JPS62162009A - Viscose rayon hollow fiber - Google Patents

Viscose rayon hollow fiber

Info

Publication number
JPS62162009A
JPS62162009A JP20008186A JP20008186A JPS62162009A JP S62162009 A JPS62162009 A JP S62162009A JP 20008186 A JP20008186 A JP 20008186A JP 20008186 A JP20008186 A JP 20008186A JP S62162009 A JPS62162009 A JP S62162009A
Authority
JP
Japan
Prior art keywords
hollow fiber
hollow
spinning
wall
viscose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20008186A
Other languages
Japanese (ja)
Inventor
Kazunari Nishiyama
西山 和成
Sadami Nagatomo
長友 貞美
Saichiro Mishima
三島 佐一郎
Tadahiko Takahashi
忠彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP12311379A external-priority patent/JPS5649010A/en
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20008186A priority Critical patent/JPS62162009A/en
Publication of JPS62162009A publication Critical patent/JPS62162009A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:The titled hollow fiber that is composed of regenerated cellulosic fibers made through the viscose rayon process and has the skin layer of a specific thickness as the outer wall, the core layer as the inner wall and the running-through hollow part, thus showing good mechanical properties, high dimensional stability and excellent membrane permeation performance. CONSTITUTION:The objective hollow fiber is composed of a thin skin layer less than 1mu thick as the outer wall, a core layer as the inner wall and a running-through hollow part, and is made from regenerated cellulose through the viscose rayon process. When the outer diameter of the hollow fiber is represented as amu, the wall thickness as bmu, a and b preferably satisfy following equations: 50<=a<=500, and 1.33X10<-2>a+2.33<=b<=6.67X10<2>a+6.67<=30.

Description

【発明の詳細な説明】 (産業上の利用分野) 近年、イオン、低分子物質、微小粒子の分離手段として
膜分離技術の研究が盛んに行なわれておシ、膜素材を極
めて細い中空糸となし、環状繊維壁を分離膜として利用
する方法が展開されている。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, research on membrane separation technology as a means of separating ions, low-molecular substances, and microparticles has been actively conducted. A method has been developed in which a ring-shaped fiber wall is used as a separation membrane.

本発明は上記目的に使用されるビスコース法再生セルロ
ースよりなるチューブ状中空糸に関するものである。
The present invention relates to a tubular hollow fiber made of regenerated cellulose produced by a viscose process and used for the above purpose.

(従来技術) ビスコースレーヨンによる中空糸の製造法として代表的
なものとしては、(1)無機炭酸塩等の発泡剤を添加し
たビスコース原液を用いる方法。(2)特殊な紡糸口金
を用いて気体を連続的に吹込む方法。
(Prior Art) Typical methods for producing hollow fibers using viscose rayon include (1) a method using a viscose stock solution to which a blowing agent such as an inorganic carbonate is added; (2) A method of continuously blowing gas using a special spinneret.

(3)馬蹄形紡糸口金を用いて紡糸直後に接着させる方
法。(4)二重紡糸口金を用いて中空剤を原液吐出流の
中心部に連続的に押し出す方法などがあるが、(1)〜
(3)の方法によって得られた中空糸は全糸長方向に貫
通した中空部を安定して得ることは困難で6D、ピンホ
ール、及び膜厚斑が存在し、分離用膜としては使用でき
ず、もっばら衣料用あるいは紙用として使用されている
現状である。(4)の方法による中空糸は分離用膜とし
て使用し得るが、いずれの場合もビスコース原液を直接
紡糸浴中に押し出して紡糸する方法を用いている。しか
しながらこのようなビスコース原液を直接紡糸浴中に押
し出す紡糸法では紡糸ドラフトを0.5〜2.5の範囲
に調整しなければ安定して紡糸できないため、極めて精
度の高い紡糸口金を使用するか、あるいは極めて低紡速
で紡糸することが必要であった。
(3) A method of adhering immediately after spinning using a horseshoe-shaped spinneret. (4) There are methods such as using a double spinneret to continuously extrude the hollow agent into the center of the raw solution discharge flow, but (1) ~
The hollow fiber obtained by method (3) cannot be used as a separation membrane because it is difficult to stably obtain a hollow part that penetrates the entire length of the fiber, and there are 6D, pinholes, and uneven membrane thickness. Currently, it is mainly used for clothing or paper. Hollow fibers produced by method (4) can be used as separation membranes, but in either case, a method is used in which the viscose stock solution is directly extruded into a spinning bath and then spun. However, in this spinning method in which the viscose stock solution is directly extruded into the spinning bath, stable spinning is not possible unless the spinning draft is adjusted to a range of 0.5 to 2.5, so a spinneret with extremely high precision must be used. Alternatively, it was necessary to spin at an extremely low spinning speed.

さもなければ、半凝固状態での多浴高緊張を行なう必要
があった。
Otherwise, it was necessary to perform multi-bath high tension in a semi-solidified state.

さらにビスコースレーヨンの再生反応はセルロースザン
テートのザンテート基の脱離をともなうため、この時発
生する二硫化炭素、硫化水素等のガスが発生し、紡糸浴
中に紡糸口金を浸漬した紡糸方法を採用する場合には、
紡糸口金のビスコース原液が押し出される面は上方もし
くは横方向であることが一般的であ)%紡糸浴の抵抗を
軽減することができず、中空糸の壁厚を薄くシシかも壁
厚の均一な中空糸を得ることができないとともに巻取速
度を大きくすることができなかった。
Furthermore, since the regeneration reaction of viscose rayon involves the elimination of the xanthate group of cellulose xanthate, gases such as carbon disulfide and hydrogen sulfide are generated at this time. When hiring,
Generally speaking, the surface of the spinneret from which the viscose stock solution is extruded is upward or lateral.% It is not possible to reduce the resistance of the spinning bath, and the wall thickness of the hollow fibers may be thinned and the wall thickness may be made uniform. In addition, it was not possible to obtain a hollow fiber with high winding speed, and it was not possible to increase the winding speed.

また通常のビスコースレーヨン糸の紡糸方法及び紡糸浴
組成で製造したレーヨン中空糸は外壁表層に厚いスキン
層を有した中空糸が得られるが、該スキン層が厚い場合
、スキン層とコア層の収縮率の差及び半凝固状態でのビ
スコース中の水分が糸条外へ浸出するために表面に激し
い凹凸を有する中空糸しか得られないし、またこの様に
して得られた中空糸は乾燥後においてその断面形状は円
形の保持性が悪く糸長方向に断面形状の極めて不揃いの
中空糸しか得られない。さらに紡糸浴組成を変更せしめ
て塩浴によって凝固のみを行なわせて糸条を形成させて
も、極めて長い紡糸浴浸漬長が必要であるばかシでなく
極めて低い巻取速度でしか製造ができない。凝固後延伸
を行なわない場合は、スキン層のほとんどない中空糸が
得られるが、強度が低く、実際上分離膜として使用に耐
えない。また凝固後高延伸を行なった場合は極めて厚い
スキン層を有する強度の高い中空糸が得られるが、膜透
過抵抗が大きく膜透過性能が極めて低くなるとともに、
ピンホールが多発し、工業的製造には適さない。
In addition, rayon hollow fibers produced using the usual viscose rayon yarn spinning method and spinning bath composition can be obtained with a thick skin layer on the outer wall surface layer, but when the skin layer is thick, the skin layer and core layer Due to the difference in shrinkage rate and the moisture in the viscose in the semi-solidified state seeping out of the filament, only hollow fibers with severe unevenness on the surface can be obtained. The circular cross-sectional shape is poorly maintained, and only hollow fibers with extremely irregular cross-sectional shapes in the fiber length direction can be obtained. Furthermore, even if the composition of the spinning bath is changed and yarns are formed by only coagulating in a salt bath, this does not require an extremely long immersion length in the spinning bath, and production can only be carried out at an extremely low winding speed. If stretching is not performed after coagulation, hollow fibers with almost no skin layer can be obtained, but their strength is low and they cannot be used as separation membranes in practice. In addition, if high stretching is performed after solidification, a strong hollow fiber with an extremely thick skin layer can be obtained, but the membrane permeation resistance is large and the membrane permeation performance is extremely low.
It has many pinholes and is not suitable for industrial manufacturing.

上記したような従来技術の中で、近年膜分離用のビスコ
ースレーヨン中空糸の製造法として、例えば、東ドイツ
特許第131941号公報で提案されているがかかる方
法は紡糸口金から押し出したビスコース原液を直接紡糸
浴中で凝固させた後に長浴延伸させることによって中空
糸を製造するものであシ、得られた中空糸は膜強度と透
過性能を両立させることができず、さらに巻取速度が3
0%/分以下と極めて小さく、かつ紡糸口金の精度が極
めて高いことが要求され、工業的製造面で不利であった
Among the above-mentioned conventional techniques, a method for manufacturing viscose rayon hollow fibers for membrane separation has recently been proposed, for example, in East German Patent No. 131941, but this method uses a viscose stock solution extruded from a spinneret. Hollow fibers are produced by direct coagulation in a spinning bath and then stretching in a long bath, but the resulting hollow fibers cannot achieve both membrane strength and permeation performance, and the winding speed is low. 3
It was required that the spinneret be extremely small, 0%/min or less, and that the precision of the spinneret be extremely high, which was disadvantageous in terms of industrial production.

(発明が解決しようとする問題点) 中空糸は中空部分に分離すべき液体、又は気体、あるい
は分離処理された液体又は気体を通過させるために全糸
長にわたって完全に貫通した中空部を保持していること
が必須でアシ、しかも中空部を形成する先壁は部分的な
欠損があってはならないとともに分離処理工程上必要な
程度の物理的強度を有することが必要である。さらに良
好な分離性能を得るためには、該中空糸壁は全糸長にわ
たって均一で可及的に薄いことが必要である。
(Problem to be Solved by the Invention) A hollow fiber has a hollow part that is completely penetrated over the entire length of the fiber in order to pass the liquid or gas to be separated or the separated liquid or gas. It is essential that the reeds and the front wall forming the hollow part have no partial defects and must have a physical strength to the extent necessary for the separation process. In order to obtain even better separation performance, it is necessary that the hollow fiber walls be uniform over the entire fiber length and as thin as possible.

本発明は、ビスコースレーヨン中空糸の従来技術の欠点
、すなわち、中空糸の円形保持性が悪い、ピンホールや
膜厚斑がある、強度と膜透過性能の両立が不充分である
等の膜分離用途上、不利な点を一挙に解消し、分離用膜
として適するビスコースレーヨン中空糸を提供すること
を目的としている。
The present invention addresses the drawbacks of the conventional technology of viscose rayon hollow fibers, such as poor circularity retention of hollow fibers, pinholes and uneven film thickness, and insufficient compatibility between strength and membrane permeability. The purpose of this invention is to provide a viscose rayon hollow fiber suitable as a separation membrane by eliminating all disadvantages in separation applications.

また、従来技術では膜厚が30μ以下の薄いビスコース
レーヨン中空糸で凹凸をなくすことが難しかった。その
ため通常の2層構造をもつビスコースレーヨン中空糸に
おいて、凹凸をなくす種々の試みがなされてきたが、膜
強度・膜分離性能・円形保持性等の分離膜用途に必要な
性能を具備する中空糸を得るに至らなかった。
Furthermore, in the conventional technology, it was difficult to eliminate unevenness with thin viscose rayon hollow fibers having a film thickness of 30 μm or less. For this reason, various attempts have been made to eliminate unevenness in viscose rayon hollow fibers, which have a normal two-layer structure. I couldn't get the thread.

(問題点を解決するための手段) 本発明著らは、先に述べたように、従来技術では困難で
あった膜厚30μ以下と薄くかつ表面に凹凸のない膜分
離用に供し得るビスコースレーヨン中空糸を得ることを
目的としている。通常ビスコースレーヨン糸の特徴であ
るスキン・コア2層構造を持つ中空糸において、そのス
キン層の構造と性質を解析し、その生成過程と、分離膜
としての役割を鋭意研究の結果、スキン層の厚さが、表
面の凹凸の大きさ、−及び断面の円形保持性を左右して
おり、かつ、膜透過性能及び膜強度に影響を及ぼしてい
ることを突きとめた。
(Means for Solving the Problems) As mentioned above, the present inventors have developed a viscose film that can be used for membrane separation with a film thickness of 30 μm or less and with no irregularities on the surface, which was difficult to achieve with the conventional technology. The purpose is to obtain rayon hollow fibers. As a result of analyzing the structure and properties of the skin layer of the hollow fiber, which has a two-layer skin/core structure that is typical of viscose rayon yarn, and conducting intensive research into its formation process and its role as a separation membrane, the skin layer It was found that the thickness of the membrane influences the size of the surface irregularities and the circularity of the cross section, and also influences the membrane permeation performance and membrane strength.

その結果、1μ以下の極めて薄いスキン層を外層に有し
、外壁表層に激しい凹凸がなく、乾燥時及び湿潤時に円
形を安定に保持しており、かつ壁厚みが30μ以殿の極
めて薄い膜であシ、壁厚み及び径が全糸長にわたって均
一なビスコースレーヨン中空糸を得るに至った。
As a result, the outer wall has an extremely thin skin layer of 1μ or less, has no severe irregularities on the outer wall surface layer, maintains a stable circular shape when dry or wet, and has an extremely thin wall thickness of 30μ or more. Viscose rayon hollow fibers having uniform reeds, wall thicknesses, and diameters over the entire fiber length were obtained.

これによって、膜分離に必要な強度を保持しながら膜透
過性能の低下を抑制することを可能にした。
This makes it possible to suppress a decline in membrane permeation performance while maintaining the strength necessary for membrane separation.

つまシ、スキン層の厚い中空糸においては、該スキン層
とコア層の膨潤度、収縮率、配向性の相違から乾燥時及
び湿潤時に応力が生じて変形し、外壁表層に凝しい凹凸
が生ずるが、該表層に生成するスキン層を1μ以下にす
ることによって、この変形を防止し、全糸長にわたって
均一なる円形形状及び壁厚みを有する中空糸を得ること
ができた。
In hollow fibers with a thick skin layer, stress is generated and deformed when drying and wetting due to the difference in swelling degree, shrinkage rate, and orientation between the skin layer and the core layer, resulting in hard unevenness on the outer wall surface layer. However, by reducing the skin layer formed on the surface layer to 1 μm or less, this deformation could be prevented and a hollow fiber having a uniform circular shape and wall thickness over the entire fiber length could be obtained.

本発明に係る中空糸は、ビスコース法再生セルロース繊
維からなる中空糸であり、該中空糸はその外壁の表層に
金糸長方向及び全周囲にわたって1.0μ以下のスキン
層を有することを特徴としている。また該中空糸の好ま
しい寸法及び形状は全糸長及び全周囲にわたって、該中
空糸の外径をaμ、壁厚みをbμとした時、その範囲が
5≦a≦500かつ1.33+10  2a+2.33
≦b≦6.67X102a+6J7≦30 であシ、こ
の範囲であれば乾燥時及び湿潤時において安定に円形を
保持することができる。
The hollow fiber according to the present invention is a hollow fiber made of regenerated cellulose fiber using a viscose process, and is characterized in that the hollow fiber has a skin layer of 1.0μ or less on the surface layer of its outer wall in the longitudinal direction of the gold thread and over the entire circumference. There is. Further, the preferred dimensions and shape of the hollow fiber are such that over the entire length and circumference of the hollow fiber, where the outer diameter of the hollow fiber is aμ and the wall thickness is bμ, the range is 5≦a≦500 and 1.33+10 2a+2.33
≦b≦6.67X102a+6J7≦30 If the range is within this range, the circular shape can be stably maintained both when dry and when wet.

本発明に使用するビスコース原液は木材パルプよシ製造
されたものであり、アルカリセルロース、二硫化炭素、
苛性ソーダを含有しており、好ましくは粘度は50〜3
00ボイズ、熟成度Hz価1.5〜4.0のビスコース
原液が適当である。
The viscose stock solution used in the present invention is produced from wood pulp, and contains alkali cellulose, carbon disulfide,
Contains caustic soda, preferably has a viscosity of 50-3
A stock solution of viscose with a 0.00 void and a ripeness Hz number of 1.5 to 4.0 is suitable.

すなわち、粘度の低いビスコースは粘稠性が小さく、5
0ポイズ以下の原液を用いて、中空剤を充てんしながら
空間落下させることは紡糸が不安定になシやすく、また
熟成度Hz価の大きい原液を使用すると分解による二硫
化炭素等のガスの発生が急激であり、中空糸膜中のボイ
ド及び形状の不均一を生ずる原因となることがある。つ
まシ、凝固速度が早く、再生の比較的遅い熟成度Hz価
の小さいビスコース原液を用いることが望ましいのであ
る。
In other words, viscose with low viscosity has low viscosity and 5
Using a stock solution of 0 poise or less and dropping it into space while filling it with a hollow agent will likely cause spinning to become unstable, and if a stock solution with a high ripeness Hz value is used, gases such as carbon disulfide will be generated due to decomposition. This is rapid and may cause voids and non-uniformity of shape in the hollow fiber membrane. In other words, it is desirable to use a viscose stock solution with a fast solidification rate, relatively slow regeneration, and a low ripeness Hz value.

本発明に適用される中空剤はビスコース原液に対して急
激な凝固作用を有しない液状の物質であることが必要で
ある。つまシ凝固作用の強い中空剤を用いた場合、中空
糸の内層部分が自由落下中あるいは紡糸浴中でまだ外層
及び壁内部の凝固が不充分な状態において、ゲル状凝固
物を生成し、このゲル状物の移動が不均一に発生し、さ
らには中空部にセルロースザンテートの分解による二硫
化炭素、硫化水素等のガスが発生し、得られた中空糸は
径の斑及びピンホールの多いものしか得られない。さら
に水に相溶性を有する液体、たとえば水又はその溶液あ
るいは低分子アルコールを中9剤として用いると、紡糸
浴中で中空剤が浴中へ浸出すること、及び乾燥中に中空
糸の外表面への中空剤の移動及び蒸発を生じ、中空部分
のつぶれたもの、あるいは完全に密着して空洞部の閉塞
した中空糸しか得られない。つまシ本発明に適した中空
剤は芳香族炭化水素(ベンゼン、トルエン、キシレン、
エチルベンゼン、クメン、スチレン等)あるいは脂肪族
炭化水素(ヘキサン、ペンタン、石油エーテル、流動パ
ラフィン等)あるいは、ハロゲン化炭化水素(塩化メチ
レン、クロロホルム、四塩化炭素、ジクロルエチレン、
トリクロロエチレン、)ぐ−クロルエチレン等)がちシ
、特に比重が大きく沸点が紡糸浴温度よりも高い中空剤
(クロロホルム、)七−クロルエチレン)2>fJする
The hollowing agent applied to the present invention must be a liquid substance that does not have a rapid coagulation effect on the viscose stock solution. When a hollow agent with a strong coagulation effect is used, a gel-like coagulum is produced when the inner layer of the hollow fiber is free-falling or the outer layer and inside the wall are not sufficiently coagulated in the spinning bath. The movement of gel-like substances occurs unevenly, and gases such as carbon disulfide and hydrogen sulfide are generated in the hollow part due to the decomposition of cellulose xanthate, and the resulting hollow fibers have many uneven diameters and pinholes. You can only get things. Furthermore, if a liquid that is compatible with water, such as water or its solution or a low-molecular-weight alcohol, is used as the hollowing agent, the hollowing agent may leach into the spinning bath and may be transferred to the outer surface of the hollow fiber during drying. As a result, the hollow agent moves and evaporates, and only hollow fibers with collapsed hollow portions or completely closed hollow fibers are obtained. Hollow agents suitable for the present invention include aromatic hydrocarbons (benzene, toluene, xylene,
ethylbenzene, cumene, styrene, etc.), aliphatic hydrocarbons (hexane, pentane, petroleum ether, liquid paraffin, etc.), or halogenated hydrocarbons (methylene chloride, chloroform, carbon tetrachloride, dichloroethylene,
Trichloroethylene, 7-chloroethylene, etc.), especially hollow agents (chloroform, 7-chloroethylene) having a large specific gravity and a boiling point higher than the spinning bath temperature.

上記中空糸は、ビスコース原液と上記の中空剤を二重紡
糸口金を用い、中空剤を中心部に包含した状態で同時に
連続的に押し出し、紡糸浴へ導入し凝固再生させてチュ
ーブ状中空糸を製造する忙あたす、押し出されたビスコ
ース原液及び中空剤を一旦空間中で10〜100111
31自由落下させた後、−10= 紡糸ドラフト4.0〜16.0 で紡糸浴へ垂直に導入
して凝固させ、その後1つの処理方法として形成された
フィラメントを巻、取枠に巻取ha状となし、これを水
洗工程、中和工程、水洗工程、乾燥工程を通して最終的
に得られる。または別の処理方法として連続的に上記処
理工程を通しても得られる。
The above-mentioned hollow fibers are produced by continuously extruding the viscose stock solution and the above-mentioned hollow agent simultaneously and continuously using a double spinneret with the hollow agent contained in the center, and then introducing the solution into a spinning bath where it is coagulated and regenerated to form a tubular hollow fiber. During the production process, the extruded viscose stock solution and hollow agent are once heated in a space of 10~100111
After 31 free fall, it is vertically introduced into the spinning bath at -10 = spinning draft 4.0 to 16.0 to solidify, and then as a processing method the formed filament is wound and taken up on a take-up frame. This is finally obtained through a water washing process, a neutralization process, a water washing process, and a drying process. Alternatively, it can be obtained by continuously passing through the above treatment steps as another treatment method.

ここで、二重紡糸口金の下面を40〜70℃に加熱させ
、例えば紡糸口金下面に電熱ヒーターを組込んで紡糸口
金を温め紡糸浴からの蒸発水分の凝集による水1滴によ
って生じるビスコース原液ノ扁流、液切れを防止できる
ので安定操業ができる。
Here, the lower surface of the double spinneret is heated to 40 to 70°C, for example, an electric heater is built into the lower surface of the spinneret, and the spinneret is heated to produce a viscose stock solution produced by one drop of water due to the coagulation of evaporated water from the spinning bath. Stable operation is possible because flat flow and liquid shortage can be prevented.

また、この空間の雰囲気は空気中であることが最も簡単
であって通常好ましい。
Furthermore, it is easiest and usually preferable that the atmosphere in this space be in the air.

空間での自由落下ではビスコース原液はその内部に中空
剤を連続して包含しており、空間落下の際に流動可能な
液体状であシ、かつビスコース原液の粘度が小さいため
に落下速度は急速に大きくなり、わずかの空間を通過さ
せることによシ、原液は充分に延伸され、紡糸浴面に到
達する時点では、中空糸の直径とほぼ同一の充分小さい
寸法にまですることができる。つまり直径紡糸浴に浸漬
した場合には、表面が半凝固状態で延伸されるために、
糸長方向に配向した厚いスキン層が生成されるが、空間
落下域を設けることによシ、ビスコース原液は液体の状
態で充分に細い線状になっているため、かかるスキン層
を薄くすることができる。さらに表面張力によって壁厚
が全糸長及び全周囲にわたって、均一なものとすること
ができる。
During free fall in space, the viscose stock solution continuously contains hollow agents inside it, and is in the form of a liquid that can flow when falling in space, and the falling speed is low because the viscosity of the viscose stock solution is low. quickly increases in size, and by passing through a small space, the stock solution is sufficiently stretched, and by the time it reaches the spinning bath surface, it can be reduced to a sufficiently small size that is almost the same as the diameter of the hollow fiber. . In other words, when immersed in a diameter spinning bath, the surface is stretched in a semi-solidified state, so
A thick skin layer oriented in the yarn length direction is generated, but by providing a spatial fall region, the viscose stock solution has a sufficiently thin linear shape in its liquid state, so this skin layer can be made thinner. be able to. Furthermore, surface tension forces allow the wall thickness to be uniform over the entire thread length and circumference.

この空間の大きさは紡糸浴面での落下速度からその下限
が、またビスコース原液の曳糸性能からその上限が規制
され、その範囲は10〜100wxの範囲であることが
適当である。つまシ10朋以下である場合は紡糸口金へ
直接紡糸引張り力が影響し、紡糸口金を厳密に水平状態
に位置を規制しても30〜i分以上の巻取速度で紡糸す
ることができない。さらに巻取速度を上昇させると部分
的なビスコース原液による中空剤の包含状態が破壊され
、多数のピンホールが発生し、分離用膜としての機能を
果さない。さらKは、′紡糸浴からの水蒸気の紡糸口金
への上着及び凝集が凝しく、凝集水滴がビスコース原液
流と接触した部分に壁厚斑が生じ、均一性が失われる。
The lower limit of the size of this space is regulated by the falling speed on the surface of the spinning bath, and the upper limit is regulated by the spinning performance of the viscose stock solution, and the appropriate range is 10 to 100 wx. If the spinneret is less than 10 mm, the spinning tension directly affects the spinneret, and even if the spinneret is strictly horizontally positioned, spinning cannot be performed at a winding speed of 30 minutes or more. When the winding speed is further increased, the state in which the hollow agent is partially contained by the raw viscose solution is destroyed, many pinholes are generated, and the membrane does not function as a separation membrane. In addition, the water vapor from the spinning bath is deposited on the spinneret and coagulated tightly, and wall thickness unevenness occurs in the area where the coagulated water droplets come into contact with the viscose raw solution stream, resulting in loss of uniformity.

空間を100n以上採用する場合にはもはやビスコース
原液の曳糸性は失われ、全糸長方向に均一な径及び壁厚
みを有する中空糸を得ることはできない。さらに極端に
大きくした場合は表面張力によって中央部分に中空剤を
包含したチップ状となシ、連続した糸状にすらならない
。従ってビスコースレーヨン中空糸の製造にあたって空
間長は10〜i o amの範囲で巻取速度及び原液押
出・量に適した位置に設定して紡糸するととKよシ極め
て安定した形状の中空糸を製造することがで、きる。つ
まシ以下の実施例1〜3に示す様に、巻取速度80〜1
50m/分の高速度においても安定した形状及び膜性能
を有したビスコースレーヨン中空糸が得られる。Dfに
ついては、実施例6の第5表に示したように、5.6〜
14の範囲で実施した。
When the space is 100 nm or more, the stringability of the viscose stock solution is lost and it is no longer possible to obtain hollow fibers having a uniform diameter and wall thickness in the entire fiber length direction. Furthermore, if the size is extremely large, the surface tension results in a chip-like shape containing a hollow agent in the center, or even a continuous thread-like shape. Therefore, when manufacturing viscose rayon hollow fibers, if the space length is set in the range of 10 to 10 am and the position is appropriate for the winding speed and extrusion amount of the stock solution, it is possible to produce hollow fibers with an extremely stable shape. It can be manufactured. As shown in Examples 1 to 3 below, the winding speed is 80 to 1.
Viscose rayon hollow fibers having stable shape and membrane performance even at high speeds of 50 m/min are obtained. As for Df, as shown in Table 5 of Example 6, it is 5.6~
It was carried out in a range of 14.

紡糸口金は、中空糸の寸法、巻取速度、空間長等の大き
さによって、最適寸法は異るが、好ましいDfは4〜1
6の範囲である。ここでDfとは、巻取速度/♂スコー
ス吐出線速度であシ、真の紡口面におけるドラフトの値
ではないが、紡糸口金の寸法精度に関する影響を評価す
るための尺度である。Df4未満の小さい領域でも紡糸
は可能ではあるが、空間長を短く設定することが必要と
なシ、紡糸浴からの水蒸気の紡糸口金への凝集が激しく
なるとともに、紡糸ノズルの精度を極めて高くしなけれ
ば円形で壁厚斑の少い中空糸が得られ難くなる。Dfが
16を超える領域では、空間長を短く設定しても、もは
やビスコースの曳糸性は失われ、糸長方向に均一な径及
び壁厚みを有する中空糸を得ることが困難に女るととも
に、ピンホールが多発するようkなる。
The optimum size of the spinneret varies depending on the dimensions of the hollow fiber, winding speed, space length, etc., but the preferable Df is 4 to 1.
The range is 6. Here, Df is the winding speed/the linear velocity of male scose discharge, and although it is not the draft value at the true spinneret surface, it is a measure for evaluating the influence on the dimensional accuracy of the spinneret. Although spinning is possible even in a small region of less than Df4, it is necessary to set the space length short, and the agglomeration of water vapor from the spinning bath to the spinneret becomes severe, and the precision of the spinning nozzle must be extremely high. Otherwise, it will be difficult to obtain circular hollow fibers with few wall thickness irregularities. In a region where Df exceeds 16, even if the space length is set short, the stringability of viscose is lost, making it difficult to obtain hollow fibers with a uniform diameter and wall thickness in the yarn length direction. At the same time, pinholes occur frequently.

さらに水滴付着による斑、あるいは切糸の発生を防止し
、安定した連続運転性能を達成するためには、紡糸口金
下面表面を40〜70℃に加熱することが望ましく、こ
れによって30〜50℃の紡糸浴を用いる場合の水滴の
付着を防止することができ、長時間安定した連続紡糸が
可能となる。
Furthermore, in order to prevent unevenness or cut threads due to adhesion of water droplets and to achieve stable continuous operation performance, it is desirable to heat the bottom surface of the spinneret to 40 to 70°C. When a spinning bath is used, adhesion of water droplets can be prevented, and stable continuous spinning can be performed for a long period of time.

紡糸浴中で垂直走行する部分の距離は30〜15〇m程
度が好ましく、またその垂直走行部分を流管となすこと
によシ、浴抵抗を軽減することが可能である。特に流管
中の紡糸液速度を巻取速度(実際には、流管中の糸条走
行速度と殆んど等しい)以下としたとき、非常に安定し
た運転ができる。
The distance of the vertically running portion in the spinning bath is preferably about 30 to 150 m, and bath resistance can be reduced by forming the vertically running portion as a flow tube. In particular, when the speed of the spinning solution in the flow tube is lower than the winding speed (actually, almost equal to the thread running speed in the flow tube), very stable operation can be achieved.

このときの巻取速度は65〜150m/分が好ましい。The winding speed at this time is preferably 65 to 150 m/min.

紡糸浴はその組成が通常レーヨン糸の紡糸浴をその1ま
用いることができる。つまシ硫酸50〜200E/l−
硫酸ナトリウム100〜3sOF/l、硫酸亜鉛を20
9/ノ以下を含む水溶液であって、特に硫酸120〜1
609/l、硫酸ナトリウム200〜3−00 l/l
l、硫酸亜鉛5〜15g/ノ を含む水溶液であること
が望ましい。さらに紡糸浴温度は30〜50℃の範囲の
比較的低い温度であることが望ましい。つまシ再生の速
度を比較的緩慢に行わせしめると同時に分解による二硫
化炭素、硫化水素等のガスの発生をゆるやかに行わせし
め、これによるゼイド、ピンホールの発生を防止できる
。なお高い紡糸浴温度中で紡糸する際には、セルロース
ザンテートの急激な分解によって多量の二硫化炭素、硫
化水素等のガスが発生し、これによってゼイド、ピンホ
ールあるいは中空糸の断面の直径斑が多発する。
As the spinning bath, a spinning bath whose composition is usually rayon yarn can be used. Tsumashi sulfuric acid 50-200E/l-
Sodium sulfate 100-3sOF/l, zinc sulfate 20
An aqueous solution containing sulfuric acid of 120 to 1
609/l, sodium sulfate 200-3-00 l/l
It is desirable to use an aqueous solution containing 5 to 15 g/l of zinc sulfate. Further, it is desirable that the spinning bath temperature is relatively low in the range of 30 to 50°C. The speed of regeneration of the pick is made relatively slow, and at the same time, the generation of gases such as carbon disulfide and hydrogen sulfide due to decomposition is made slow, thereby preventing the generation of zeids and pinholes. Furthermore, when spinning at a high spinning bath temperature, a large amount of gas such as carbon disulfide and hydrogen sulfide is generated due to the rapid decomposition of cellulose xanthate, which causes zeids, pinholes, and diameter unevenness in the cross section of the hollow fiber. occurs frequently.

紡糸浴中を垂直下方へ浸漬通過させる工程について、そ
の距離は30〜150eMであることが望ましい。つま
j)30cIn以下の浸漬長を採用して糸条の走行方法
を変更糸道によって変更させる場合においては、該中空
糸は外層表面及び内層壁内部の凝固が充分でなく、物理
的な圧迫を受けると中空形状の変形を生じ、扁平もしく
は壁厚みに斑を有した中空糸になることがあシ、これは
筐た中空糸のピンホール発生の大きな要因となる。15
0crn以上の浸漬長を設ける場合にはその紡糸浴抵抗
が大きく、さらに操作性の面から製造上好ましくない。
Regarding the process of vertically downward immersion in the spinning bath, the distance is preferably 30 to 150 eM. j) When using an immersion length of 30 cIn or less and changing the running method of the yarn by changing the yarn path, the hollow fibers may not be sufficiently coagulated on the outer layer surface and inside the inner layer wall, and may not be subjected to physical pressure. When exposed to such stress, the hollow fibers may be deformed, resulting in hollow fibers that are flat or have uneven wall thickness, which is a major factor in the generation of pinholes in the hollow fibers. 15
If the immersion length is 0 crn or more, the spinning bath resistance will be large, and furthermore, it is unfavorable from the viewpoint of operability in production.

特に上記の垂直な浸漬部分を流管となし、流管長が30
〜150cIn であシ、λ管中の流速が巻取速度以下
の速度であることが望塘しい。つまシ流管中の流速を制
御するにあたシ紡糸浴による糸条への抵抗を軽減するこ
とによって、極めて壁厚の薄い中空糸を安定的に製造で
きる。また流管中の流速を流管出口で巻取速度以上にす
ると空間落下域での切断が生じることがあシ、安定に製
造しにぐい。さらに流下速度を′巻取速度に近づけるに
従って浴抵抗による延伸が軽減され、膜表層のスキン層
の厚さを減少させることができる。また中空糸の大きさ
に合わせて、必要に応じて水平浸漬槽を垂直浸漬槽の直
後に設け、充分な凝固を完了させることが望ましい。上
記製造方法によって得られる本発明のビスコースレーヨ
ン中空糸の拡大断面形状を第2図に、またその電顕写真
(3万倍)を第3図に示した。中空糸の中空部を囲む壁
厚みは薄くかつ均一であり、その壁構成部分はスキン、
コアの二層構造を有しておシその外壁表層にスキン層部
分を1.0μ以下の範囲で有している。スキン層の厚い
中空糸は熟成度Hz価の大きいビスコース原液を用いる
か、紡糸浴中で高延伸を行なうか、あるいは紡糸浴温度
を高くするか、紡糸浴中の硫酸亜鉛濃度を20971以
上にする等の方法及びそれらを組合せた製造方法によっ
て製造することができるが、この様なスキン層の厚い中
空糸は、そのスキン部分とコア部分の収縮率の差によっ
て断面形状は外壁表層に激しい凹凸を有したものであり
、断面形状及び壁厚みにも不揃いが生じる。
In particular, the vertical immersion part mentioned above is used as a flow tube, and the flow tube length is 30 mm.
It is preferable that the flow velocity in the λ tube is less than or equal to the winding speed. By controlling the flow rate in the pick flow tube and reducing the resistance to the yarn by the spinning bath, hollow fibers with extremely thin wall thickness can be stably produced. Furthermore, if the flow velocity in the flow tube is made higher than the winding speed at the flow tube outlet, breakage may occur in the space fall region, making stable production difficult. Furthermore, as the flow rate approaches the winding speed, stretching due to bath resistance is reduced, and the thickness of the skin layer on the surface of the membrane can be reduced. Further, depending on the size of the hollow fiber, it is desirable to provide a horizontal dipping tank immediately after the vertical dipping tank as necessary to complete sufficient coagulation. FIG. 2 shows an enlarged cross-sectional shape of the viscose rayon hollow fiber of the present invention obtained by the above manufacturing method, and FIG. 3 shows an electron micrograph (30,000 times magnification) thereof. The wall thickness surrounding the hollow part of the hollow fiber is thin and uniform, and the wall components are skin,
It has a two-layer core structure, and has a skin layer portion on the outer wall surface layer of the core in a range of 1.0 μm or less. For hollow fibers with a thick skin layer, it is necessary to use a viscose stock solution with a high ripeness Hz number, perform high stretching in the spinning bath, increase the spinning bath temperature, or increase the zinc sulfate concentration in the spinning bath to 20971 or higher. However, such hollow fibers with a thick skin layer have a cross-sectional shape with severe irregularities on the outer wall surface layer due to the difference in shrinkage rate between the skin part and the core part. This results in irregularities in cross-sectional shape and wall thickness.

また発生ガスによるピンホールの多発とともに膜分離性
能上の通過抵抗が大きく実用に供し得るものは得られな
い。
In addition, there are many pinholes caused by the generated gas, and the passage resistance in terms of membrane separation performance is large, making it impossible to obtain a product that can be put to practical use.

本方法によって得られる中空糸の外径を50μ以上にす
ると中空糸の中空部分が均一に貫通したものが確実に得
られ、かつ壁厚みも斑のない中空糸になる。その結果切
糸が発生しなくなり、長時間の安定紡糸ができる。また
中空糸の外径を500μ以上にするには紡糸口金の変更
によって製造は可能である。しかし500μ以下にすれ
ば、巻取枠上及び変更糸道によって中空部分が潰れたり
、扁平状となることはない。また部・公的に密着した中
空糸になることが防止できる。また本発明によって得ら
れる中空糸の壁厚みは3μ以上であれば、該中空糸は紡
糸浴抵抗及び変更糸道あるいは、巻取枠上での物理的圧
力に耐えることができ、貫通した中空糸を安定して得る
ことができる。また30μ以上の壁厚の大きいものを製
造するには垂直浸漬長を数m必要とするとともにその後
水平浸漬長を同じ様に長く採用すれば良い。しかし30
μ以下であれば、150crn以下の垂直浸漬部分を採
れば、糸条を充分に凝固させることができ、実際的な生
産工程として1極・めで有・′利であるとともに浴抵抗
が少なく、外壁表層スキン層の薄い中空糸が得られる。
When the outer diameter of the hollow fiber obtained by this method is set to 50 μm or more, it is possible to reliably obtain a hollow fiber in which the hollow portion of the hollow fiber penetrates uniformly, and the hollow fiber has a uniform wall thickness. As a result, cut yarns do not occur and stable spinning can be performed for a long time. Further, it is possible to manufacture hollow fibers with an outer diameter of 500 μm or more by changing the spinneret. However, if the thickness is 500μ or less, the hollow portion will not be crushed or flattened due to the winding frame and the changed yarn path. In addition, it is possible to prevent the formation of hollow fibers that are in close contact with departments and public offices. Further, if the wall thickness of the hollow fiber obtained by the present invention is 3μ or more, the hollow fiber can withstand spinning bath resistance and changing yarn path or physical pressure on the winding frame. can be obtained stably. Further, in order to manufacture a product with a large wall thickness of 30 μm or more, a vertical immersion length of several meters is required, and after that, a horizontal immersion length of the same length can be adopted. But 30
μ or less, if the vertical immersion part is 150 crn or less, the yarn can be sufficiently coagulated, and it is advantageous to use one pole as a practical production process, and the bath resistance is small and the outer wall A thin hollow fiber with a surface skin layer is obtained.

本製造法によって壁厚みが極めて薄いチューブ状中空糸
を60〜150m/分の速い巻取速度によって、通常レ
ーヨン紡糸浴組成によって極めて安定した寸法のレーヨ
ン中空糸を製造することが可能である。
By this production method, it is possible to produce rayon hollow fibers with very stable dimensions, usually depending on the composition of the rayon spinning bath, by winding up tubular hollow fibers with extremely thin wall thickness at a high winding speed of 60 to 150 m/min.

(発明の効果) 本発明のレーヨン中空糸は、外内壁ともほとんど凹凸の
ない平滑な表面を有している。またスキン層の厚さを極
めて薄く均一な状態で得られるために、従来のビスコー
スレーヨン中空糸に比し分離性能の向上及び薄膜化が可
能となる。さらに本発明のレーヨン中空糸は抑圧、屈曲
に対する強度を充分に有すると共に分離性能を充分に有
する従来のビスコースレーヨン中空糸の二つの背反する
性質を両立させた中空糸である。
(Effects of the Invention) The rayon hollow fiber of the present invention has a smooth surface with almost no irregularities on both the outer and inner walls. Furthermore, since the skin layer can be obtained in an extremely thin and uniform thickness, it is possible to improve separation performance and make the film thinner than conventional viscose rayon hollow fibers. Furthermore, the rayon hollow fiber of the present invention is a hollow fiber that has both the two contradictory properties of the conventional viscose rayon hollow fiber, which has sufficient strength against compression and bending, and has sufficient separation performance.

以上、詳述した如く、本発明による中空糸は、ビスコー
スレーヨン中空糸としてその特殊な断面構造によって、
力学的安定性、寸法安定性及び膜の透過性能が従来のビ
スコースレーヨン中空糸と比して優れており物質分離用
膜として有用であシ、特に逆浸透膜、あるいは透析膜と
して好適である。
As detailed above, the hollow fiber according to the present invention has a special cross-sectional structure as a viscose rayon hollow fiber.
The mechanical stability, dimensional stability, and membrane permeation performance are superior to conventional viscose rayon hollow fibers, making it useful as a substance separation membrane, and particularly suitable as a reverse osmosis membrane or a dialysis membrane. .

実施例1 本発明の中空糸を得るための製造方法について第1図を
用いて簡単に説明する。二重紡糸口金3には紡糸原液用
タンク1と中空剤層タンク4とからギャポンプ2と定量
ポンプ5を介して原液と中空剤が定量で送られてくる。
Example 1 A manufacturing method for obtaining the hollow fiber of the present invention will be briefly explained using FIG. 1. A fixed amount of the stock solution and hollow agent are sent to the double spinneret 3 from a spinning stock solution tank 1 and a hollow agent layer tank 4 via a gap pump 2 and a metering pump 5.

二重紡糸口金3の環状の外径0.7B、内径0.51!
Imのスリットよシ原液が、中心の径0.2 rxxの
孔よシ中空剤が押し出される。二重紡糸口金3直下に6
0mの空間をおいて径301m、長さ40c11tの流
管10が配されている。
The annular outer diameter of the double spinneret 3 is 0.7B and the inner diameter is 0.51!
The stock solution is extruded through the slit Im, and the hollow agent is extruded through the hole with a diameter of 0.2 rxx in the center. 6 directly below the double spinneret 3
Flow tubes 10 having a diameter of 301 m and a length of 40 c11t are arranged with a space of 0 m between them.

この流管10はオーバフロ一式になっておル、入口よシ
送られてきた紡糸液は流管10の内部を満たして自由落
下し流管10の最下部の絞シを通して、水平浸漬浴12
へ流入する。流管10内の紡糸液の流速は流管の長さく
厳密にはヘッドと浸漬浴面の距離)と絞ジの径によって
定まる。本例では巻取速度ixom/分に対し、紡糸浴
流速は80m/分とした。
This flow tube 10 has an overflow set, so that the spinning solution sent from the inlet fills the inside of the flow tube 10 and falls freely, passes through the constriction at the bottom of the flow tube 10, and passes through the horizontal immersion bath 12.
flows into. The flow rate of the spinning solution in the flow tube 10 is determined by the length of the flow tube (more precisely, the distance between the head and the immersion bath surface) and the diameter of the orifice. In this example, the spinning bath flow rate was 80 m/min while the winding speed was ixom/min.

紡糸口金3よシ押し出された中空剤とこれを囲んだ紡糸
原液は流管10中の中心へ自由落下し、流管10内を垂
直下方へ走行し、浴面下50cImにあるガイド7で方
向転換して水平浸漬浴を水平に走行し、ガイド8.9を
通過して巻取枠13に巻取られる。なお中空糸浸漬浴内
通過距離は100cmである。さて公知の方法によって
調整したセルロース濃度8.51 %苛性ソーダ濃度6
.0係、Hz価3.1粘度150ポイズのビスコースレ
ーヨン紡糸原液と中空剤としてA−クロルエチレンとを
用いて上記したような装置及び方法によって中空糸を製
造した。紡糸浴組成は硫酸1409/l、硫酸亜鉛10
9 / l、硫酸ソーダ26097ノであシ、浴温度は
40℃であった。巻取枠に巻取った糸条は巻取枠よル外
して総となし、これをシャワーによって充分に水洗した
後、苛性ソーダ2 g / lで中和しさらに水洗した
。得られた紀を総枠にかけ、フィラメントを引き出しな
がらトンネル乾燥機内を通して乾燥した。乾燥機内の温
度は120’CK調整した。乾燥終了後、総を切断し、
数時間室内に放置して中空部に充填しである中空剤を回
収した後、真空脱気して中空剤を除去した。この様にし
て得られた中空糸は外径235μ、横断面の壁厚みは1
3μであった。この壁厚みは全糸長方向、全断面方向に
均一であシ、斑がなく、断面形状は円形に近く表面に凹
凸はみられなかった。この中空糸を湿潤させてその横断
面を電子顕微鏡で3万倍に拡大して観察した結果、外壁
表層に厚さ0.9μのスキン層があることが確認された
。得られた中空糸は第6表に示すように分離膜として良
好な性能を示した。
The hollow agent pushed out from the spinneret 3 and the spinning dope surrounding it fall freely to the center of the flow tube 10, travel vertically downward in the flow tube 10, and are directed by the guide 7 located 50 cIm below the bath surface. It is turned around and runs horizontally through the horizontal immersion bath, passing through the guide 8.9 and being wound onto the winding frame 13. The distance through which the hollow fiber passes through the immersion bath is 100 cm. Now, the cellulose concentration was adjusted by a known method: 8.51% Caustic soda concentration: 6
.. Hollow fibers were produced by the apparatus and method described above using a viscose rayon spinning dope having a ratio of 0, Hz number 3.1 and a viscosity of 150 poise and A-chloroethylene as a hollowing agent. The spinning bath composition was 1409/l of sulfuric acid and 10/l of zinc sulfate.
9/l, 26097 g of sodium sulfate, and the bath temperature was 40°C. The yarn wound on the winding frame was removed from the winding frame, thoroughly washed with water in a shower, neutralized with 2 g/l of caustic soda, and further washed with water. The obtained material was hung on a general frame and dried by passing it through a tunnel dryer while pulling out the filament. The temperature inside the dryer was adjusted to 120'CK. After drying, cut the whole
After leaving it indoors for several hours and recovering the hollow agent filled in the hollow part, the hollow agent was removed by vacuum degassing. The hollow fiber thus obtained had an outer diameter of 235μ and a cross-sectional wall thickness of 1
It was 3μ. The wall thickness was uniform in the entire fiber length direction and in the entire cross-sectional direction, with no unevenness, and the cross-sectional shape was close to circular and no irregularities were observed on the surface. When this hollow fiber was moistened and its cross section was observed under an electron microscope at a magnification of 30,000 times, it was confirmed that there was a skin layer with a thickness of 0.9 μm on the outer wall surface layer. As shown in Table 6, the obtained hollow fibers exhibited good performance as a separation membrane.

この時の中空糸の拡大断面写真を第2図及び電顕写真を
第3図に示した。
An enlarged cross-sectional photograph of the hollow fiber at this time is shown in FIG. 2, and an electron microscope photograph is shown in FIG.

実施例2 実施例1に記載した紡糸方法に従って、空間落下長を種
々に変化させ紡糸液面へのビスコース原液流の落下速度
を変化させて紡糸した。その結果を第1表に示す。この
表から本発明の方法では空間自由落下域は10〜100
IolEであることが、適当なことが判る。比較のため
紡糸液に紡糸口金を浸漬した実験も行なった。
Example 2 According to the spinning method described in Example 1, spinning was carried out by varying the spatial fall length and varying the falling speed of the viscose stock solution flow onto the spinning solution surface. The results are shown in Table 1. From this table, in the method of the present invention, the spatial free fall range is 10 to 100.
It turns out that IolE is appropriate. For comparison, an experiment was also conducted in which the spinneret was immersed in the spinning solution.

第1表 空間自由落下域の影響 実施例3 紡糸浴中の紡糸原液流の垂直走行部分の長さを種々変化
させて紡糸を行なった結果を第2表に示す。この結果か
ら垂直浸漬長は30m以上の場合に円形の保持性が良好
である。
Table 1 Influence of Spatial Free Fall Region Example 3 Table 2 shows the results of spinning with various lengths of the vertical traveling portion of the spinning stock solution flow in the spinning bath. From this result, the circular shape retention is good when the vertical immersion length is 30 m or more.

第2表 垂直走行部分の影響 実施例4 実施例1に記載した紡糸方法に従って垂直浸漬域の紡糸
液速度を種々変化させて紡糸した結果を第3表に示す。
Table 2 Influence of Vertical Running Portion Example 4 Table 3 shows the results of spinning according to the spinning method described in Example 1 while varying the spinning solution speed in the vertical immersion zone.

この結果から紡糸液速度が巻取速度以上では紡糸不能で
あシ、また得られた中空糸のスキン層の厚さは紡糸液速
度を上げるに従って薄くなる傾向を示している。
These results show that spinning is impossible when the spinning solution speed exceeds the winding speed, and that the thickness of the skin layer of the obtained hollow fiber tends to become thinner as the spinning solution speed increases.

以下余白 第3表 流管中の紡糸液速度の影響 実施例5 実施例1に記載した紡糸方法に従って巻取速度85 g
@ 7分で、ビスコース原液及び中空剤の押し出し量を
種々変化させて紡糸を行なった結果を第4表に示す。こ
れから、本発明によって得られる中空糸は外径50〜5
00μ、壁厚みとの関係は1.33xxo−2x(外径
)+2.33≦壁厚(μ)≦6.67X10 ”×(外
径)+6.77≦30 である範囲のものであることが
判る。
Table 3 with blank space below: Effect of spinning solution speed in flow tube Example 5 Winding speed 85 g according to the spinning method described in Example 1
Table 4 shows the results of spinning at 7 minutes with various extrusion amounts of the viscose stock solution and hollow agent. From this, the hollow fiber obtained by the present invention has an outer diameter of 50 to 5
00μ, and the relationship with the wall thickness is 1.33xxo-2x (outer diameter) + 2.33≦wall thickness (μ)≦6.67X10” x (outer diameter) + 6.77≦30. I understand.

この範囲で製造した中空糸はいずれも分離膜として良好
な性能を示した。
All hollow fibers produced within this range showed good performance as separation membranes.

以下余白 第4表 中空糸の製造可能範囲 実施例6 実施例1の方法に従って巻取速度を変化させて外径20
0μ、壁厚み15μの中空糸を製造した結果を第5表に
示す。比較のため紡糸浴中に紡糸口金を浸漬した結果も
示す。この結果から本方法によれば浴中浸漬の場合に比
較して巻取速度をはるかに大きくすることができると共
に、中空糸形態の安定性を向上させ、さらに紡糸口金の
孔径を大きくできることから生産上極めて優れているこ
とがわかる。
Table 4 with blank space below. Possible manufacturing range of hollow fiber Example 6 By changing the winding speed according to the method of Example 1, the outer diameter is 20.
Table 5 shows the results of producing hollow fibers with a wall thickness of 0μ and a wall thickness of 15μ. For comparison, the results of immersing the spinneret in the spinning bath are also shown. These results show that with this method, the winding speed can be much higher than in the case of bath immersion, the stability of the hollow fiber morphology has been improved, and the pore diameter of the spinneret can be increased, resulting in improved productivity. It can be seen that the above is extremely good.

以下余白 比較実施例1 実施例1の方法に従って中空糸を製造した。この際中空
剤として109’/71の希硫酸を使用した。
Comparative Example 1 Hollow fibers were manufactured according to the method of Example 1. At this time, 109'/71 dilute sulfuric acid was used as the hollowing agent.

得られた中空糸は中空部分が潰れておシ、しかも壁厚斑
が多い上に、外壁表層部は激しい凹凸が生じておシ、透
析用に使用することができないことが判った。
It was found that the hollow fibers obtained had collapsed hollow portions, many wall thickness spots, and severe unevenness on the outer wall surface layer, making it impossible to use them for dialysis.

比較実施例2 実施例1の方法に従って熟成度Hz価6.5のビスコー
ス原液を用いて外径200μ、壁厚15μの中空糸を製
造した。得られた中空糸はスキン層厚みが1.5μあシ
、外壁表層部に若干の凹凸と内径の斑が生じていた。こ
の中空糸の透過性能は第6表に示す如く劣っていること
が判った。
Comparative Example 2 Hollow fibers having an outer diameter of 200 μm and a wall thickness of 15 μm were produced using a viscose stock solution with a maturity level and Hz value of 6.5 according to the method of Example 1. The obtained hollow fiber had a skin layer thickness of 1.5 μm, and the outer wall surface layer had some irregularities and unevenness in the inner diameter. The permeation performance of this hollow fiber was found to be poor as shown in Table 6.

比較実施例3 公知の方法によって調整したセルロース濃度8、5 %
 、苛性ソーダ濃度6.0係、Hz価5.0、粘度70
ボイズのビスコース原液を二重紡糸口金を用いて紡糸浴
中へ直接押し出した。その際、中空剤Id A−クロル
エチレンを用い、紡糸浴は硫酸アンモニウムを2609
774含む水溶液であって、温度は30℃、浸漬浴長け
3mとした。続いて糸条を101#、  @度30℃の
硫酸浴を3m通過せしめた後、第2延伸浴(10Lil
/A’・H,SO,、温度30℃、温良1 m )を通
過せしめその際10係延伸させて巻取枠係巻取った。巻
取速度は16m/分とした。以後実施例1の後処理方法
に従って処理を行ない、外径200μ、壁厚15μの中
空糸を得た。得られた中空糸の断面はほぼ円形であった
が、外壁表層のスキン層の厚さは3μであった。またそ
の膜透過性能は第6表に示すように劣っていることが判
った。
Comparative Example 3 Cellulose concentration 8.5% adjusted by known method
, caustic soda concentration 6.0, Hz value 5.0, viscosity 70
The Boyes viscose stock solution was extruded directly into the spinning bath using a dual spinneret. At that time, the hollow agent Id A-chloroethylene was used, and the spinning bath contained ammonium sulfate at 2609
The temperature was 30° C., and the length of the immersion bath was 3 m. Subsequently, the yarn was passed through a 101# sulfuric acid bath at 30°C for 3 m, and then passed through a second drawing bath (10L
/A'.H, SO, temperature: 30° C., temperature: 1 m), and at that time, it was stretched by 10 times and wound up by a winding frame. The winding speed was 16 m/min. Thereafter, processing was carried out according to the post-processing method of Example 1 to obtain hollow fibers having an outer diameter of 200 μm and a wall thickness of 15 μm. The cross section of the obtained hollow fiber was approximately circular, and the thickness of the skin layer on the surface of the outer wall was 3 μm. Furthermore, the membrane permeation performance was found to be poor as shown in Table 6.

本発明の実施例で得られた中空糸は第6表に示すように
透析用膜として良好な透過性能を示しており、本発明の
方法によればこの様な分離膜として使用可能なビスコー
スレーヨン中空糸を極めて高い生産性で製造できること
が判った。
As shown in Table 6, the hollow fibers obtained in the examples of the present invention exhibit good permeation performance as dialysis membranes, and according to the method of the present invention, viscose can be used as such separation membranes. It has been found that rayon hollow fibers can be manufactured with extremely high productivity.

なお、比較例としてキュプラアンモニウム法による中空
糸の透過性能を示した。
As a comparative example, the permeation performance of hollow fibers using the cupra ammonium method is shown.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の中空糸を製造するのに使用される1つ
の例を示す装置の概略断面図であり、第2図は本発明の
中空糸の一実施例を示す拡大断面写真(225倍)であ
シ、第3図は特釦外壁表層部を示す電顕写真(3万倍)
である。 なお第1図に示す図中の数字の内容は下記に示す通シで
ある。 1・・・・・・紡糸原液用タンク、2・・・・・・ギヤ
ポンプ、3・・・・・・二重紡糸口金、4・・・・・・
中空剤用タンク、5・・・・−・定量ポンプ、6・・・
・・・中空糸、7,8.9・・・・・・ガイド、10・
・・・・・流管、11・・・・・・紡糸溶入口、12・
・・・−・水平浸漬溶、13・・・・・・巻取枠、14
・・・・・・紡糸浴。 特許出願人 旭化成工業株式会社 手続補正書(方式) 1.事件の表示 昭和61年特許願第200081号 2、発明の名称 ビスコースレーヨン中空糸 3、補正をする者 事件との関係   特許出願人 大阪府大阪市北区堂島浜1丁目2番6号4、補正命令の
日付 昭和62年1月7日(62,1,27)5、補正の対象 6、補正の内容 +11  明細書第32頁第4行〜6行の「実施例を示
す拡大・・・・・・外壁表層部を示す」を「実施例にお
ける、中空繊維の繊維断面形状を示す拡大写真(225
倍)であり、第3図は特に上記中空繊維の外壁表層構造
(上部;スキン層、下部;コア層)を示す」と訂正する
。 (2)図面第3図を添付の通り訂正する。 以   上
FIG. 1 is a schematic cross-sectional view of an apparatus used to produce the hollow fiber of the present invention, and FIG. 2 is an enlarged cross-sectional photograph (225 Figure 3 is an electron micrograph showing the surface layer of the outer wall of the special button (30,000 times).
It is. The contents of the numbers in the diagram shown in FIG. 1 are as follows. 1...tank for spinning dope, 2...gear pump, 3...double spinneret, 4...
Hollow agent tank, 5...-metering pump, 6...
...Hollow fiber, 7,8.9...Guide, 10.
...Flow tube, 11...Spinning inlet, 12.
...--Horizontal immersion melting, 13... Winding frame, 14
・・・・・・Spinning bath. Patent applicant: Asahi Kasei Industries, Ltd. Procedural amendment (method) 1. Description of the case Patent Application No. 200081, filed in 1985, 2, Name of the invention: Viscose Rayon Hollow Fiber 3, Person making the amendment Relationship to the case Patent applicant: 1-2-6-4 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture, Amendment Date of order January 7, 1985 (62, 1, 27) 5, subject of amendment 6, content of amendment + 11 "Expansion showing embodiments" on page 32, lines 4 to 6 of the specification... ... Showing the surface layer of the outer wall" was replaced with "Enlarged photograph showing the fiber cross-sectional shape of the hollow fiber in the example (225
Figure 3 particularly shows the outer wall surface layer structure (upper part: skin layer, lower part: core layer) of the hollow fiber. (2) Figure 3 of the drawing is corrected as attached. that's all

Claims (1)

【特許請求の範囲】 1、中空部が連続貫通したビスコース法再生セルロース
繊維よりなる中空糸において、該中空糸がスキン層とコ
ア層の2層よりなっており、該スキン層が外壁を、該コ
ア層が内壁を形成しており、該スキン層の厚さが1μ以
下であることを特徴とするビスコースレーヨン中空糸 2、中空糸が外径をaμ、壁厚みをbμとした時その範
囲が50≦a≦500かつ1.33×10^−^2a+
2.33≦b≦6.67×10^−^2a+6.67≦
30であり、断面が円形である特許請求の範囲第1項記
載のビスコースレーヨン中空糸
[Claims] 1. A hollow fiber made of viscose-processed regenerated cellulose fiber with continuous hollow parts, the hollow fiber is composed of two layers, a skin layer and a core layer, and the skin layer covers the outer wall, A viscose rayon hollow fiber 2 characterized in that the core layer forms an inner wall and the skin layer has a thickness of 1μ or less, where the outer diameter of the hollow fiber is aμ and the wall thickness is bμ. Range is 50≦a≦500 and 1.33×10^-^2a+
2.33≦b≦6.67×10^-^2a+6.67≦
30 and has a circular cross section, the viscose rayon hollow fiber according to claim 1.
JP20008186A 1979-09-27 1986-08-28 Viscose rayon hollow fiber Pending JPS62162009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20008186A JPS62162009A (en) 1979-09-27 1986-08-28 Viscose rayon hollow fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12311379A JPS5649010A (en) 1979-09-27 1979-09-27 Hollow fiber of viscose rayon and its production
JP20008186A JPS62162009A (en) 1979-09-27 1986-08-28 Viscose rayon hollow fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12311379A Division JPS5649010A (en) 1979-09-27 1979-09-27 Hollow fiber of viscose rayon and its production

Publications (1)

Publication Number Publication Date
JPS62162009A true JPS62162009A (en) 1987-07-17

Family

ID=26460114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20008186A Pending JPS62162009A (en) 1979-09-27 1986-08-28 Viscose rayon hollow fiber

Country Status (1)

Country Link
JP (1) JPS62162009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136763A (en) * 2007-12-06 2009-06-25 Toyobo Co Ltd Method for manufacturing hollow-fiber-type separation membrane
KR101167452B1 (en) 2010-12-30 2012-07-20 주식회사 효성 An Appratus For Making Carbon Fiber Precursor And A Method Using The Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133614A (en) * 1973-05-01 1974-12-23
JPS5255719A (en) * 1975-10-31 1977-05-07 Daicel Chem Ind Ltd Hollow fibers having selective gas permeability and production thereof
JPS5433397A (en) * 1977-08-13 1979-03-12 Hoechst Ag Viscous membrane* method of producing same and device for dialyzing with same
JPS626005A (en) * 1985-07-02 1987-01-13 日本鋼弦コンクリ−ト株式会社 Introduction of prestress into bridge girdle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133614A (en) * 1973-05-01 1974-12-23
JPS5255719A (en) * 1975-10-31 1977-05-07 Daicel Chem Ind Ltd Hollow fibers having selective gas permeability and production thereof
JPS5433397A (en) * 1977-08-13 1979-03-12 Hoechst Ag Viscous membrane* method of producing same and device for dialyzing with same
JPS626005A (en) * 1985-07-02 1987-01-13 日本鋼弦コンクリ−ト株式会社 Introduction of prestress into bridge girdle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136763A (en) * 2007-12-06 2009-06-25 Toyobo Co Ltd Method for manufacturing hollow-fiber-type separation membrane
KR101167452B1 (en) 2010-12-30 2012-07-20 주식회사 효성 An Appratus For Making Carbon Fiber Precursor And A Method Using The Same

Similar Documents

Publication Publication Date Title
US8999212B2 (en) Process for spinning graphene ribbon fibers
USRE32277E (en) Hollow fibers of cuprammonium cellulose and a process of the manufacture of same
US2642333A (en) Method of spinning polyvinyl alcohol fibers
KR100210294B1 (en) Method for the production of a shaped cellulose articles
US2340377A (en) Process of making artificial fibers
EP2909365B1 (en) Method of spinning fibres or extrusion, and the products obtained
DE4426966C2 (en) Process for the production of cellulose threads and foils with very high proportions of additives
US2835551A (en) Process for producing hollow viscose filaments
US2297746A (en) Process for the production of cellulosic structures
CN104088029B (en) The preparation method of a kind of polyacrylonitrile base carbon fiber precursors
US10435819B2 (en) Method for producing high tensile strength nanofiber yarn
JPS62162009A (en) Viscose rayon hollow fiber
JPS626005B2 (en)
JPS5850761B2 (en) Cellulose dialysis membrane and its manufacturing method
US5192440A (en) Hollow cellulose dialysis fibers
US2136462A (en) Method of making tubular artificial textile threads
JPS6119805A (en) Method of high-speed wet spinning and its device
JPS5921709A (en) Wet spinning method at high speed
US2004271A (en) Production of artificial filaments, threads, ribbons, films, and the like
DE2906576C2 (en) Method for spinning hollow filaments
LU81736A1 (en) DIALYSIS FILM MEMBRANE WITH LONGITUDE SHAFTS
US3219740A (en) High speed tubular spinning of fine viscose rayon yarn
JPS5771410A (en) Preparation of hollow fiber
JPS59157316A (en) Manufacture of poly-p-phenylene terephthalamide fiber
US2970883A (en) Manufacture of viscose rayon