``Therefore, the quartz tube 10 is prevented from becoming locally heated, and there is little risk that the quartz tube 10 will become soft or deformed (and damage is prevented).

上述のように、光ファイバ母材1.光ファイバIAのカ
ーボンヒータ2により局部的に高温となっている部分は
、外周部が石英管10で保護されている。したがって、
カーボン炉心管3及びカーボンヒータ2より飛び出たカ
ーボンの微粒子、或いは不純物は、石英管10の外周面
に付着し、光ファイバ1八、或いは光ファイバ母材1に
付着しない。
As mentioned above, the optical fiber preform 1. The outer periphery of the portion of the optical fiber IA that is locally heated to a high temperature by the carbon heater 2 is protected by a quartz tube 10. therefore,
The carbon particles or impurities ejected from the carbon furnace core tube 3 and the carbon heater 2 adhere to the outer peripheral surface of the quartz tube 10 and do not adhere to the optical fiber 18 or the optical fiber base material 1.

なお、石英管10の成分が飛散して光ファイバ母材l、
或いは光ファイバLAに付着することがあっても、光フ
ァイバの表面と同成分であるので、溶融する。したがっ
て傷の発生にならない。
Note that the components of the quartz tube 10 are scattered and the optical fiber base material l,
Alternatively, even if it adheres to the optical fiber LA, it will melt because it has the same composition as the surface of the optical fiber. Therefore, no scratches will occur.

よって、線引きされた光ファイバIAに、不純物が含存
される恐れがなく、また傷の発生も殆どなくて、光ファ
イバIAの強度が向上する。
Therefore, there is no possibility that impurities will be contained in the drawn optical fiber IA, and there will be almost no scratches, thereby improving the strength of the optical fiber IA.

なお、本発明方法で線引きした光ファイバ(光ファイバ
の長さ5 kmで実施)を、2%のスクリーニング試験
の結果破断個所が認められなかった。
In addition, as a result of a 2% screening test of the optical fiber drawn by the method of the present invention (conducted with an optical fiber length of 5 km), no breakage was observed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明方法は、上下に往復運動する
石英管内で、光ファイバ母材を加熱することにより、炉
材の不純物が、光ファイバ母材。
As explained above, in the method of the present invention, impurities in the furnace material are removed from the optical fiber preform by heating the optical fiber preform in a quartz tube that reciprocates up and down.

或いは光ファイバに付着することが阻止されて、線引し
た光ファイバの強度が向上し、且つ加熱炉の寿命が長い
等、実用上で優れた効果がある。
Alternatively, adhesion to the optical fiber is prevented, which improves the strength of the drawn optical fiber, and has excellent practical effects such as extending the life of the heating furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の1実施例の側断面図、第2図は従
来の光ファイバの製造方法を示す側断面図、 第3図はカーボンヒータの斜視図である。 図において、 ■は光ファイバ母材、 IAは光ファイバ、 2はカーボンヒータ、 3はカーボン炉心管、 4は下部シール管、 10は石英管、 11は把持具、 12はネジ軸、 13はガイドバーを示す。
FIG. 1 is a side sectional view of one embodiment of the method of the present invention, FIG. 2 is a side sectional view showing a conventional optical fiber manufacturing method, and FIG. 3 is a perspective view of a carbon heater. In the figure, ■ is the optical fiber base material, IA is the optical fiber, 2 is the carbon heater, 3 is the carbon core tube, 4 is the lower seal tube, 10 is the quartz tube, 11 is the gripping tool, 12 is the screw shaft, and 13 is the guide Show bar.

Claims (1)

【特許請求の範囲】 光ファイバ(1A)を光ファイバ母材(1)より線引き
するにあたり、 該光ファイバ母材(1)の先端を軟化し紡糸する加熱炉
の軸心部に、該光ファイバ母材(1)が挿通され、中空
部に垂直方向に往復運動する石英管(10)を設けて、
線引きすることを特徴とする光ファイバの製造方法。
[Claims] In drawing the optical fiber (1A) from the optical fiber preform (1), the optical fiber is placed at the axial center of a heating furnace that softens the tip of the optical fiber preform (1) and spins it. A quartz tube (10) through which the base material (1) is inserted and which reciprocates in the vertical direction is provided in the hollow part.
A method of manufacturing an optical fiber, the method comprising drawing the optical fiber.
JP532686A 1986-01-14 1986-01-14 Production of optical fiber Pending JPS62162648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP532686A JPS62162648A (en) 1986-01-14 1986-01-14 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP532686A JPS62162648A (en) 1986-01-14 1986-01-14 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPS62162648A true JPS62162648A (en) 1987-07-18

Family

ID=11608119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP532686A Pending JPS62162648A (en) 1986-01-14 1986-01-14 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPS62162648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713272B2 (en) 2019-03-05 2023-08-01 Corning Incorporated System and methods for processing an optical fiber preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713272B2 (en) 2019-03-05 2023-08-01 Corning Incorporated System and methods for processing an optical fiber preform

Similar Documents

Publication Publication Date Title
FI77217B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN POLARISATIONSBEVARANDE OPTISK FIBER.
US4932740A (en) Method of making polarization retaining optical fiber coupler
JPS62162648A (en) Production of optical fiber
US4175942A (en) Method of glass drawing
KR100334779B1 (en) Optical fiber multi-line drawing equipment
CA2006352A1 (en) Polarization retaining fiber optic coupler and method
US5811376A (en) Method for making superconducting fibers
US5922098A (en) Cleaning a glass preform with a high temperature inert gas during the drawing of an optical fiber
JP5207571B2 (en) Rod-shaped preform for manufacturing optical fiber and method for manufacturing fiber
CN209020695U (en) A kind of optical fiber drawing-in device
JP4297320B2 (en) Cleaning method for optical fiber preform
JPS60186433A (en) Wiredrawing of optical fiber
JPS60103052A (en) Production of optical fiber
JPH08310825A (en) Method for working optical fiber preform
JP2004091304A (en) Aligning method for optical fiber preform
DE3440900A1 (en) Process for the production of a preform
JPS56155046A (en) Production of fluoride optical fiber
JPH04154642A (en) Method for producing and fabricating preform
JP6244872B2 (en) Optical fiber manufacturing method
JPH0623073B2 (en) Optical fiber manufacturing method
EP1050516A1 (en) Method for drawing optical fiber with reduced particulate defects and preform for use in the method
JPH11130457A (en) Production of optical fiber
JPS60215543A (en) Method of drawing optical fiber
JPS57196741A (en) Metal coating method for optical fiber with
JPH02196047A (en) Production of glass fiber