JPS6216254A - Optical recording media - Google Patents

Optical recording media

Info

Publication number
JPS6216254A
JPS6216254A JP60154274A JP15427485A JPS6216254A JP S6216254 A JPS6216254 A JP S6216254A JP 60154274 A JP60154274 A JP 60154274A JP 15427485 A JP15427485 A JP 15427485A JP S6216254 A JPS6216254 A JP S6216254A
Authority
JP
Japan
Prior art keywords
optical recording
recording medium
layer
sensitivity
recording media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60154274A
Other languages
Japanese (ja)
Inventor
Tetsuo Iijima
飯島 哲生
Iwao Hatakeyama
畠山 巌
Hironori Yamazaki
裕基 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60154274A priority Critical patent/JPS6216254A/en
Publication of JPS6216254A publication Critical patent/JPS6216254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain the recording media having the high reliability, the high density recording and a simple construction by forming two optical recording media layers which have the low sensitivity to the heating beam, the sensitivity higher than it and the different material, on the substrate. CONSTITUTION:An optical recording media layer 7 of the low sensitivity to the heating beam and an optical recording media layer 8 having the sensitivity higher than it and the different material are laminated on a substrate 1, and a film thickness delta1 of the layer 7 is set to the value saturated by a reproducing output power. At the layer 7, scopes A0-A0 of the light intensity of the threshold or above of the irradiated beam are dissolved and sublimated, the pit is formed and at the layer 8, by the beam of the weak intensity consumed by the layer 7, a pit B0-B0 of the small diameter is formed. Thus, the output having the drastical rise and the large reproducing output can be obtained, the influence of the defect is decreased because of the multi-layer construction and the productivity can be improved.

Description

【発明の詳細な説明】 〈産業上の利用分計〉 この発明は光記録媒体の改良に係り、さらに詳しくは光
記録媒体を記録感度(以下「感度」という)および材質
の異なる二以上の光記録媒体を積層させた構造にし、S
N比向上、誤り率の低減を図ると共に、高密度記録可能
にしたものである。
[Detailed Description of the Invention] <Industrial Application> The present invention relates to the improvement of optical recording media, and more specifically, the present invention relates to the improvement of optical recording media, and more specifically, the invention relates to the improvement of optical recording media. With a structure in which recording media are stacked, S
In addition to improving the N ratio and reducing the error rate, it also enables high-density recording.

〈従来の技術〉 光記録媒体は記録様式の面から分類すると、の レーザ
光等の加熱性ビーム照射によって、記録媒体のビーム照
射領域の一部を溶解昇華あるいは熱変形を起させるいわ
ゆる追記形光記録媒体と、 ◎ レーザ光等の加熱性ビーム照射によって、記録媒体
のビーム照射領域に結晶学的相変態などの状態変化を生
ぜしめ、また結晶質の材料表面に凹凸を生ぜしめ、これ
らの状態変化に伴なう光屈折率、反射率などの物性変化
を利用するいわゆる相変態形光記録媒体とがある。
<Prior art> Optical recording media can be categorized from the viewpoint of recording formats. Optical recording media are classified into so-called write-once media, which melt, sublimate, or thermally deform a part of the beam irradiation area of the recording medium by irradiating it with a heating beam such as a laser beam. ◎ Irradiation with a heating beam such as a laser beam causes state changes such as crystallographic phase transformation in the beam irradiated area of the recording medium, and also creates irregularities on the surface of the crystalline material. There is a so-called phase change type optical recording medium that utilizes changes in physical properties such as optical refractive index and reflectance caused by changes.

これらの光記録媒体は、どの種類のものであれ、情報記
録は、加熱性ビームにより記録媒体に生ずる熱により記
録する点で共通性がある。そこで、以下の説明では簡便
のため、追記形光記録媒体材料にレーザ光等の加熱性ビ
ーム照射によってピット(穴)形成する例を代表例とし
て説明する。
Regardless of the type of optical recording medium, information is recorded using heat generated on the recording medium by a heating beam. Therefore, in the following description, for the sake of simplicity, an example in which pits (holes) are formed in a write-once optical recording medium material by irradiation with a heating beam such as a laser beam will be described as a representative example.

光記録媒体はたとえば光ディスクの場合、第7図に示す
ように基板1上に被膜した光記録媒体層2上に、フォー
カシングおよびトラッキング用の案内溝3を設けたもの
であり、記録用のピット形成は所定波長、一定パワーの
レーザ光照射によってピット4を形成する。
In the case of an optical disc, for example, the optical recording medium is one in which guiding grooves 3 for focusing and tracking are provided on an optical recording medium layer 2 coated on a substrate 1, as shown in FIG. 7, and pits for recording are formed. The pits 4 are formed by laser beam irradiation with a predetermined wavelength and constant power.

このピット4形成に当って、再生時の反射率を大きくし
、記録したピット部分とそれ以外の部分との反射率コン
トラスト比、つまり再生信号振幅を大きくするためには
、光記録媒体層の膜厚をある程、膜厚(しなければなら
ない。しかし、膜厚を厚くすると熱容量が大になるから
、記録に要するレーザパワーを大きくしなければならず
、また、ピットの大きさが小さくなっtコリ、等価的な
媒体の記録感度が低下する。
When forming the pits 4, in order to increase the reflectance during reproduction and increase the reflectance contrast ratio between the recorded pit portion and other portions, that is, the reproduced signal amplitude, it is necessary to However, as the film thickness increases, the heat capacity increases, so the laser power required for recording must be increased, and the pit size becomes smaller. stiffness, the recording sensitivity of the equivalent medium decreases.

現状では、レーザパワーに限界があるため、反射率を犠
牲にしても光記録媒体層の膜厚を小さくしなければなら
なかった。たとえば現在使用される光記録媒体の光記録
媒体層の膜厚は150〜200人と小さい価に選ばれて
いる。
At present, since there is a limit to laser power, it is necessary to reduce the thickness of the optical recording medium layer even at the expense of reflectance. For example, the thickness of the optical recording medium layer of currently used optical recording media is selected to be as small as 150 to 200 people.

しかし、この場合には光記録媒体層上に形成されるピッ
トは照射するレーザ光の強度変動のため揺らぎを生じ、
これによって再生信号のレベル変動や再生波形の干渉に
よるピークシフトやSN比の低下、また、膜厚が薄いた
め基板上および光記録媒体層上に生′した欠陥によるピ
ット誤りが生じろ。すなわち、従来の光記録媒体では、
相状態変化形のものも含めて記録感度の点で安定な穴(
ピット)を生じる記録マージンとコントラスト比に基づ
<SN比の向上および誤り率の低下の双方を満足するこ
とができなかった。
However, in this case, the pits formed on the optical recording medium layer fluctuate due to fluctuations in the intensity of the irradiated laser light.
This may cause peak shifts and reductions in the S/N ratio due to level fluctuations in the reproduced signal and interference in the reproduced waveform, and pit errors due to defects generated on the substrate and optical recording medium layer due to the thin film thickness. In other words, in conventional optical recording media,
Holes that are stable in terms of recording sensitivity, including phase change types (
It was not possible to satisfy both the improvement in the signal-to-noise ratio and the reduction in the error rate based on the recording margin that causes pits and the contrast ratio.

このような従来の光記録媒体に対し、記録感度および記
録マージンを拡大するため、たとえば、第41回秋季応
用物理学会(1980年開催)における講演予稿集、1
7P−H−16(1980年)に掲載された山崎らによ
る報告「レーザ記録用プラズマ重合保護膜の検討(■)
」において、基板と光記録媒体との間に吸熱作用を有す
る下地層を設けることが提案されている。
In order to expand the recording sensitivity and recording margin of such conventional optical recording media, for example, the Proceedings of the 41st Autumn Japan Society of Applied Physics (held in 1980), 1.
Report by Yamazaki et al. published in 7P-H-16 (1980) “Study of plasma polymerized protective film for laser recording (■)
'', it is proposed to provide an underlayer having an endothermic effect between the substrate and the optical recording medium.

提案にかかる構成のものは第8図に示すように、基板1
と光記録媒体層2との間に下地層5として、たとえばC
82ポリマ層を設けたものであった。
The proposed configuration has a substrate 1 as shown in FIG.
For example, a C
82 polymer layers were provided.

〈発明が解決しようとする問題点〉 しかし、上述した構成にすると、記録感度の向上は認め
られるが、下地層を設けたために反射率は低下し、また
光記録層の膜厚は依然として150〜200人と薄いた
め、SN比および誤り率を低くするという点では何等の
解決も得られなかった。すなわち、従来の単層の光記録
媒体、あるいは下地層を有する二層膜構造の光記録媒体
では記録のマージンと、SN比の向上および誤り率の減
少という互いに相反する特性を満足させるような光記録
媒体が得られなかった。
<Problems to be Solved by the Invention> However, with the above-mentioned configuration, although the recording sensitivity is improved, the reflectance decreases due to the provision of the underlayer, and the film thickness of the optical recording layer is still 150~150 nm. Since there were only 200 members, no solution could be obtained in terms of lowering the SN ratio and error rate. In other words, in conventional single-layer optical recording media or optical recording media with a double-layer structure with an underlayer, an optical recording medium that satisfies the mutually contradictory characteristics of recording margin, improvement of S/N ratio, and reduction of error rate is used. No recording medium could be obtained.

この発明は、上述した従来の光記録媒体の欠点を除去し
、高密度記録が可能でしかも信頼性の高い光記録媒体を
提供しようとするものである。
The present invention aims to eliminate the above-mentioned drawbacks of conventional optical recording media and provide an optical recording medium that is capable of high-density recording and is highly reliable.

く問題点を解決するための手段〉 本発明者らはこのような目的を達成するため種々実験を
重ねる過程において、次のような事実があることを発見
した。
Means for Solving Problems> In the process of conducting various experiments to achieve the above object, the inventors discovered the following fact.

(イ) GaAs半導体レーザ光(波長780 nm)
に対し低感度の光記録媒体材料、たとえばC52−Te
と、このC52−Teよりも高感度のたとえばTeにつ
いてGaAs半導体レーザ光(波長780 nm)を照
射してピットを形成し、レーザ光のパワ一対再生出力の
関係を膜厚を変えて調べると、C52−Te膜に対して
は第1図に示す曲線5−1,5−2゜5−3が得られ、
それよりも感度の高いTe膜に対してはβに立上り点の
ある再生出力曲線10が得られることを知った。この結
果によれば膜厚が薄くなる程、再生出力が低下すること
、および一定の値のパワーを越えると、照射レーザ光の
パワーをそれ以上高くしても再生出力は飽和すること、
換言すれば照射するレーザ光のパワーの値により、光記
録媒体の膜厚を再生出力が飽和するような厚さを決定す
ることができることを知った。
(a) GaAs semiconductor laser light (wavelength 780 nm)
Optical recording medium materials with low sensitivity to, for example, C52-Te
For example, Te, which has a higher sensitivity than C52-Te, is irradiated with GaAs semiconductor laser light (wavelength 780 nm) to form pits, and the relationship between the laser light power and reproduction output is investigated by changing the film thickness. For the C52-Te film, curves 5-1, 5-2°5-3 shown in FIG. 1 are obtained,
It has been learned that for a Te film with higher sensitivity than that, a reproduction output curve 10 with a rising point of β can be obtained. The results show that the thinner the film thickness is, the lower the reproduction output is, and that once the power exceeds a certain value, the reproduction output is saturated even if the power of the irradiated laser beam is increased further.
In other words, it has been found that it is possible to determine the film thickness of an optical recording medium such that the reproduction output is saturated, depending on the value of the power of the irradiated laser beam.

(tff)また、C52−Teよりも高感度のTe膜に
対しては小さいパワーでもC3−Te膜と同し膜厚なら
十分飽和値の再生出力が得られるピット形成が可能であ
ることを知った。
(tff) Also, I learned that for a Te film with higher sensitivity than C52-Te, it is possible to form pits with the same thickness as a C3-Te film, even with a lower power, so that a sufficiently saturated reproduction output can be obtained. Ta.

(拘それ故、一定のパワーのGaAs半導体レーザに対
し、飽和値の膜厚のC52−Te膜7とTe膜8を基板
1上に第2図のように積層し、C82−Te膜面からG
aAs半導体レーザ光を入射させると、これら光記録媒
体に形成されたピットから大再生出力を得ることができ
る。
(Therefore, for a GaAs semiconductor laser with a constant power, the C52-Te film 7 and the Te film 8 with the saturation value are stacked on the substrate 1 as shown in Fig. 2, and the C82-Te film surface is G
When aAs semiconductor laser light is incident, a large reproduction output can be obtained from the pits formed in these optical recording media.

この発明は、以上の実験事実に基づいて上述した目的を
達成できる発明を完成することができた。
This invention was able to complete an invention that can achieve the above-mentioned object based on the above-mentioned experimental facts.

すなわち、この発明の光記録媒体は、加熱性ビーム5+
!射によって、ビーム照紺領域に情報を記録する光記録
媒体において、光記録媒体を、一方の側に加熱性ビーム
に対し低感度の光記録媒体層が配置され、低感度光記録
媒体層から他方の側に前記加熱性ビームに対し、より高
感度であって材質の異なる光記録媒体層を順次積層した
二層以上の光記録媒体層を積層した多層構造にしたこと
を特徴とするものである。
That is, the optical recording medium of the present invention has heating beam 5+
! In an optical recording medium that records information in a dark blue beam irradiated area by radiation, an optical recording medium layer having low sensitivity to the heating beam is arranged on one side, and a low-sensitivity optical recording medium layer is placed on the other side. It is characterized by having a multilayer structure in which two or more optical recording medium layers, which are more sensitive to the heating beam and are made of different materials, are laminated in sequence on the side of the heating beam. .

この発明の光記録媒体の材料は加熱性ビームによって記
録媒体の一部が溶解・昇華あるいは熱変形を起すいわゆ
る追記形光記録媒体として用いられるもの、記録媒体に
結晶学的相変態などの状態変化を起し、状態変化によっ
て光屈折率、反射率などの物性変化をひき起すいわゆる
相変態形光記録媒体などが利用できる。
The material of the optical recording medium of this invention is used as a so-called write-once optical recording medium in which a part of the recording medium is melted, sublimated, or thermally deformed by a heating beam, and the recording medium undergoes state changes such as crystallographic phase transformation. So-called phase change optical recording media, which cause changes in physical properties such as optical refractive index and reflectance due to changes in state, can be used.

上述した追記形光記録媒体としてはC5−Te合金、5
n−Te−3層系合金、Ag−Zn合金、Ag −AJ
−Cu合金などの材料が例示でき、相変態形光記録媒体
としてはTe0x(x>2)の結晶−アモルファス相変
化型材料、Vo2薄膜の半導体−金属相転移型材料、ス
チレンオリゴマーを用いたもの、SmS膜の金属−半導
体相転移型材料などが例示できる。
The above-mentioned write-once optical recording medium includes C5-Te alloy, 5
n-Te-3 layer alloy, Ag-Zn alloy, Ag-AJ
Examples include materials such as -Cu alloy, and examples of phase change optical recording media include crystal-amorphous phase change materials such as Te0x (x>2), semiconductor-metal phase change materials such as Vo2 thin films, and those using styrene oligomers. , a metal-semiconductor phase transition material such as SmS film.

この発明の光記録媒体に照射する加熱性ビームとしては
、レーザ光、電子ビーム、イオンビーム、赤外線ビーム
など記録媒体に入射して入射領域を加熱するもの全てを
包含する。
The heating beam irradiated onto the optical recording medium of the present invention includes all beams that enter the recording medium and heat the incident area, such as laser beams, electron beams, ion beams, and infrared beams.

また、この発明による光記録媒体は低感度光記録媒体層
上面に透明基板を設置した構造にしでもよく、高感度光
記録媒体側に基板を設置した構造にしてもよい。
Further, the optical recording medium according to the present invention may have a structure in which a transparent substrate is provided on the upper surface of the low-sensitivity optical recording medium layer, or may have a structure in which a substrate is provided on the high-sensitivity optical recording medium side.

また、この発明の光記録媒体を構成する光記録媒体層は
2層以上、3層、4層、・・・の複数層を積層したもの
であってもよく、さらに感度向上、反射率向上などの必
要に応じ、下地または最上層あるいは牛用ね設けた構造
にしてもよい。
Further, the optical recording medium layer constituting the optical recording medium of the present invention may be a laminate of two or more layers, three layers, four layers, etc., and may further improve sensitivity, reflectance, etc. Depending on the needs, the structure may include a base layer, a top layer, or a cow's layer.

この発明の光記録媒体を構成する光記録媒体層の記録感
度は光吸収率、融点、熱伝導率、キューり温度(Tc)
および膜厚などの光学的・熱的・磁気的性質および物理
的寸法と加熱性ビームのパワー、記録パルス幅等の記録
条件によって一義的に決定されるパラメータである。
The recording sensitivity of the optical recording medium layer constituting the optical recording medium of this invention is determined by light absorption rate, melting point, thermal conductivity, and cue temperature (Tc).
It is a parameter uniquely determined by optical, thermal, magnetic properties such as film thickness, physical dimensions, and recording conditions such as heating beam power and recording pulse width.

さらに、この発明の光記録媒体を構成する各光記録媒体
のうち、低感度光記録媒体層の膜厚は、許容できる加熱
性ビームパワーの範囲で、再生出力パワーが飽和する値
に設定することが好ましい。この値よりも小さい値の膜
厚にすると、その低感度光記録媒体層の記録領域が小さ
くなるとともに以下に積層されろ高感度の光記録媒体層
のピットが無制限に大きくなりすぎ、再生出力の変動が
大きくなる。
Furthermore, among the optical recording media constituting the optical recording medium of the present invention, the film thickness of the low-sensitivity optical recording medium layer should be set to a value that saturates the reproduction output power within the range of allowable heating beam power. is preferred. If the film thickness is smaller than this value, the recording area of the low-sensitivity optical recording medium layer will become smaller, and the pits of the high-sensitivity optical recording medium layer stacked below will become too large without limit, which will reduce the playback output. Fluctuations increase.

また、前記値より大きい値の膜厚にすると、以下に積層
する、より高感度の光記録媒体層のピットが小さくなり
、再生出力が低下する。
Furthermore, if the film thickness is larger than the above value, the pits of the more sensitive optical recording medium layer laminated below will become smaller, and the reproduction output will decrease.

この発明にかかる光記録媒体は、情報書き込みおよび記
録再生に当っては、照射可熱性ビーム又は光源側に低感
度光記録媒体層を置き、照射可熱性ビーム又は光源前記
低感度光記録媒体層を挾んで反対側に高い感度の光記録
媒体層がくるように配置することが必要であり、これと
逆配置にすると期待する効果が得られない。
In the optical recording medium according to the present invention, when information is written and recorded/reproduced, a low-sensitivity optical recording medium layer is placed on the side of the irradiated thermoplastic beam or light source, and the low-sensitivity optical recording medium layer is placed on the irradiated thermoplastic beam or light source side. It is necessary to arrange the high-sensitivity optical recording medium layer on the opposite side of the sandwich, and if the arrangement is reversed, the expected effect will not be obtained.

〈作   用〉 このように、異なる感度、異なる材質から成る二層以上
の光記録媒体層を積層構造にすると、たとえば、二層の
場合を代表例とじて説明すれば、第2図に示すように低
感度光記録媒体層7(膜厚δ、)のD点に、第3図に示
す光強度分布aをもつ加熱性ビーム(たとえばレーザ光
)を照射すると、低感度光記録媒体層7の加熱性ビーム
照射域A−Aではしきい値り1以上の光強度の範gEA
o−へが溶解・昇華(相変態あるいは磁化反転)しピッ
トが形成される。
<Function> In this way, when two or more optical recording medium layers having different sensitivities and different materials are formed into a laminated structure, for example, if the case of two layers is explained as a typical example, as shown in FIG. When point D of the low-sensitivity optical recording medium layer 7 (thickness δ) is irradiated with a heating beam (for example, a laser beam) having a light intensity distribution a shown in FIG. In the heating beam irradiation area A-A, the light intensity range gEA with a threshold value of 1 or more
O- is dissolved and sublimated (phase transformation or magnetization reversal) to form pits.

乙のとき、熱の一部は低感度庫層7の面方向(第2図の
X方向)へ拡散されるが、残部の相当部分は高感度光記
録媒体層8側へ拡散される。
In case B, a part of the heat is diffused in the plane direction of the low-sensitivity storage layer 7 (X direction in FIG. 2), but a considerable portion of the remaining part is diffused toward the high-sensitivity optical recording medium layer 8 side.

この時点で照射された可熱性ビームパワーの一部は、す
でに低感度光記録媒体層7において消費されているため
、高感度光記録媒体層8(膜厚δ2)に供給される可熱
性ビームパワーの光強度分布は第3図の破線すに示す強
度となる。そして高感度光記録媒体層8を溶融・昇華す
るパワーレベルは第3図の破sb中のレベルL2であり
、単体で存在する場合に比べて小さい径のピット(Bo
−80)が形成される(実際には、低感度光記録媒体層
7のピット径と同一の径であるように形成すればよい。
A part of the thermal beam power irradiated at this point has already been consumed in the low-sensitivity optical recording medium layer 7, so the thermal beam power is supplied to the high-sensitivity optical recording medium layer 8 (thickness δ2). The light intensity distribution becomes the intensity shown by the broken line in FIG. The power level for melting and sublimating the high-sensitivity optical recording medium layer 8 is level L2 in the breakdown sb in FIG. 3, and the pits (Bo
-80) is formed (actually, the pit diameter may be the same as the pit diameter of the low-sensitivity optical recording medium layer 7).

)。かくして、斜線部分へ−へ:B0−80で示される
範囲がピットとなる。
). Thus, the range indicated by the shaded area: B0-80 becomes a pit.

このようにして形成されたピットによる書き込み(記録
)動作を可熱性ビームパワ一対再生出力の面からみると
、低感度光記録媒体層7に対し、膜厚δ1の場合は特性
曲線6−2、膜厚(δ1+δ2):ζ対しては曲$6−
1に示す再生出力が得られるが、低感度光記録媒体層7
(膜厚δl)と高感度光記録媒体層(膜厚δ2)の積層
膜に形成したピットに対しては、第4図の曲線10aに
示すように立上りが急峻かつ出力の大きな再生出力10
aが得られる。
Looking at the writing (recording) operation by the pits formed in this way from the perspective of the reproduction output of the thermal beam power pair, for the low-sensitivity optical recording medium layer 7, when the film thickness is δ1, the characteristic curve 6-2, the film Thickness (δ1 + δ2): For ζ, the curve is $6-
Although the reproduction output shown in 1 can be obtained, the low sensitivity optical recording medium layer 7
For pits formed in a laminated film of (thickness δl) and a high-sensitivity optical recording medium layer (thickness δ2), the reproduction output 10 has a steep rise and a large output, as shown by the curve 10a in FIG.
a is obtained.

曲線10aの立上り点(臨界パワー)28点が第1図の
単層の場合の高感度光記録媒体の立上り点β点よりも高
パワー側にシフトシているのは、高感度光記録媒体層8
の得るエネルギーがすでに低感度光記録媒体層7で消費
され小さくなっているためである。
The 28 rising points (critical power) of the curve 10a are shifted to the higher power side than the rising point β of the high-sensitivity optical recording medium in the case of a single layer shown in FIG.
This is because the energy obtained has already been consumed in the low-sensitivity optical recording medium layer 7 and has become small.

しかしながら、第4図から明らかなように、その立上り
は急峻でα点で示される照射(記録)可熱性ビームパワ
ーに対して十分飽和している。これに対し、第2層の高
感度光記録媒体層も、同じ物質の低感度光記録媒体層で
形成すると、第4図の曲線6−1のようになり、α点の
照射可熱性ビームパワーに対して飽和せず、再生出力、
ピット径とも大幅に照射可熱性ビームのパワー変動の影
響を受けることになる。
However, as is clear from FIG. 4, its rise is steep and is sufficiently saturated with respect to the irradiation (recording) heatable beam power indicated by point α. On the other hand, if the second high-sensitivity optical recording medium layer is also formed of a low-sensitivity optical recording medium layer made of the same material, the curve 6-1 in Figure 4 will be obtained, and the irradiation thermoplastic beam power at the α point will be playback output without saturation,
Both the pit diameter will be significantly affected by the power fluctuation of the irradiation thermoplastic beam.

光記録媒体を異なる感度を有し、かつ異なる材質から成
る光記録媒体を二層以上積層すると、ピット径は概ね低
感度光記録媒体層によって決まるが、形成されたピット
は第1図および第4図に示すように再生出力が飽和傾向
を示す0点のパワーで決まるから、記録する可熱性ビー
ムパワー変動に対しても再生出力が安定で、しかも必要
十分な小さな径のピットが形成される。しかも、ピット
は積層した各光記録媒体層の膜厚の和、すなわち実効的
なピット深さは(δ、+δ2+・・・)となるので、反
射率、コントラスト比が大きくとれる。したがって、再
生信号出力が大きくできると共にSN比を大幅に向上さ
せることができる。
When two or more layers of optical recording media having different sensitivities and made of different materials are stacked, the pit diameter is generally determined by the low-sensitivity optical recording medium layer, but the formed pits are as shown in Figures 1 and 4. As shown in the figure, since the reproduction output is determined by the power at the 0 point, which shows a tendency to saturate, the reproduction output is stable even with fluctuations in recording thermal beam power, and pits with a necessary and sufficient diameter are formed. Moreover, since the pit is the sum of the film thicknesses of the stacked optical recording medium layers, that is, the effective pit depth is (δ, +δ2+...), the reflectance and contrast ratio can be increased. Therefore, the reproduced signal output can be increased and the SN ratio can be significantly improved.

さらに、光記録媒体の膜厚を太き(できる 。Furthermore, the film thickness of the optical recording medium can be increased.

ので、基板や各層光記録媒体がもっている欠陥によって
発生するエラに対する耐性が大きくなる。
Therefore, the resistance to errors caused by defects in the substrate and each layer of the optical recording medium is increased.

く実 施 例〉 以下、実施例および比較例によって、この発殆内容を具
体的に説明する。
EXAMPLES> The contents of this study will be specifically explained below using Examples and Comparative Examples.

実施例1 第5図に示す真空ベルジャ20内に、タングステン加熱
ボート21にTe 24を入れると共に、障壁22を隔
ててプラズマ発生用コイル23を設ける。また、これら
の上部にシャック25を隔てて固定台26上にポリメチ
ルメタクリレート(以下rPMMAJという)基板27
を配置する。
Example 1 In a vacuum bell jar 20 shown in FIG. 5, Te 24 is placed in a tungsten heating boat 21, and a plasma generation coil 23 is provided with a barrier 22 in between. Further, a polymethyl methacrylate (hereinafter referred to as rPMMAJ) substrate 27 is placed on a fixing table 26 with a shack 25 above these.
Place.

また、タングステンボート21およびプラズマ発生用コ
イル23にそれぞれ直流電源29゜高周波発振器301
接続し、真空ベルジャ20内を排気系(非図示)によっ
て10−6〜1O−7Torrの真空度に排気される。
In addition, a DC power source 29° high frequency oscillator 301 is connected to the tungsten boat 21 and the plasma generation coil 23, respectively.
The inside of the vacuum bell jar 20 is evacuated to a degree of vacuum of 10-6 to 10-7 Torr by an exhaust system (not shown).

また、真空ベルジャ20にはコックを通してC82モノ
マを導入するパイプ28が取りつけられている。
Further, a pipe 28 for introducing C82 monomer through a cock is attached to the vacuum belljar 20.

以上の装置において、基板27を回転させながら、パ、
イブ28を通して真空ベルジャ内にC82モノマを導入
すると共に、高周波発振器30を駆動し、さらに直流電
源29からタングステンボート21に電流を送る。そし
て、シャッタ25を開いて、PMMA基板27上に被膜
する。得られたC32ポリマとTe混合層(以下、rc
s2−Te層」と略称する。)の厚さは20+m(20
0人)とした。
In the above apparatus, while rotating the substrate 27,
C82 monomer is introduced into the vacuum belljar through the tube 28, a high frequency oscillator 30 is driven, and a current is sent from the DC power supply 29 to the tungsten boat 21. Then, the shutter 25 is opened and the PMMA substrate 27 is coated. The resulting C32 polymer and Te mixed layer (hereinafter referred to as rc
s2-Te layer". ) has a thickness of 20+m (20
0 people).

以上の実施例において、C52ポリマ作製方法は真空ベ
ルジャ20内圧力を10−3Torr 。
In the above embodiment, the C52 polymer manufacturing method uses a vacuum bell jar 20 with an internal pressure of 10-3 Torr.

印加電圧100 V 、 C32モノ? 流量20 c
c/winとした。このときの成膜速度はC82ポリマ
自身ノ場合2〜6人/ seeであった。
Applied voltage 100 V, C32 mono? Flow rate 20c
c/win. The film forming rate at this time was 2 to 6 people/see in the case of C82 polymer itself.

したがって、90%Te含有C52−Te層を作製する
場合は、C82ポリマ重合条件に対応してTeの蒸着速
度を20〜60人/ seeになるようにした。
Therefore, when producing a C52-Te layer containing 90% Te, the Te deposition rate was set to 20 to 60 people/see, corresponding to the C82 polymer polymerization conditions.

その後、高周波発振器30の作動を停止させ、タングス
テン21f!けに電流を流してTe膜を約20nmの厚
さに成膜させた。
Thereafter, the operation of the high frequency oscillator 30 is stopped, and the tungsten 21f! A current was then applied to form a Te film with a thickness of about 20 nm.

以上のようにして作製した試料をNo、1とする。The sample prepared as described above is designated as No. 1.

比較例1−1〜1−2 別々のPMMA基板上に、それぞれ単層のC82−Te
膜(厚さ20 nm)およびTe膜(厚さ20nm)に
成膜させた以外は実施例1と同様の方法で光記録媒体を
作製しな。得られた光記録媒体をC52−Te膜の場合
の試料を比較N。
Comparative Examples 1-1 to 1-2 A single layer of C82-Te was formed on separate PMMA substrates.
An optical recording medium was produced in the same manner as in Example 1, except that a film (thickness: 20 nm) and a Te film (thickness: 20 nm) were formed. The obtained optical recording medium was compared with a sample in the case of a C52-Te film.

1−1.Te膜の場合を比較No、 1−2とした。1-1. The case of the Te film was designated as Comparison No. 1-2.

比較例1−3 比較例1−1にしたがって成膜した試料、比較No、 
1−1の裏面(PMMA基板と反対側の面)に、下地層
としてC82ポリマを厚さ20nmに被膜し、得られた
試料を比較翫1−3とした。
Comparative Example 1-3 Sample formed according to Comparative Example 1-1, Comparative No.
A C82 polymer was coated as an underlayer to a thickness of 20 nm on the back surface of Sample No. 1-1 (the surface opposite to the PMMA substrate), and the obtained sample was designated as Comparison Photo No. 1-3.

実施例2 第5図に示す構造の装置において、プラズマ発生用コイ
ル23および高周波発振器30の代りに、それぞれ第5
図に示すタングステンボート21および直流電源29と
同様のタングステンボートおよび直流電源を設け、第1
のタングステンボート21にTeを、第2のタングステ
ンボートにTeO2を入れ実施例1の場合の真空度と同
じ真空中で、PMMA27上にTeOx (たt!シ、
xく2)組成の成膜を得た。
Embodiment 2 In the apparatus having the structure shown in FIG.
A tungsten boat and a DC power source similar to the tungsten boat 21 and DC power source 29 shown in the figure are provided, and the first
Put Te in the tungsten boat 21 and TeO2 in the second tungsten boat, and in the same vacuum as in Example 1, TeOx (Tat! Si,
A film having the composition x2) was obtained.

このTeOxの膜組成は、基板27側からTeO□2(
x=1.2) 、TeO,、(x=1.1)をそれぞれ
60 nmずつ積層されており、積層構造の光記録媒体
を形成している。得られた試料をNo、2とした。
The film composition of this TeOx is as follows from the substrate 27 side: TeO□2 (
(x=1.2), TeO, (x=1.1) are laminated to a thickness of 60 nm each, forming an optical recording medium with a laminated structure. The obtained sample was designated as No. 2.

比較例2−1〜2−2 別々のPMMA基板上に、それぞれ単層のTeal、膜
およびTeO12膜を成膜させた以外は、実施例2と同
様の方法により光記録−媒体を作製した。このようにし
て作製された試料を、性     能 つぎに、上述した実施例1.実施例2およ比1丁−2の
性能を調べるために、これら試料の再生出力および搬送
波対雑音比(以下、「C/N比」)を調査した。
Comparative Examples 2-1 to 2-2 Optical recording media were produced in the same manner as in Example 2, except that single-layer Teal, single-layer films, and TeO12 films were formed on separate PMMA substrates. The performance of the sample prepared in this way was then compared to that of Example 1 described above. In order to investigate the performance of Example 2 and Comparison 1-2, the reproduction output and carrier-to-noise ratio (hereinafter referred to as "C/N ratio") of these samples were investigated.

使用した測定装置は第6図に示す構成のものを使用した
The measuring device used had the configuration shown in FIG.

第6図の装置は、情報記録側に情報入力源40、記録制
御装置41、GaAs半導体レーザ42、集光レンズ4
3、ミラー44からなっており、試料への記録時のGa
As半導体し一ザの光出力は8 mWにした。
The apparatus shown in FIG. 6 includes an information input source 40, a recording control device 41, a GaAs semiconductor laser 42, and a condensing lens 4 on the information recording side.
3. It consists of a mirror 44, and Ga when recording on the sample.
The light output of one laser was 8 mW using an As semiconductor.

再生側は、GaAs半導体レーザ45、集光レンズ46
、ビームスプリッタ47、トラッキングミラー48、光
検出器49、再生出力制御装置50、モータ51から成
っており、上述のGaAs半導体レーザ45で書き込ま
れた記録を、GaAs半導体レーザからの光出力を0.
8 mWにして測定したときに、光検出器49に得られ
る出力再生信号を再生装置50を介して搬送う呻毬音比
(以下rC/N比」という)で測定した。ただし、この
ときの搬送波の周波数はIW(z、バンド幅30輩で測
定した。
On the reproduction side, a GaAs semiconductor laser 45 and a condensing lens 46
, a beam splitter 47, a tracking mirror 48, a photodetector 49, a reproduction output control device 50, and a motor 51, and records written by the above-mentioned GaAs semiconductor laser 45, and adjusts the optical output from the GaAs semiconductor laser to 0.
When the power was set to 8 mW, the output reproduction signal obtained by the photodetector 49 was transmitted through the reproduction device 50 and was measured by the cyclic noise ratio (hereinafter referred to as rC/N ratio). However, the frequency of the carrier wave at this time was measured with IW(z) and a bandwidth of 30 yen.

この測定結果を下記の表−1に示す。ただし、表−1中
、実施例No、 1 、比較No、 1 1 p比較N
o、 1−2の再生出力(dB)およびC/N比(dB
)はそれぞれ比較No、 1−3の再生出力(dB)お
よびC/N比(dB)の測定値を基準とし、この基準値
からの差を、大きいものには「+」、小さいものには「
−」の符号を付して表した。また、実施例歯、2および
比較点2の再生出力(dB)およびC/N比(dB)は
それぞれ比較No、 2−1の測定値を基準とし、この
基準値からのずれの大小で同様に表した。
The measurement results are shown in Table 1 below. However, in Table 1, Example No. 1 Comparison No. 1 1 p Comparison N
o, 1-2 reproduction output (dB) and C/N ratio (dB
) are based on the measured values of playback output (dB) and C/N ratio (dB) of Comparison No. 1-3, respectively, and the difference from this reference value is indicated as "+" for larger ones and "+" for smaller ones. "
−” is added. In addition, the reproduction output (dB) and C/N ratio (dB) of Example tooth No. 2 and Comparison point 2 are based on the measured value of Comparison No. 2-1, respectively, and are similar depending on the magnitude of deviation from this reference value. It was expressed in

表−1 表−1の結果から、本実施例による積層構造の光記録媒
体は、再生出力の面では従来の単層の光記録媒体より若
干低下するものの、C/N比は十分改善されることが判
る。これは記録領域が安定化され、出力変動、雑音がか
なり抑止されたための結果と思われる。
Table 1 From the results in Table 1, although the optical recording medium with the laminated structure according to this example has a slightly lower reproduction output than the conventional single layer optical recording medium, the C/N ratio is sufficiently improved. I understand that. This seems to be the result of the recording area being stabilized and output fluctuations and noise being considerably suppressed.

また、この実施例では二層積層の光記録媒体のものにつ
いて説明したが、三層以上の多層構造の光記録媒体につ
いても同様の結果が得られる。
Further, in this embodiment, an optical recording medium having a two-layer structure has been described, but similar results can be obtained with an optical recording medium having a multilayer structure of three or more layers.

また、上記実施例では、未記録時に反射率大きく、記録
後の反射率が低い場合の例について示したが、記録前後
の反射率の大小が反対の関係になるものであってもよい
Further, in the above embodiment, an example was shown in which the reflectance was high when unrecorded and the reflectance after recording was low, but the relationship between the reflectance before and after recording may be reversed.

さらに、光記録媒体はいわゆる追記形のものに限らず相
変態形のものであってもよい。
Further, the optical recording medium is not limited to the so-called write-once type, but may be a phase-transformable type.

〈発明の効果〉 以上の説明から明らかなように、この発明の光記録媒体
は、感度および材質が異なる二又は三重上の光記録媒体
を積層させているから、従来の単層構成の光記録媒体に
比べると、■ 実効的な膜厚が厚くできるから再生出力
が高くなる。しかも、低感度光記録媒体層の膜厚に対し
飽和点のパワーの光照射により立ち上りが急激で再生出
力の大きい再生出力を得ることができる。
<Effects of the Invention> As is clear from the above description, the optical recording medium of the present invention has two or three layers of optical recording media with different sensitivities and materials laminated, so it is different from the conventional single-layer optical recording medium. Compared to media, ■ The effective film thickness can be thicker, resulting in higher reproduction output. Moreover, by irradiating light with a power at the saturation point for the film thickness of the low-sensitivity optical recording medium layer, it is possible to obtain a reproduction output with a rapid rise and a large reproduction output.

■ また、多層構造のため、光記録媒体層の有する欠陥
等の影響を減少させることができるから、誤り率の減少
、SN比向上などが実現できる。
(2) Furthermore, because of the multilayer structure, it is possible to reduce the effects of defects, etc. in the optical recording medium layer, so it is possible to reduce the error rate and improve the S/N ratio.

■ 欠陥の影響を減少させることができるので、反射率
を向上させることができる。
■ Since the influence of defects can be reduced, reflectance can be improved.

したがって、光記録媒体のもつ高密度ポテンシャルを発
揮させることができる。
Therefore, the high density potential of the optical recording medium can be utilized.

■ 構造が比較的単純であるから、作製が容易である。■ Since the structure is relatively simple, it is easy to manufacture.

■ 多層構造のため、単層構造の光記録媒体に比べて欠
陥の影響を減少させることができ、集溜りが向上し、生
産性を高めることができる。
(2) Due to the multi-layer structure, the influence of defects can be reduced compared to optical recording media with a single-layer structure, improving accumulation and increasing productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は膜厚の異なる光記録媒体における記録レーザパ
ワ一対再生出力の関係を示す特性図、第2図は二層構造
光記録媒体における可熱性ビーム照射とピット形領域の
関係を示す縦断面図、第3図は光記録媒体に照射する可
熱性ビームの光強度分布図、第4図は実施例の光記録媒
体の記録レーザパワ一対再生出力の関係を示す説明図、
第5図は実施例の光記録媒体の作製に使用した真空装置
の概略構成図、第6図は実施例の光記録媒体の性能測定
装置の概略図、第7図および第8図はそれぞれ従来の光
記録媒体の概略構造を示す要部斜視図および断面図であ
る。 図面中、 1・・・基板、 7・低感度記録媒体層、 8・・・高感度記録媒体層
Figure 1 is a characteristic diagram showing the relationship between recording laser power and reproduction output in optical recording media with different film thicknesses, and Figure 2 is a longitudinal cross-sectional view showing the relationship between thermal beam irradiation and pit-shaped areas in a two-layer optical recording medium. , FIG. 3 is a light intensity distribution diagram of the thermoplastic beam irradiated onto the optical recording medium, and FIG. 4 is an explanatory diagram showing the relationship between the recording laser power pair and the reproduction output of the optical recording medium of the example.
FIG. 5 is a schematic diagram of the vacuum apparatus used to produce the optical recording medium of the example, FIG. 6 is a schematic diagram of the performance measuring device of the optical recording medium of the example, and FIGS. 7 and 8 are conventional examples, respectively. 1 is a perspective view and a sectional view of main parts showing the schematic structure of an optical recording medium of FIG. In the drawings: 1...Substrate, 7.Low-sensitivity recording medium layer, 8.High-sensitivity recording medium layer

Claims (3)

【特許請求の範囲】[Claims] (1)加熱性ビーム照射により、当該加熱性ビーム照射
領域に情報を記録する光記録媒体において、光記録媒体
を加熱性ビームに対し低感度の光記録媒体層と、この低
感度光記録媒体層よりも感度が高く、かつ材質も異なる
光記録媒体層を積層した多層構造にしたことを特徴とす
る光記録媒体。
(1) In an optical recording medium in which information is recorded in a heating beam irradiation area by heating beam irradiation, the optical recording medium has an optical recording medium layer that has low sensitivity to the heating beam, and this low-sensitivity optical recording medium layer. An optical recording medium characterized by having a multilayer structure in which optical recording medium layers having higher sensitivity and different materials are laminated.
(2)前記多層構造の光記録媒体を形成する各層光記録
媒体をすべて追記形光記録媒体材料で構成したことを特
徴とする特許請求の範囲第(1)項記載の光記録媒体。
(2) The optical recording medium according to claim (1), wherein each layer of the optical recording medium forming the multilayered optical recording medium is entirely made of a write-once optical recording medium material.
(3)前記多層構造の光記録媒体を形成する各層光記録
媒体をすべて相変態形光記録媒体材料で構成したことを
特徴とする特許請求の範囲第(1)項記載の光記録媒体
(3) The optical recording medium according to claim (1), wherein each layer of the optical recording medium forming the multilayered optical recording medium is entirely made of a phase change type optical recording medium material.
JP60154274A 1985-07-15 1985-07-15 Optical recording media Pending JPS6216254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154274A JPS6216254A (en) 1985-07-15 1985-07-15 Optical recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154274A JPS6216254A (en) 1985-07-15 1985-07-15 Optical recording media

Publications (1)

Publication Number Publication Date
JPS6216254A true JPS6216254A (en) 1987-01-24

Family

ID=15580575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154274A Pending JPS6216254A (en) 1985-07-15 1985-07-15 Optical recording media

Country Status (1)

Country Link
JP (1) JPS6216254A (en)

Similar Documents

Publication Publication Date Title
US6226258B1 (en) Optical recording medium with transmissivity controlling layer
US6268034B1 (en) Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus
US6469977B2 (en) Optical information recording medium, method for producing the same, and method and apparatus for recording/reproducing information thereon
US20060072434A1 (en) Optical information recording medium, reproducing method thereof, and manufacturing method thereof
US5089358A (en) Optical recording medium
Watanabe et al. New optical recording material for video disc system
US6587420B1 (en) Recording and reproducing method for optical information recording medium and optical information recording medium
JP3363112B2 (en) Laminated optical recording medium, method for reproducing laminated optical recording medium, and reproducing apparatus for laminated optical recording medium
US20010015949A1 (en) Optical recording medium and recording-reproducing apparatus
JP3344198B2 (en) Optical recording medium and recording / reproducing method
JP3376806B2 (en) Optical recording medium and recording / reproducing method
JPH0528535A (en) Optical recording medium
JPS6216254A (en) Optical recording media
JPS60151850A (en) Optical recording medium
JPS62125552A (en) Optical recording medium
JP3068420B2 (en) Reproducing method of optical information recording medium
JPH07105569A (en) Optical information recording member
JPH051746B2 (en)
JP3249461B2 (en) Optical disk drive
JPS6381631A (en) Recording method for optical disk
JPS60177450A (en) Light information recording medium
JPH051749B2 (en)
Tsukuda et al. 50 GB read only memory disc with dual layer structure
JPS62261482A (en) Optical recording medium
JPH1021583A (en) Optical recording medium, and recording and reproducing method