JPS62160756A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62160756A
JPS62160756A JP61003085A JP308586A JPS62160756A JP S62160756 A JPS62160756 A JP S62160756A JP 61003085 A JP61003085 A JP 61003085A JP 308586 A JP308586 A JP 308586A JP S62160756 A JPS62160756 A JP S62160756A
Authority
JP
Japan
Prior art keywords
capacitor
layer
photoresist
polycrystalline
protruded part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61003085A
Other languages
Japanese (ja)
Inventor
Hideharu Nakajima
中嶋 英晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61003085A priority Critical patent/JPS62160756A/en
Publication of JPS62160756A publication Critical patent/JPS62160756A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/373DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate the capacitor extending under or around the transistor

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To implement high density in memories and the like, in a semiconductor such as a dynamic RAM, by covering a protruded part, which is formed on the semiconductor substrate with a capacitor electrode. CONSTITUTION:Photoresist 2 is made to remain at a part, which is to become an active region in the future, by a photoetching method. With the photoresist 2 as a mask, RIE treatment is performed on an Si substrate, and a protruded part 1' is formed. In place of said photoresist, an SiO2 layer can be used. Then ions are implanted, and a channel stopper 6 is formed. After the photoresist is peeled away, annealing after the ion implantation is performed. A capacitor oxide film 3 having a thickness of 100Angstrom is formed by thermal oxidation. Thereafter, a first polycrystalline layer 4 is deposited on the entire surface. Only the polycrystalline Si layer in an element isolating region is removed by photoetching. Then, a part at the protruded part 1' is buried with an SiO2 film by using a CVD method. The surface is flattened. A capacitor electrode is provided on the upper part of a capacitor in this way. Therefore a transistor can be formed directly on the capacitor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関するもので、特に高密度化され
たメモリーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a high-density memory.

〔発明の概要〕[Summary of the invention]

本発明はダイナミックRAM等の半導体装置において、
キャパシタ電極が半導体基板に形成された凸部を覆うよ
うにすることによって、メモリー等の高密度化を計った
ものである。
The present invention provides semiconductor devices such as dynamic RAM,
By making the capacitor electrode cover the convex portion formed on the semiconductor substrate, it is possible to increase the density of memories and the like.

〔従来の技術〕[Conventional technology]

DRAMの1メモリーセル(1ビット分)は−組のトラ
ンジスターとキャパシターで構成されるが、大容量化す
るためにはこのセルを数平方ミクロンとできるだけ小さ
くする必要がある。しかし、小面積になると従来からの
平面キャパシターの構造では必要な容量を得るのが困難
である。半導体装置の高密度化に伴い、基板内にトレン
チを形成し、トレンチ底部を素子間分離に用いトレンチ
の側壁をキャパシターとして用いるダイナミックR。
One memory cell (one bit) of a DRAM is composed of one pair of transistors and a capacitor, but in order to increase the capacity, this cell must be made as small as possible, to several square microns. However, when the area becomes small, it is difficult to obtain the necessary capacitance with the conventional planar capacitor structure. With the increasing density of semiconductor devices, dynamic R is a method in which a trench is formed in the substrate, the bottom of the trench is used for isolation between elements, and the sidewall of the trench is used as a capacitor.

AMのセルが提案されている。AM cells have been proposed.

従来のトレンチキャパシターを用いたDRAMの例を第
2図に基いて説明する。高不純物濃度のエピタキシャル
P〜Nl上にP層が設けられ、トレンチが形成される。
An example of a DRAM using a conventional trench capacitor will be explained with reference to FIG. A P layer is provided on the epitaxial layers P to Nl with high impurity concentration, and a trench is formed.

トレンチの内壁にはキャパシター酸化膜3が形成され、
さらにキャパシターの一方の電極となるストレージ電極
12が設けられている。P層中にはドレイン領域14、
ソース領域15が形成されて多結晶Stからなるゲート
13と共にMOSFETを構成する。
A capacitor oxide film 3 is formed on the inner wall of the trench.
Furthermore, a storage electrode 12 serving as one electrode of the capacitor is provided. In the P layer, there is a drain region 14,
A source region 15 is formed and forms a MOSFET together with a gate 13 made of polycrystalline St.

ドレイン領域14はへ1配線層11からなるビット線に
接続されている。トランジスタのソース領域15はトレ
ンチキャパシター内のストレージ電極と接続されている
ので、電子は絶8i層3の内側に位置し、絶縁層3の外
側にはp ++層lの多数キャリアであるホールが位置
しているのでP”Jil内に空乏層が拡がることはない
。(電波新聞昭和60年12月4日) 〔発明が解決しようとする問題点〕 トレンチキャパシターを採用してDRAMのセル分布密
度を高めても、4M以上のDRAMにたいしては未だ不
充分でありさらに分布密度を増大させる必要がある。
The drain region 14 is connected to a bit line made of the first wiring layer 11. Since the source region 15 of the transistor is connected to the storage electrode in the trench capacitor, electrons are located inside the 8i layer 3, and holes, which are the majority carriers of the p++ layer 1, are located outside the insulating layer 3. Therefore, the depletion layer does not expand within P"Jil. (Denpa Shimbun December 4, 1985) [Problems to be solved by the invention] The cell distribution density of DRAM is reduced by using trench capacitors. Even if it is increased, it is still insufficient for DRAMs of 4M or more, and it is necessary to further increase the distribution density.

またトレンチキャパシターを採用していても空乏層の拡
がりによって、容量を発生させているDRAMに於いて
は、隣同士のセルの空乏層が接触してバンチスルーを起
こさないように、セル間の間隔を充分に保持しなければ
ならない。これも又DRAMを高密度化させる際の障害
となっている。
In addition, even if a trench capacitor is used, in DRAMs that generate capacitance due to the expansion of the depletion layer, the spacing between cells is required to prevent the depletion layers of adjacent cells from coming into contact and causing bunch-through. must be sufficiently maintained. This is also an obstacle in increasing the density of DRAM.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に於いては、半導体基板に形成された凸部がキャ
パシター電極によって被覆されている構成を採用するこ
とによって前記問題点を解決した。
In the present invention, the above-mentioned problem has been solved by adopting a configuration in which the convex portion formed on the semiconductor substrate is covered with a capacitor electrode.

〔作用〕[Effect]

キャパシター電極が凸部形状のキャパシターの上部に設
けられているので、キャパシターの直上にトランジスタ
を形成することができ、DRAMの高密度化を達成する
ことができる。
Since the capacitor electrode is provided above the convex-shaped capacitor, a transistor can be formed directly above the capacitor, and a high density DRAM can be achieved.

またキャパシタとキャパシタの間はCV D 5iOz
で埋められているので、素子間分離は完全な、ものとな
る。
Also, between the capacitors, CV D 5iOz
, so the isolation between elements is perfect.

〔実施例〕〔Example〕

本発明の半導体装置の構造をより良く理解するために、
第1図A−Eの製造工程に基づいて本発明を説明する。
In order to better understand the structure of the semiconductor device of the present invention,
The present invention will be explained based on the manufacturing steps shown in FIGS. 1A to 1E.

第1図A 将来能動領域となる部分にフォトエッヂによ
りフォトレジスト2を残し、こ のフォトレジスト2をマスクとしてSi基板にRIE処
理を行って凸部1′を 形成する。この際、フォトレジストの 代わりにSiO□層を用いてもよい。
FIG. 1A A photoresist 2 is left by photo-edging in a portion that will become an active region in the future, and using this photoresist 2 as a mask, an RIE process is performed on the Si substrate to form a convex portion 1'. At this time, a SiO□ layer may be used instead of the photoresist.

第1図B イオン注入を行ってチャンネルストッパー6
を形成し、フォトレジスト2を 工11離した後イオン注入後のアニーリングを行う。
Figure 1B Channel stopper 6 after ion implantation
After forming the photoresist 2 and removing the photoresist 11, annealing is performed after ion implantation.

第1図C100人の厚さのキャパシター酸化膜3を熱酸
化により形成した後、第1多 結晶層4を全面にデポする。素子分離 領域の多結晶Si層のみをフォトエッチにより除去して
から、CVD法を用い て凸部1′の間を5iOz層5で埋めて表面の平坦化を
行う。
FIG. 1C After forming a capacitor oxide film 3 with a thickness of 100 people by thermal oxidation, a first polycrystalline layer 4 is deposited on the entire surface. After removing only the polycrystalline Si layer in the element isolation region by photoetching, the CVD method is used to fill in the spaces between the convex portions 1' with a 5iOz layer 5 to flatten the surface.

第1図D 凸部1′上のSiO□層に窓を開けた後、全
面に第2多結晶層7を形成させて、 開口部16を介して第1と第2の多結 晶層7を接続させる。第2多結晶層7 をバターニングしてRIE処理を行う。
FIG. 1D After opening a window in the SiO□ layer on the convex portion 1', the second polycrystalline layer 7 is formed on the entire surface, and the first and second polycrystalline layers 7 are formed through the opening 16. Connect. The second polycrystalline layer 7 is patterned and subjected to RIE treatment.

第1図E 第2多結晶SiNの表面を酸化させてスイッ
チングトランジスタのゲート酸 化膜8を形成させ、その上に第3多結 晶SiJ!!9を設ける。そしてこの第3多結晶Si層
9を所望のゲート長にパターニングした後、RIE処理
を行う。次 にこのゲートをマスクにしてイオン注 入を行いソース、ドレイン領域を形成 した後、イオン注入後のアニール処理 を行う。
FIG. 1E The surface of the second polycrystalline SiN is oxidized to form the gate oxide film 8 of the switching transistor, and the third polycrystalline SiJ! ! 9 will be provided. After patterning this third polycrystalline Si layer 9 to a desired gate length, RIE treatment is performed. Next, using this gate as a mask, ion implantation is performed to form source and drain regions, and then an annealing process is performed after the ion implantation.

この上に層間絶縁膜を設けた後、この 絶縁膜に窓開けを行う。AIを全面に付着させて、AI
と第2多結晶Si層のコンタクトをとる。ビットライン
となるAI線を残して不要なAIをRIE処理により除
去する。AIのシンター処理を行ってDRAMを完成さ
せる。
After providing an interlayer insulating film on this, a window is opened in this insulating film. By attaching AI to the entire surface, AI
A contact is made between the second polycrystalline Si layer and the second polycrystalline Si layer. Unnecessary AI is removed by RIE processing, leaving an AI line that will become a bit line. Perform AI sintering to complete DRAM.

第1図Fは本発明の半導体装置の各部の配置関係を示す
図である。第1図A−Hに示された断面図は、第1図F
に於ける一点鎖線A−Bの部分に於ける1個の素子を示
している。第2多結晶Si層7内に設けられたスイッチ
ングトランジスタのソースはコンタクト穴16を通して
キャパシタ電極に接続されている。一方スイツチングト
ランジスタのドレインはコンタクト穴17を介してビッ
ト線11に接続されている。第3多結晶Si層9からな
るゲート電極はワード線となっている。
FIG. 1F is a diagram showing the arrangement of various parts of the semiconductor device of the present invention. The cross-sectional view shown in FIG. 1A-H is similar to that shown in FIG.
1 shows one element in a portion indicated by a dashed-dotted line A-B in FIG. The source of the switching transistor provided in the second polycrystalline Si layer 7 is connected to the capacitor electrode through the contact hole 16. On the other hand, the drain of the switching transistor is connected to the bit line 11 via a contact hole 17. The gate electrode made of the third polycrystalline Si layer 9 serves as a word line.

なお、ビットラインコンタクトを減らすためにセル2個
を一組としてコンタクトをとることも可能である。
Note that in order to reduce the number of bit line contacts, it is also possible to connect two cells as a set.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体装置は次のような効果を有する。 The semiconductor device of the present invention has the following effects.

(i)セル間がCV DSiO□層で埋められているの
で、素子間分離が完全である。
(i) Since the spaces between cells are filled with a CV DSiO□ layer, isolation between elements is perfect.

(ii)キャパシタのパターンが非常に単純である。(ii) The capacitor pattern is very simple.

従って4M以上の高密度DRAM等の製造に非常に有利
である。
Therefore, it is very advantageous for manufacturing high-density DRAMs of 4M or more.

(iii))レンチでない部分もキャパシタとして利用
できる。
(iii)) Portions other than the wrench can also be used as capacitors.

(iv))レンチを掘った底部を素子間分離領域にし、
それ以外の側壁と上部をほとんどキャパシタとして利用
できるので、高密度化及びキャパシタの大容量化の点で
有利である。
(iv)) Make the bottom of the wrench into an inter-element isolation region,
Most of the other side walls and the upper part can be used as a capacitor, which is advantageous in terms of higher density and larger capacity of the capacitor.

(v)キャパシタの第1多結晶上にI?TE処理を行う
ために基板にダメージを与えることがない。
(v) I? on the first polycrystal of the capacitor? There is no damage to the substrate due to the TE treatment.

(vi )素子間分離をトレンチの底部のみで行うこと
ができ、つまり、チャンネルストッパを底部のみに設け
れば良いので、製造方法が簡単になる。
(vi) Since element isolation can be performed only at the bottom of the trench, in other words, the channel stopper only needs to be provided at the bottom, the manufacturing method is simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ABCDEは本発明の半導体装置を製造過程に基
づいて説明した図である。 第1図Fは本発明の半導体装置の各部の配置関係を示す
図である。 第2図は従来のDRAMを示す図である。 1・・・半導体基板   1 ・・・凸部2・・・フォ
トレジスト  3・・・キャパシタ酸化膜4・・・第1
多結晶5iJii   5・・・SiO□層6・・・チ
ャンネルストッパー 7・・・第2多結晶Si層  8・・・ゲート酸化膜9
・・・第3多結晶Si層  10・・・SiO□層11
・・・AI配線層     12・・・ストレージ電極
13・・・ゲート電極    14・・・ドレイン領域
15・・・ソース領域 16・・・ソースとキャパシタのコンタクト17・・・
ビット線とドレインのコンタクト18・・・キャパシタ
FIG. 1 ABCDE is a diagram illustrating the semiconductor device of the present invention based on the manufacturing process. FIG. 1F is a diagram showing the arrangement of various parts of the semiconductor device of the present invention. FIG. 2 is a diagram showing a conventional DRAM. 1... Semiconductor substrate 1... Convex portion 2... Photoresist 3... Capacitor oxide film 4... First
Polycrystalline 5iJii 5...SiO□ layer 6...Channel stopper 7...Second polycrystalline Si layer 8...Gate oxide film 9
...Third polycrystalline Si layer 10...SiO□ layer 11
...AI wiring layer 12...Storage electrode 13...Gate electrode 14...Drain region 15...Source region 16...Contact between source and capacitor 17...
Bit line and drain contact 18...capacitor part

Claims (1)

【特許請求の範囲】[Claims] キャパシタ電極が半導体基板に形成された凸部を覆って
形成された半導体装置。
A semiconductor device in which a capacitor electrode is formed to cover a convex portion formed on a semiconductor substrate.
JP61003085A 1986-01-10 1986-01-10 Semiconductor device Pending JPS62160756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61003085A JPS62160756A (en) 1986-01-10 1986-01-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61003085A JPS62160756A (en) 1986-01-10 1986-01-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62160756A true JPS62160756A (en) 1987-07-16

Family

ID=11547502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61003085A Pending JPS62160756A (en) 1986-01-10 1986-01-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62160756A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154256A (en) * 1982-03-10 1983-09-13 Hitachi Ltd Semiconductor memory and preparation thereof
JPS60236261A (en) * 1984-04-25 1985-11-25 シーメンス、アクチエンゲゼルシヤフト 1-transistor memory cell and method of producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154256A (en) * 1982-03-10 1983-09-13 Hitachi Ltd Semiconductor memory and preparation thereof
JPS60236261A (en) * 1984-04-25 1985-11-25 シーメンス、アクチエンゲゼルシヤフト 1-transistor memory cell and method of producing same

Similar Documents

Publication Publication Date Title
JP2504606B2 (en) Semiconductor memory device and manufacturing method thereof
US5492851A (en) Method for fabricating attached capacitor cells in a semiconductor device having a thin film transistor
JPH0775247B2 (en) Semiconductor memory device
JPH09191084A (en) Semiconductor device and its manufacture
JPH02312269A (en) Semiconductor memory device and manufacture thereof
JP3229665B2 (en) Method of manufacturing MOSFET
US5156993A (en) Fabricating a memory cell with an improved capacitor
JPS62286270A (en) Semiconductor memory
JPH0316171A (en) Manufacture of semiconductor device
US4921816A (en) Method of making a trench dram
US5606189A (en) Dynamic RAM trench capacitor device with contact strap
JPH04234166A (en) Semiconductor integrated circuit device
JPH01124234A (en) Semiconductor device having isolation oxide film and manufacturing thereof
JPH01143254A (en) Semiconductor storage device
JP2519216B2 (en) Semiconductor memory device
JP3355511B2 (en) Method for manufacturing semiconductor device
JPH0321062A (en) Semiconductor storage device
JPH0834303B2 (en) Method for manufacturing semiconductor memory device
JPH02307262A (en) Semiconductor storage device and manufacture thereof
JPH04348070A (en) Semiconductor device and its manufacture
JPS62160756A (en) Semiconductor device
JPH0379072A (en) Semiconductor memory device and manufacturing method
US5160988A (en) Semiconductor device with composite surface insulator
JP2623293B2 (en) Semiconductor integrated circuit device
JPH1197529A (en) Manufacture of semiconductor device