JPS62161941A - Sliding member having superior sliding characteristic - Google Patents

Sliding member having superior sliding characteristic

Info

Publication number
JPS62161941A
JPS62161941A JP247886A JP247886A JPS62161941A JP S62161941 A JPS62161941 A JP S62161941A JP 247886 A JP247886 A JP 247886A JP 247886 A JP247886 A JP 247886A JP S62161941 A JPS62161941 A JP S62161941A
Authority
JP
Japan
Prior art keywords
sliding
sliding member
sintered alloy
less
nitride layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP247886A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Morishita
強 森下
Shigezo Osaki
茂三 大崎
Yasushi Kawato
川戸 康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP247886A priority Critical patent/JPS62161941A/en
Publication of JPS62161941A publication Critical patent/JPS62161941A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the durability and sliding characteristics by combining a sliding member made of a sintered alloy consisting of specified amounts of C, P, Mo, B, Cr, NbC, TaC and Fe with other sliding member having a nitride layer. CONSTITUTION:The titled sliding member is obtd. by slidably combining the 1st sliding member 1a made of a sintered alloy having >=7g/cm<3> density with the 2nd iron-base sliding member 2 having a nitride layer formed on the sliding surface 2a. The sintered alloy consists of, by weight, 1-4% C, one or more among 0.5-2% P, 2-6% Mo and 0.5-3% B, 4-7% Cr, 5-20% NbC and/or TaC and the balance Fe.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は優れた囲動特性が必要とされる摺動部材、例え
ばエンジンの動弁機構に用いられるロッカーアームやカ
ムシャフトのような摺動部材の改良に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to sliding members that require excellent surrounding characteristics, such as rocker arms and camshafts used in engine valve mechanisms. Regarding improvement of members.

(従  来  技  術) 例えばエンジンの動弁機構にあっては、エンジン性能を
維持し或は十分に発揮させる上で、ロッカーアーム(又
はタペット)やカムシャフトの各摺動部分は苛酷な摺動
条件に十分に耐え得るものでなければならないが、特に
近年においては、多弁n構や可変バルブタイミング機構
等のfr機構の採用或はバルブリフト量の増大等に伴い
、これまで以上に優れた摺動性能や耐久性を有する摺動
部材が必要とされるようになっている。そのため、従来
においては十分な耐久性を有していたロッカーアームや
力ムシVフト等の摺動部材であっても、近年における複
錐化した或は高性能化したエンジンにあっては、エンジ
ンオイルの品質等の他の条件にもよるが一般的にいって
当該摺動部の摩耗が顕著化しており、極端な一場合はエ
ンジン性能の低下を惹起するまでに至っている。
(Prior art) For example, in an engine valve mechanism, the rocker arms (or tappets) and camshafts must undergo harsh sliding movements in order to maintain or fully utilize engine performance. It must be able to withstand the conditions, but especially in recent years, with the adoption of FR mechanisms such as multiple valve n structures and variable valve timing mechanisms, and increases in valve lift, it is necessary to have better sliding than ever before. There is a growing need for sliding members that have dynamic performance and durability. Therefore, even though sliding parts such as rocker arms and V-lifts used to have sufficient durability, in recent years, engines have become more complex or have higher performance. Although it depends on other conditions such as the quality of the oil, generally speaking, the wear of the sliding parts becomes noticeable, and in extreme cases, it even causes a decrease in engine performance.

一方、近年においては、各部品の軽口化を図るため、ア
ルミ合金製ロッカーアームのような複合ロッカーアーム
が製作されている。これは、従来鋳鉄等によって構成さ
れていたロッカーアームの本体をアルミ合金で構成し且
つその摺動部分のみに耐摩耗性のあるチップ材を鋳ぐる
み固着させたものであるが、これによってロッカーアー
ム全体の軽量化ひいてはエンジンの軽量化が図れるよう
にしたものである。その場合に、上記ロッカーアーム用
チップ材としては、耐久性の優れた焼結合金が用いられ
るのが通例であるが、この種の焼結合金製チップ材にお
いても、例えば低速低油水温のエンジン条件の下で品質
の劣るエンジンオイルを使用したような場合には、該チ
ップ材の摩耗度合が通常条件の場合より数侶多くなるこ
とが確認されている。
On the other hand, in recent years, composite rocker arms such as aluminum alloy rocker arms have been manufactured in order to reduce the weight of each component. The main body of the rocker arm, which was conventionally made of cast iron, is made of aluminum alloy, and a wear-resistant chip material is fixed to only the sliding part of the rocker arm. This makes it possible to reduce the weight of the entire engine and, by extension, the weight of the engine. In that case, a highly durable sintered alloy is usually used as the tip material for the rocker arm, but even with this type of sintered alloy tip material, for example, an engine with low speed and low oil/water temperature is used. It has been confirmed that when engine oil of inferior quality is used under certain conditions, the degree of wear of the tip material is several orders of magnitude greater than under normal conditions.

従来、このような問題に対処するには上記焼結合金製チ
ップ材の材料中に硬質粒子を多く分散さければよいこと
が知られているが、このようにしたものとして例えば特
開昭59−118859号公報に開示されているtA基
燻焼結合金製摺動部材がある。これは、特定組成のc、
cr、x+、Mo、P及びFcからなる焼結合金マトリ
ックスに所定間のWC(タングステンカーバイド)及び
NbCにオブカーバイド)を均一に分散させてなる組織
を有するようにしたもので、これによれば上記WC,N
b Cのような硬質粒子が組織中に分散して均一に存在
するため、単なる焼結合金製の摺動部材に比べて耐摩耗
性が向上することになる。
Conventionally, it has been known that in order to deal with such problems, it is sufficient to disperse a large amount of hard particles in the material of the above-mentioned sintered alloy chip material. There is a sliding member made of a tA-based smoked alloy disclosed in Japanese Patent No.-118859. This is due to the specific composition of c,
According to this, it has a structure in which WC (tungsten carbide) and NbC (obcarbide) are uniformly dispersed in a sintered alloy matrix consisting of cr, x+, Mo, P, and Fc. Above WC,N
Since hard particles such as bC are dispersed and uniformly present in the structure, wear resistance is improved compared to a sliding member simply made of a sintered alloy.

然るに、上記のようなWC等を分散させてなる鉄基焼結
合金製のl!11部材を例えばロッカーアーム摺動部の
チップ材として採用した場合には、相手部材となるカム
シャフトのカム摺動面との関係で次のような問題が生じ
る。即ち、従来力ムシレフト側に関しては、その耐摩耗
性を改善するために上記カム摺動面に軟窒化処理等の窒
化処理を施して窒化物層を形成することが行われている
が、このように摺動面に窒化物層を有するカムシャフト
と上記のWC等を含有するチップ材とを組合せて摺動さ
せた場合には、上記チップ材の組織中に存在するWCと
カム摺動面の窒化物層との相性が良くないため、上記チ
ップ材及びカム摺動面の耐摩耗性が低下して十分な耐久
性を確保することができないのである。
However, l! made of iron-based sintered alloy made by dispersing WC etc. as mentioned above! When the No. 11 member is employed as a tip material for a rocker arm sliding portion, for example, the following problem arises in relation to the cam sliding surface of a camshaft serving as a mating member. In other words, conventionally, in order to improve the wear resistance of the left side of the force cam, the sliding surface of the cam is subjected to nitriding treatment such as soft nitriding treatment to form a nitride layer. When a camshaft having a nitride layer on the sliding surface and a chip material containing the above-mentioned WC etc. are slid together, the WC present in the structure of the chip material and the cam sliding surface Since it is not compatible with the nitride layer, the wear resistance of the chip material and the cam sliding surface decreases, making it impossible to ensure sufficient durability.

(発  明  の  目  的) 本発明は従来における上記のような実情に対処するもの
で、焼結合金でなる一方の摺動部材と摺動向に窒化物層
を有する他方の摺動部材とを組合せた場合において、窒
化物層と相性の良い焼結合金を上記一方の摺動部材の素
材として採用することにより、全体として十分な耐摩耗
性を有する摺動特性に優れた摺動部材を実現することを
目的とする。
(Object of the Invention) The present invention addresses the above-mentioned conventional situation by combining one sliding member made of a sintered alloy and the other sliding member having a nitride layer in the sliding direction. In such cases, by adopting a sintered alloy that is compatible with the nitride layer as the material for one of the sliding members, a sliding member with excellent sliding properties and sufficient wear resistance as a whole can be realized. The purpose is to

(発  明  の  構  成) 上記目的達成のため、本発明は、焼結合金製の第1摺動
部材と摺動向に窒化物層が形成された鉄系の第2摺動部
材とを摺動可能に組合せてなる摺動部材において次のよ
うに構成したことを特徴とする。即ち、上記第1摺動部
材を構成する焼結合金として、重量化でC:1.0〜4
.0%と、P:0.5〜2.0%、Mo : 2. 0
〜6.0%、及びB:0.5〜3.0%のうち少なくと
も一種と、Cr :4.0〜7.0%と、NbC及びT
aCのうちいずれか一方若しくは双方で5.0〜20゜
0%とを含有し、残部が実質的に鉄からなり且つ密度が
7.0Q/at以上である焼結合金を用いる。
(Structure of the Invention) In order to achieve the above object, the present invention provides a first sliding member made of a sintered alloy and a second sliding member made of iron having a nitride layer formed in the sliding direction. The sliding members that can be combined together are characterized by the following structure. That is, the sintered alloy constituting the first sliding member has a weight C: 1.0 to 4.
.. 0%, P: 0.5-2.0%, Mo: 2. 0
~6.0%, and at least one of B: 0.5 to 3.0%, Cr: 4.0 to 7.0%, NbC and T.
A sintered alloy containing 5.0 to 20.0% of one or both of aC, the remainder being substantially iron, and having a density of 7.0Q/at or more is used.

その場合、この焼結合金には、後述するように上記成分
以外の成分としてV、Co、Ni 、Cu。
In that case, this sintered alloy contains V, Co, Ni, and Cu as components other than the above components, as will be described later.

3nのうちいずれか一種又は二種以上で0.5〜8.0
重母%を加えるのが好ましい。また、不可避成分として
含有されるSi、Mnの含有量は1゜0重量%以下であ
る。
Any one or two or more of 3n is 0.5 to 8.0
It is preferred to add % deuterium. Further, the content of Si and Mn contained as unavoidable components is 1.0% by weight or less.

ここで、焼結合金の組成及び密度を上記のように限定し
た理由は次の通りである。
Here, the reason why the composition and density of the sintered alloy are limited as described above is as follows.

C(炭素):1.0〜4.0%〈重金%:以下同じ)。C (carbon): 1.0 to 4.0% (heavy metal %: same below).

Cの含有量が1.0%未満の場合は、焼結合金製造時に
液相聞が不足するため焼結密度が7.0g/cIIi未
満となって完成品の耐摩耗性が急激に低下する。一方、
上記含有量が4.0%を超えると液相凸が過多になって
焼結時に変形すると共に、炭化物間が多くなって脆くな
るため実用に供せない。
If the C content is less than 1.0%, there will be insufficient liquid phase during the production of the sintered alloy, and the sintered density will be less than 7.0 g/cIIi, resulting in a sharp decline in the wear resistance of the finished product. . on the other hand,
If the content exceeds 4.0%, there will be too many liquid phase protrusions, which will cause deformation during sintering, and the number of carbide gaps will increase, making the material brittle, making it unsuitable for practical use.

P(リン)=0.5〜2.0%。P (phosphorus) = 0.5-2.0%.

PはFe−P−Cの三元共晶合金を形成し、Pの含有m
が0.5%未満の場合は液相徂が不足するため焼結密度
が7.OQ/cI+!未満となり、耐摩耗性が急激に低
下する。一方、上記含有量が2゜0%を超えると液相m
が過多になって焼結時に変形すると共に、脆くなって実
用に供せない。
P forms a ternary eutectic alloy of Fe-P-C, and the P content m
If it is less than 0.5%, the sintered density will be 7.5% due to insufficient liquid phase. OQ/cI+! If it becomes less than 100%, the wear resistance will decrease rapidly. On the other hand, if the above content exceeds 2.0%, liquid phase m
If there is too much of it, it will deform during sintering and become brittle, making it unusable.

MO(モリブデン):2.0〜6.0%。MO (molybdenum): 2.0 to 6.0%.

MOは基地金属を強化する一方で、Feと共に複合炭化
物を形成して耐摩耗性を向上させる。又、Fe −MO
−Cの共晶温度以上に加熱することによって液相が生じ
るため焼結性を向上させる。しかし、このMOの含有量
が2,0%未満の場合は上記効果が無く、6.0%を超
えると炭化物が粗大化して脆くなり、耐摩耗性は却って
低下する。
While MO strengthens the base metal, it forms a composite carbide with Fe to improve wear resistance. Also, Fe-MO
By heating above the eutectic temperature of -C, a liquid phase is generated, which improves sinterability. However, if the content of MO is less than 2.0%, the above effect is not achieved, and if it exceeds 6.0%, the carbide becomes coarse and brittle, and the wear resistance is rather reduced.

B(ホウ素)=0.5〜3.0%。B (boron) = 0.5-3.0%.

BはFe −B−Cの三元共晶母合金を形成し、Fe’
、Cと結合して硬質相を形成するとともに融点を下げる
役割をする元素であり、0.51母%未満ではFe −
B−Cの三元共晶尋が少なくなるため、耐摩耗性および
耐焼付き性が悪くなる。3゜0*lff1%を越えると
非常に脆(なってよlご実用的でなくなる。よって0.
5〜3.0重量%の範囲にあることが必要である。
B forms a ternary eutectic mother alloy of Fe-B-C, and Fe'
, is an element that combines with C to form a hard phase and lowers the melting point, and if it is less than 0.51%, Fe -
Since the ternary eutectic thickness of B-C decreases, wear resistance and seizure resistance deteriorate. If it exceeds 3゜0*lff1%, it becomes very brittle and becomes impractical. Therefore, 0.
It is necessary that the content be in the range of 5 to 3.0% by weight.

Cr  (クロム):4.0〜7.0%。Cr (chromium): 4.0 to 7.0%.

Crは基地の強化、特に靭性の向上に役立つと共にCと
結合して硬質層(炭化物)を形成する上で好ましい。そ
の場合、Crの含有mが4.0%未満では上記硬質層の
形成団が不十分となり、また7%を超えると上記靭性向
上等の効果が飽和するのでその超過分だけ無駄になる。
Cr is useful for strengthening the base, particularly improving toughness, and is preferable because it combines with C to form a hard layer (carbide). In this case, if the Cr content m is less than 4.0%, the formation group of the hard layer will be insufficient, and if it exceeds 7%, the effects such as improving toughness will be saturated and the excess will be wasted.

Nb Cにオブカーバイド)及びTa C(タンタルカ
ーバイド):いずれか一方若しくは双方で5゜0〜20
.0%。
Nb C (obcarbide) and Ta C (tantalum carbide): 5°0 to 20 for either one or both
.. 0%.

NbC及びTaCは炭化物として存在し、耐摩耗性を向
上させる。特に、これらは窒化物層との相性が良いため
、相手部材の摺動面に窒化物層が形成されている場合に
おいても優れた耐摩耗性を有する。また、Nb C,T
a Cの粒径は10μm以下であることが望ましい。そ
の理由は、NbC及びTaCの場合、FOベースの焼結
合金中に分散させて焼結した時、1050℃〜1150
℃の焼結温度において非常に安定しており、添加時の粒
径のままで存在するからである。尚、クロム炭化物、モ
リブデン炭化物等の他の炭化物の場合は、上記焼結温度
でFeとの複合炭化物となり、或は一部溶融して粗大炭
化物になる。
NbC and TaC exist as carbides and improve wear resistance. In particular, since these have good compatibility with the nitride layer, they have excellent wear resistance even when the nitride layer is formed on the sliding surface of the mating member. Also, Nb C, T
The particle size of aC is preferably 10 μm or less. The reason is that in the case of NbC and TaC, when dispersed in FO-based sintered alloy and sintered,
This is because it is extremely stable at a sintering temperature of 0.degree. C., and exists with the same particle size as when it was added. In the case of other carbides such as chromium carbide and molybdenum carbide, they become composite carbides with Fe at the above sintering temperature, or partially melt to become coarse carbides.

Nb C,Ta Cの含有量が5.0%未満では耐摩耗
性が不十分であり、この含有量が2.0%を超えると相
対的に液相聞が減少して密度が7.0(1/ ctA未
満となるため、耐摩耗性が低下し、更に経済的にも不利
になる。
If the content of Nb C and Ta C is less than 5.0%, wear resistance is insufficient, and if this content exceeds 2.0%, the liquid phase ratio decreases relatively and the density decreases to 7.0%. (Since it is less than 1/ctA, wear resistance decreases and it is also economically disadvantageous.

密度ニア、0g/ctA以上。Density near, 0g/ctA or more.

焼結晶の密度が7.Oa/d未満では気孔が多くなり耐
摩耗性が低下する。
The density of the fired crystal is 7. If it is less than Oa/d, the number of pores increases and the wear resistance decreases.

■(バナジウム)、Co(コバルト)、Niにッケル)
、Cu(銅)、Sn(スズ):いずれか一種若しくは二
種以上で0.5〜8.0%。
■ (Vanadium), Co (Cobalt), Ni Nickel)
, Cu (copper), Sn (tin): 0.5 to 8.0% of one or more of them.

一部液相焼結をすると基地金属の組織が粗くなっで耐摩
耗性、特に耐焼付き性が低下するが、その場合、上記V
、Co 、Ni 、Cu 、Snの元素を添加すると基
地金属の組織が微細化されるため、上記耐摩耗性の低下
等を防止することができる。
If part of the liquid phase sintering is performed, the structure of the base metal becomes coarse and the wear resistance, especially the seizure resistance, decreases, but in that case, the above-mentioned V
, Co 2 , Ni 2 , Cu 2 , and Sn make the structure of the base metal finer, so that it is possible to prevent the above-mentioned decrease in wear resistance.

このうち更にVは、焼き戻し抵抗力増加、及び焼た き戻しによる二次硬巣に有効である。これらの元素の含
有量が0.5%未満では上記効果が少なくなり、他方8
%を超えても効果が変らないため含有鎖を8%以下に抑
えた方が経済的である。
Among these, V is also effective in increasing the tempering resistance and preventing secondary hard cavities due to tempering. If the content of these elements is less than 0.5%, the above effects will be reduced;
Since the effect does not change even if the amount exceeds 8%, it is more economical to suppress the chain content to 8% or less.

尚、上記焼結合金は例えば次のようにして製造する。即
ち、粒度が150メツシユ以下の合金粉末材料(上記構
成においてNb C,Ta Cを除く各成分を含んだも
の)と、平均粒径が10μm以下のNb C,Ta C
とを、焼結侵の組成が上記構成通りになるように配合し
た上で、結合材としてショーノウ又はパラフィンを1〜
2重量%添加して混合し、これを1〜6 j / ct
Aの圧力で圧粉成形した後、300〜800℃の温度で
30〜90分間、水素ガス、不活性ガス等の非酸化性雰
囲気中で予備焼結させ、その後、1050〜1150℃
で10〜90分間、水素ガス、真空中等の非酸化性雰囲
気中で焼結させる。そして、熱処理を行う必要がある場
合は更に850〜1000℃の真空中で加熱した後、窒
素ガス冷却により焼入れし、然る後500〜650℃の
温度で30〜120分間、窒素ガス中で焼戻しを行う。
Incidentally, the above-mentioned sintered alloy is manufactured, for example, as follows. That is, an alloy powder material with a particle size of 150 mesh or less (containing each component except Nb C and Ta C in the above configuration) and Nb C and Ta C with an average particle size of 10 μm or less
are mixed so that the composition of the sintering material is as described above, and then 1 to 10% of camphor or paraffin is added as a binder.
Add 2% by weight and mix, and add this to 1 to 6 j/ct
After compacting at a pressure of A, pre-sintering is performed at a temperature of 300 to 800°C for 30 to 90 minutes in a non-oxidizing atmosphere such as hydrogen gas or inert gas, and then at a temperature of 1050 to 1150°C.
Sintering is performed for 10 to 90 minutes in a non-oxidizing atmosphere such as hydrogen gas or vacuum. If heat treatment is necessary, it is further heated in a vacuum at 850 to 1000°C, then quenched by nitrogen gas cooling, and then tempered in nitrogen gas at a temperature of 500 to 650°C for 30 to 120 minutes. I do.

(発  明  の  効  果) 本発明によれば、焼結合金製の第1摺動部材と虐動面に
窒化物層が形成された第2摺動部材とを組合せた構成に
おいて、上記第1摺動部材の焼結合金中に含まれたNb
C又はTaCでなる硬質粒子が上記第2囮動部材の窒化
物層に対して極めて良い相性を示し、優れた耐摩耗性を
有するため、両l!!!動部材の囮動部の摩耗措が著し
く減少することになる。これにより、耐久性ないし摺動
特性に浸れた囲動部材が実現されることになる。
(Effects of the Invention) According to the present invention, in a configuration in which a first sliding member made of a sintered alloy and a second sliding member having a nitride layer formed on the sliding surface are combined, the first sliding member described above is combined. Nb contained in the sintered alloy of the sliding member
The hard particles made of C or TaC exhibit extremely good compatibility with the nitride layer of the second oscillating member and have excellent wear resistance. ! ! This results in a significant reduction in wear on the decoy portion of the moving member. As a result, a surrounding member with excellent durability and sliding properties can be realized.

(実  施  例) 以下、本発明の実施例について説明する。尚、以下の各
実施例は、第1図に示すようなアルミ合金製ロッカーア
ーム1の店動部に用いられる焼結合金製チップ材(第1
摺動部材)1aと、これに摺接するカム摺動面2aに窒
化物層を有する鉄系カムシャフト(第2摺動部材)2と
に本発明を適用した場合に関するものである。
(Example) Examples of the present invention will be described below. In addition, each of the following examples is based on a sintered alloy chip material (the first
The present invention is applied to a sliding member) 1a and an iron-based camshaft (second sliding member) 2 having a nitride layer on a cam sliding surface 2a in sliding contact therewith.

先ず、上記ロッカーアーム用チップ材1aは次のように
して製作した。即ち、粒度が200メツシユ以下であっ
てCr:12.5%(千m%、以下間1)、Mn :0
.1%、Si:0.05%、及び残部がFeでなる第1
合金粉末材料と、粒度が150メツシユ以下であってC
:4.2%、P:2.4%、MO:9.5%、Si  
:0.2%、Mn :0.05%及び残部がFeでなる
第2合金粉末材料と、平均粒径が1μmのNbC又はT
aCの粉末のうち少なくとも一種とを、焼結後の化学成
分及び組成が後述する第1表(I)及び(II)に夫々
記載した通りになるように配合した。この時、必要に応
じてV、Co、Ni、CO,Snのうちいずれか一種又
は二種以上を加えたが、これらは第1表(I)、(IF
)中の「その他」の項目に記載しである(実施例5〜1
1の場合)。次に、上記の配合を終えた後、これに結合
材としてトルエンに溶解させたショーノウを1.5重R
%添加して混練し、乾燥させた。そして、これを4.5
t/cdの圧縮圧力で所定のチップ形状に圧粉成形し、
然る後、水素ガス雰囲気炉の中に入れ、10℃/分のR
温速度で300℃まで昇温して30分間保持し、その後
、更に10℃/分の昇温速度で1090℃まで昇温した
上で20分間保持した後、炉冷することにより第1表(
I)に示す実施例1〜3までのロッカーアーム用チップ
材を得た。尚、実施例4〜11までのチップ材について
は、上記のような工程を終えた後、更に真空度5 X 
10−2TOrrの真空炉中において7℃/分の昇温速
度で900℃まで′i#温ざ往、その状態で60分間保
持した後に窒素ガス焼ぎ入れをし、再び10℃/分の昇
温速度で570℃まで昇温させて90分間保持した後、
徐冷した。
First, the rocker arm chip material 1a was manufactured as follows. That is, the particle size is 200 mesh or less, Cr: 12.5% (1,000 m%, less than 1), Mn: 0
.. 1%, Si: 0.05%, and the balance is Fe.
Alloy powder material with a particle size of 150 mesh or less and C
:4.2%, P:2.4%, MO:9.5%, Si
:0.2%, Mn:0.05%, and the balance is Fe, and NbC or T having an average particle size of 1 μm.
At least one type of aC powder was blended so that the chemical components and composition after sintering were as shown in Tables 1 (I) and (II), respectively, to be described later. At this time, one or more of V, Co, Ni, CO, and Sn were added as necessary, but these are shown in Table 1 (I), (IF
) in the "Others" section (Examples 5 to 1)
1). Next, after completing the above formulation, 1.5 times R of camphor dissolved in toluene was added as a binder.
% was added, kneaded, and dried. And this is 4.5
Compacting into a predetermined chip shape with a compression pressure of t/cd,
After that, it was placed in a hydrogen gas atmosphere furnace and heated at 10°C/min.
The temperature was raised to 300°C at a heating rate and held for 30 minutes, then further raised to 1090°C at a heating rate of 10°C/min, held for 20 minutes, and then furnace cooled to obtain the results shown in Table 1 (
Chip materials for rocker arms according to Examples 1 to 3 shown in I) were obtained. In addition, for the chip materials of Examples 4 to 11, after completing the above steps, the chip materials were further vacuumed at a degree of vacuum of 5
In a 10-2 TOrr vacuum furnace, the temperature was increased to 900°C at a heating rate of 7°C/min. After being held in that state for 60 minutes, nitrogen gas quenching was performed, and the temperature was raised again at 10°C/min. After raising the temperature to 570°C at a temperature rate and holding it for 90 minutes,
It was slowly cooled.

一方、上記カムシャフト2は次のようにして製作した。On the other hand, the camshaft 2 was manufactured as follows.

先ず、冷し金によってカム部がチル化された鋳鉄製カム
シャフト素材(組成C:3.5%、Si:1.85%、
Mn  :0. 72%、Cr:0゜2%、P:0.0
2%、S:0.05%、残部:鉄)を用いて、該素材の
各部を所定の形状寸法に加工した後、塩浴を用いてカム
部の摺動面2aに軟窒化処理を施すことにより窒化物層
を形成し、これにより実施例1及び2のカムシャフトを
得た。
First, a cast iron camshaft material (composition C: 3.5%, Si: 1.85%,
Mn: 0. 72%, Cr: 0°2%, P: 0.0
2%, S: 0.05%, balance: iron), each part of the material is processed into a predetermined shape and dimension, and then the sliding surface 2a of the cam part is subjected to nitrocarburizing treatment using a salt bath. This formed a nitride layer, thereby obtaining the camshafts of Examples 1 and 2.

また、実施例3〜11までのカムシャフトの場合は上記
窒化処理後更に酸化処理を行った。
Further, in the case of the camshafts of Examples 3 to 11, an oxidation treatment was further performed after the above-mentioned nitriding treatment.

尚、上記窒化処理としてはNa CN、KCN等のシア
ン化物を用いた塩浴軟窒化処理法を採用したが、その場
合の処理温度は500℃〜630℃、処理時間は0.5
時間〜3時間である。その理由は、500℃未満の処理
温度では反応が遅くて十分な化合物層が得られず、また
680℃を越える処111j温度では母材組織の分解が
生じて硬さが低下するためであり、使方0.5時間未満
の処理時間では十分に化合物層が形成されず、逆に3時
間を越えて処理しても化合物層の厚さが殆ど変化しない
ためである。
For the above nitriding treatment, a salt bath soft nitriding treatment method using cyanides such as Na CN and KCN was adopted, but the treatment temperature in that case was 500°C to 630°C, and the treatment time was 0.5°C.
3 hours. The reason for this is that if the treatment temperature is less than 500°C, the reaction will be slow and a sufficient compound layer will not be obtained, and if the temperature exceeds 680°C, the base material structure will decompose and the hardness will decrease. This is because the compound layer is not sufficiently formed if the treatment time is less than 0.5 hours, and on the contrary, the thickness of the compound layer hardly changes even if the treatment time is more than 3 hours.

また、上記酸化処理としては、例えばKOH。Further, as the above-mentioned oxidation treatment, for example, KOH is used.

Na OHを主成分とする水酸化物を用いて当該成分の
融点(KOHの場合は360.4℃、NaOト1の場合
は328℃)以上の温度で行い、或は380°CのKC
J2塩浴中で10分間浸漬して行ったが、その場合、処
理温度の上限は500℃以下に設定するのが望ましい。
Using a hydroxide whose main component is NaOH at a temperature higher than the melting point of the component (360.4°C for KOH, 328°C for NaO2), or KC at 380°C.
The treatment was carried out by immersion in a J2 salt bath for 10 minutes, but in that case it is desirable to set the upper limit of the treatment temperature to 500°C or less.

これは、処理温度が500℃を越えると上記塩浴窒化処
理により形成された化合物層が分解する可能性があり、
また1時間以上処理しても表面に形成される酸化物の量
が変化しイIいからである。
This is because if the treatment temperature exceeds 500°C, the compound layer formed by the salt bath nitriding treatment may decompose.
This is also because the amount of oxide formed on the surface does not change even if the treatment is performed for more than one hour.

最後に、上記のようにして得られたロッカーアーム用チ
ップ材1a及びカムシャフト2の組成等と、これらの部
材を実際の自動車に組み付けてその耐摩耗性に関する効
果を調べたテスト結果とを第1表(1)、(I)に示し
、併せTfff1表(I[[)にその比較例(チップ材
を構成する焼結合金中にNbC及びTaCのいずれも含
有しないもの)を示す。尚、この場合、摩耗母テストの
運転条件は次の通りである。エンジン回転数:200O
rpm。
Finally, the compositions of the rocker arm tip material 1a and the camshaft 2 obtained as described above, and the test results obtained by assembling these parts into an actual automobile and examining their effects on wear resistance, will be discussed in this section. Tables 1 (1) and (I) show a comparative example (the sintered alloy constituting the chip material contains neither NbC nor TaC) in Table 1 (I [[)]. In this case, the operating conditions for the wear test are as follows. Engine speed: 200O
rpm.

油温:50℃前後の低油温、オイル:市販品、テスト車
:1800ccのしPG車。また第1表(丁)〜(II
I)にカムシャフトの材質として夫々示した記号☆は、
手■比でC:3.5%、Si:1.85%、Mn :0
.72%、Cr :0.2%、P:0.02%、S:0
.05%、残部:Feでなる月質であることを示す。
Oil temperature: Low oil temperature around 50℃, Oil: Commercially available product, Test car: 1800cc PG car. Also, Table 1 (D) ~ (II
The symbol ☆ shown in I) as the material of the camshaft is
Hand ratio: C: 3.5%, Si: 1.85%, Mn: 0
.. 72%, Cr: 0.2%, P: 0.02%, S: 0
.. 05%, balance: indicates lunar quality consisting of Fe.

(以下、余白) これらの表に示されているように、本発明によれば各実
施例のうち摩耗量の最も多い実施例1の場合でさえ、各
比較例のうら摩耗■の最も少ない比較例4よりも総合的
にみて耐摩耗性が浸れていることが認められ、更にこの
逆の場合、例えば実施例11と比較例1とを比べてみる
と、その差は歴然であることが判明した。
(Hereinafter, blank space) As shown in these tables, according to the present invention, even in the case of Example 1, which has the largest amount of wear among the Examples, the comparative example has the least back wear ■. It was observed that the wear resistance was better overall than in Example 4, and in the opposite case, for example, when comparing Example 11 and Comparative Example 1, the difference was clear. did.

【図面の簡単な説明】[Brief explanation of drawings]

才1f!5 #は本発明をロッカーアーム用チップ材及びカムシャフ
トに適用した例を示す正面図である。 1a・・・第1摺動部材(ロッカーアーム用チップ材)
、2・・・第2摺動部材(カムシャフト)、2a・・・
虐肋面。
Talented 1f! 5 is a front view showing an example in which the present invention is applied to a rocker arm chip material and a camshaft. 1a...First sliding member (chip material for rocker arm)
, 2... second sliding member (camshaft), 2a...
Murderous side.

Claims (1)

【特許請求の範囲】[Claims] (1)重量比でC:1.0〜4.0%と、P:0.5〜
2.0%、Mo:2.0〜6.0%、及びB:0.5〜
3.0%のうち少なくとも一種と、Cr:4.0〜7.
0%と、NbC及びTaCのうちいずれか一方若しくは
双方で5.0〜20.0%とを含有し、残部が実質的に
鉄からなり且つ密度が7.0g/cm^3以上である焼
結合金によって構成された第1摺動部材と、摺動面に窒
化物層が形成された鉄系の第2摺動部材とを摺動可能に
組合せてなることを特徴とする摺動特性に優れた摺動部
材。
(1) C: 1.0 to 4.0% and P: 0.5 to 4.0% by weight
2.0%, Mo: 2.0~6.0%, and B: 0.5~
At least one of 3.0% and Cr: 4.0 to 7.
0%, and 5.0 to 20.0% of either or both of NbC and TaC, the balance being substantially iron and having a density of 7.0 g/cm^3 or more. A sliding characteristic characterized by a sliding combination of a first sliding member made of a bonded metal and a second iron-based sliding member having a nitride layer formed on the sliding surface. Excellent sliding member.
JP247886A 1986-01-08 1986-01-08 Sliding member having superior sliding characteristic Pending JPS62161941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP247886A JPS62161941A (en) 1986-01-08 1986-01-08 Sliding member having superior sliding characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP247886A JPS62161941A (en) 1986-01-08 1986-01-08 Sliding member having superior sliding characteristic

Publications (1)

Publication Number Publication Date
JPS62161941A true JPS62161941A (en) 1987-07-17

Family

ID=11530449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP247886A Pending JPS62161941A (en) 1986-01-08 1986-01-08 Sliding member having superior sliding characteristic

Country Status (1)

Country Link
JP (1) JPS62161941A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118859A (en) * 1982-12-27 1984-07-09 Teikoku Piston Ring Co Ltd Sliding member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118859A (en) * 1982-12-27 1984-07-09 Teikoku Piston Ring Co Ltd Sliding member

Similar Documents

Publication Publication Date Title
US5031878A (en) Valve seat made of sintered iron base alloy having high wear resistance
JP2001081501A (en) Powder mixture for powder metallurgy, ferrous sintered compact, and manufacturing method therefor
US4778522A (en) Wear resistant iron-base sintered alloy
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
EP3519598A1 (en) Copper infiltrated molybdenum and/or tungsten base powder metal alloy for superior thermal conductivity
US5498483A (en) Wear-resistant sintered ferrous alloy for valve seat
JP3784926B2 (en) Ferrous sintered alloy for valve seat
US6712871B2 (en) Sintered alloy for valve seat having excellent wear resistance and method for producing the same
JPS63274740A (en) Wear resistant iron based sintered alloy
JPH05202451A (en) Sintered alloy for valve seat
JPS63290249A (en) Ferrous sintered alloy combining heat resistance with wear resistance
JPS62161941A (en) Sliding member having superior sliding characteristic
JPH03158444A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JP3257196B2 (en) Iron-based sintered alloy for sliding members with excellent strength and wear resistance
JP2661045B2 (en) Fe-based sintered alloy with excellent sliding properties
JPS6250441A (en) Carbide dispersion type ferrous sintered alloy having excellent wear resistance
JP3440008B2 (en) Sintered member
JP3187975B2 (en) Sintered alloy for sliding members with excellent scuffing and wear resistance
JPS62133043A (en) Fe sintered material impregnated with cu
JPH0543998A (en) Valve seat made of metal-filled fe-base sintered alloy extremely reduced in attack on mating material
JPS63203754A (en) Sintered iron alloy having wear resistance at high temperature
KR950003054B1 (en) Method of sintering cam shaft
JPH041055B2 (en)
JPS62146242A (en) Valve gear mechanism member for internal combustion engine
JPH01159350A (en) Valve gear mechanism member for internal combustion engine