JPS62160106A - Method and device for separating membrane by supplying low temperature water - Google Patents

Method and device for separating membrane by supplying low temperature water

Info

Publication number
JPS62160106A
JPS62160106A JP29946285A JP29946285A JPS62160106A JP S62160106 A JPS62160106 A JP S62160106A JP 29946285 A JP29946285 A JP 29946285A JP 29946285 A JP29946285 A JP 29946285A JP S62160106 A JPS62160106 A JP S62160106A
Authority
JP
Japan
Prior art keywords
water
temperature
low
heat
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29946285A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumoto
博 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP29946285A priority Critical patent/JPS62160106A/en
Publication of JPS62160106A publication Critical patent/JPS62160106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To control propagation of microbes and germs, reduce the the number of times for sterilizing and cleaning, decrease penetration speed of salt, prepare penetrating water of high purity and prevent a membrane from getting compacted by maintaining a device including membrane module under a low temperature. CONSTITUTION:After introducing water from a water supply pipe 1 into a filter 3 of a pretreatment device 2 and removing suspension from the supplied water, the water is cooled down by means of heat exchanging with low temperature penetrating water and concentrated water by a sub-heat exchanger 4. Further, after the water is cooled down by being passed through a cooler 8 in which refrigeration mediums such as Freon cooled by a refregerator 5, the same is guided from a pipe 9 into a membrane module 11 of the reverse osmosis pressure device through a high pressure pump 10 for membrane separation. Penetrating water and concentrated water formed in the membrane module 1 are still cold, and to recover cold heat, the said penetrating water and the concentrated water are passed from pipes 12 and 13 into the sub-heat exchanger 4 for being cooled down and then taken out of pipes 14 and 15.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は食品、製薬、医療、電子工業等の各分野におい
て要求される無菌かつ高純度の透過水を、長期に渡り、
安定して取得する膜分離方法及び装置に関するものであ
る。
Detailed Description of the Invention (Industrial Application Field) The present invention can provide sterile and highly pure permeated water for a long period of time, which is required in various fields such as food, pharmaceutical, medical, and electronic industries.
The present invention relates to a membrane separation method and apparatus that stably obtain membrane separation.

(従来の技術) 逆浸透圧式脱塩装置においては、一般に給水の温度が低
下すると水の粘性係数の増大のため、水の膜への透過速
度は低下するので高温運転が望ましいが、あまり高温過
ぎると膜の加水分解作用やコンパクション現象が著しく
なるため、運転温度は先行技術である特開昭49−13
5888号公報に見られるように、常時水温20℃〜3
0℃に保つべく吸収式冷凍機を用いて温度調節を行って
いる。
(Prior art) In reverse osmosis type desalination equipment, generally when the temperature of the feed water decreases, the viscosity coefficient of the water increases, and the permeation rate of water through the membrane decreases, so high temperature operation is desirable, but the temperature is too high. Since the hydrolysis effect and compaction phenomenon of the membrane becomes significant, the operating temperature is lower than that of the prior art, JP-A-49-13.
As seen in Publication No. 5888, the water temperature is always between 20°C and 3°C.
The temperature is controlled using an absorption refrigerator to maintain the temperature at 0°C.

しかしながらこの水温では細菌、微生物が繁殖しやすく
目詰りの原因となり、更には膜を損傷して膜の性能を低
下させるおそれが多分にある。
However, at this water temperature, bacteria and microorganisms are likely to proliferate, causing clogging, and furthermore, there is a high possibility that the membrane will be damaged and its performance will be reduced.

(発明が解決しようとする問題点) 逆浸透圧式脱塩装置を使用して得られる透過水は、最近
特に電子工業分野で純水として、また医薬分野では無菌
水としての要求が頓に高まりつつあるが、前述のとおり
常温では微生物、細菌が繁殖しやすいので、その対策と
して定期的に膜モジュールを殺菌洗浄しなければならず
、その間透過水の供給は中断し操作も煩雑になるなどの
問題があった。また最近の電子工業においては従来どお
りの温度で透過させた水では必ずしも純度が十分高いと
は言えず、高純度の要求が強まってきている。
(Problems to be Solved by the Invention) Permeated water obtained using a reverse osmosis desalination device has recently been in increasing demand as pure water, especially in the electronics industry, and as sterile water in the pharmaceutical field. However, as mentioned above, microorganisms and bacteria can easily proliferate at room temperature, so as a countermeasure, the membrane module must be regularly sterilized and cleaned, and during this time the supply of permeated water is interrupted, making the operation complicated. was there. Furthermore, in the recent electronic industry, it cannot be said that water permeated at conventional temperatures is necessarily of sufficiently high purity, and the demand for high purity is increasing.

(問題点を解決するための手段) 上記に鑑み本発明は、膜モジュールを含む装置を低温に
保つことによって微生物、細菌の繁殖を抑制し、従来し
ばしば行っていた殺菌洗浄作業の回数を減らし、併せて
低温とすることにより塩透過速度を減少し、より低濃度
の、換言すれば高純度のろ過水を得、更には膜の圧密化
を防ぐことをも目的としてなされたものである。
(Means for Solving the Problems) In view of the above, the present invention suppresses the proliferation of microorganisms and bacteria by keeping the device including the membrane module at a low temperature, reduces the number of sterilization and cleaning operations that were often performed in the past, and In addition, by lowering the temperature to a lower temperature, the salt permeation rate is reduced to obtain filtered water with a lower concentration, in other words, a high purity, and furthermore, the purpose is to prevent compaction of the membrane.

−aに膜の圧密化速度(コンパクション速度)は、下式
の如く、水温と操作圧力によって関係づけられ、水温が
低い程透過水の経時による低下率が小さくなる。
-a The compaction rate of the membrane is related to the water temperature and operating pressure as shown in the following equation, and the lower the water temperature, the smaller the rate of decrease in permeated water over time.

膜の圧密化速度ocpα・tβ P:操作圧力 t:水温 α、β:膜材質に依存する膜定数 例えば、ポリアミド系中空繊維膜の場合の膜の圧密化に
よる透過水量の低下比は、第1図の様な傾向を示す。
Consolidation rate of membrane ocpα・tβ P: Operating pressure t: Water temperature α, β: Membrane constant depending on membrane material For example, in the case of a polyamide hollow fiber membrane, the reduction ratio of the amount of permeated water due to membrane consolidation is the first The trend shown in the figure is shown.

本発明は上記の知見に基づいたものであって、給水を冷
凍機による冷媒で細菌、微生物の生長、繁殖を抑える。
The present invention is based on the above knowledge, and uses a refrigerant in a refrigerator to suppress the growth and reproduction of bacteria and microorganisms.

例えば5℃前後に冷却したのち、逆浸透圧式脱塩装置に
送り、低温下で透過し、未だ冷却状態にある透過水、濃
縮水の保有する冷熱で給水を予冷し熱回収するもので、
その要旨は、前処理によって汚濁物質を除去した給水を
熱交換器に送り、ここで逆浸透圧式脱塩装置から導入し
た低温の透過水および又は低温の濃縮水と熱交換したの
ち、更に低温冷媒と熱交換して一層冷却し、その低温に
維持した給水を逆浸退膜モジュールに送水し、生成した
低温の透過水、濃縮水は前記熱交換器に還流させること
を特徴とする低温給水による膜分離方法であり、ケーシ
ングに設けた給水入口と、その下方に位置する1濾過層
と、更にその下流に配置した通過水伝熱管束、濃縮水伝
熱管束およびそらにその下流に配置した冷媒伝熱管束と
、下部給水出口とを備えた低温前処理装置が、冷凍(作
用効果) 本発明において、tf+過などの前処理によって汚濁物
質が除去された給水が、冷凍機を用いてフレオンのごと
き低温冷媒と熱交換して、5℃前後に冷却したのち逆浸
透圧式脱塩装置に送るから、従来の20〜30℃を保つ
運転に比べて微生物、細菌の繁殖は抑制でき、かつ高純
度の透過水が得られ、電子工業、医薬分野の要望に十分
応え得る。
For example, after being cooled to around 5°C, it is sent to a reverse osmosis desalination equipment, where it permeates at a low temperature, and the still cooled permeated water and concentrated water retain their cold heat to pre-cool the feed water and recover heat.
The gist is that feed water from which pollutants have been removed through pretreatment is sent to a heat exchanger, where it is heat exchanged with low-temperature permeate water and/or low-temperature concentrated water introduced from a reverse osmosis desalination device, and then further heated with low-temperature refrigerant. The low-temperature feed water is further cooled by exchanging heat with the water, and the feed water maintained at a low temperature is sent to a reverse leaching membrane module, and the generated low-temperature permeate water and concentrated water are returned to the heat exchanger. This is a membrane separation method that consists of a water supply inlet provided in the casing, a filtration layer located below it, a passed water heat transfer tube bundle, a concentrated water heat transfer tube bundle, and a refrigerant placed downstream thereof. A low-temperature pretreatment device equipped with a heat transfer tube bundle and a lower water supply outlet is used for freezing (function and effect). In the present invention, the supply water from which pollutants have been removed by pretreatment such as TF + It exchanges heat with a low-temperature refrigerant, cools it to around 5℃, and then sends it to the reverse osmosis desalination equipment, which suppresses the growth of microorganisms and bacteria compared to conventional operation that maintains the temperature at 20 to 30℃, and achieves high purity. of permeated water, which can fully meet the demands of the electronics and pharmaceutical fields.

しかもここで得られる透過水=?H1ii水は共に低温
であるから、この冷熱は前処理後の給水と熱交換して予
冷に利用しており、逆浸透圧装置の低温維持に僅少なが
ら効果があるとともに、冷凍機の熱効率の向上に役立っ
ている。
Moreover, the permeated water obtained here =? Since the H1ii water is both low temperature, this cold energy is used for pre-cooling by exchanging heat with the feed water after pretreatment, which has a small effect on maintaining the low temperature of the reverse osmosis device, and improves the thermal efficiency of the refrigerator. It is useful for

また前処理装置はケーシング内の上部に一過層を設け、
下方に冷熱を有する透過水、濃縮水及び低温冷媒の各伝
熱管束を設けたから、IJ12過後の給水は先ず上方の
透過水及び濃縮水伝熱管束で予備冷却され、次いで冷媒
伝熱管束で5℃前後まで本冷却を受けることとなり、し
かも各伝熱管束の配列を直角方向にすれば落下する給水
は整流作用を受けて伝熱は一層効果的となり、また濾過
層と熱交換器が一体となってケーシング内に収容されて
いるのでコンパクトな装置となり、表面積が減じて放熱
量も抑制されるなどの効果がある。
In addition, the pretreatment device has a temporary layer in the upper part of the casing.
Since the heat transfer tube bundles for permeated water, concentrated water, and low-temperature refrigerant, which have cold heat, are provided below, the feed water after IJ12 is first precooled by the upper permeated water and concentrated water heat transfer tube bundles, and then cooled by the refrigerant heat transfer tube bundles. ℃, and if the heat transfer tube bundles are arranged at right angles, the falling feed water will be rectified, making heat transfer even more effective, and the filtration layer and heat exchanger will be integrated. Since it is housed inside the casing, it becomes a compact device, which has the effect of reducing the surface area and suppressing the amount of heat dissipation.

(実施例) 図は本発明の実施例であって、第2図において、給水は
給水管lより前処理装置2の垢過器3に導入されて給水
中の懸濁物質が除去され、次に側熱交換器4を通過して
後記低温の透過水、濃縮水との熱交換によって冷却され
、更に冷凍機5で冷却されたフレオンのごとき冷媒が入
口管6.出口管7を経て循環する冷却器8を通過して5
℃前後まで冷却されたのち、管9より高圧ポンプ10を
経て逆浸透圧装置の膜モジエール11に導入され膜分離
される。
(Example) The figure shows an example of the present invention, and in FIG. The refrigerant, such as Freon, passes through the side heat exchanger 4 and is cooled by heat exchange with low-temperature permeated water and concentrated water, which will be described later, and is further cooled in the refrigerator 5. 5 passing through a cooler 8 which circulates via an outlet pipe 7
After being cooled to around 0.degree. C., it is introduced into a membrane module 11 of a reverse osmosis device through a pipe 9 via a high-pressure pump 10, and subjected to membrane separation.

膜モジュール11で生成した透過水及び濃縮水は未だ冷
熱状態にあるから、この冷熱を回収するため、それぞれ
管12及び管13により前記側熱交換器4を通して給水
の冷却に使用したのち、それぞれ管14.15から外部
に取出す。
Since the permeated water and concentrated water generated in the membrane module 11 are still in a cold state, in order to recover this cold energy, they are passed through the side heat exchanger 4 through pipes 12 and 13, respectively, and used for cooling the feed water, and then 14. Take it out from 15.

過器3を設け、その下部に水室16を有する透過本伝熱
管束17を水平方向に並べ、その下方に氷室18を有す
る濃縮水伝熱管束19を水平直角方向に配置してそれぞ
れ膜モジエールに連絡し、更にその下方に冷凍機5に連
絡する水室20を有する冷媒伝熱管束21を水平方向に
直角に交差するように設置し、上方の給水管lより給水
を供給して、γμ過器3を均一に通過させたのち、透過
本伝熱管束17.濃縮水管束19を流下させて予備冷却
し、更に下方の冷媒伝熱管束21で熱交換して5℃前後
まで冷却したのち管9より取出し、第2図の場合と同様
高圧ポンプを経て膜モジュールに供給してもよい、この
場合は各伝熱管束は直角方向に配置されているから、流
下する水は整流作用を受けて効率よく熱交換し、更に装
置全体がコンパクトにまとまり、また外部への放熱面積
が少な(なって熱経済上有利となる。
A filter unit 3 is provided, permeation main heat exchanger tube bundles 17 having a water chamber 16 at the bottom thereof are arranged horizontally, and a concentrated water heat exchanger tube bundle 19 having an ice chamber 18 below it is arranged horizontally and at right angles to form a membrane module. A refrigerant heat exchanger tube bundle 21 having a water chamber 20 connected to the refrigerator 5 below is installed so as to intersect at right angles to the horizontal direction, and water is supplied from the upper water supply pipe l to γμ After uniformly passing through the heat exchanger tube 3, the main heat exchanger tube bundle 17. The concentrated water tube bundle 19 is allowed to flow down for preliminary cooling, and then heat exchanged with the lower refrigerant heat transfer tube bundle 21 to cool it down to around 5°C, after which it is taken out from the tube 9 and passed through a high pressure pump as in the case of Fig. 2 to the membrane module. In this case, each heat transfer tube bundle is arranged at right angles, so the flowing water is rectified and efficiently exchanges heat. Furthermore, the entire device is compact, and the heat exchanger tubes are arranged at right angles. The heat dissipation area is small (which is advantageous in terms of thermal economy).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は膜の圧密化による透過水量の経時変化の傾向を
示すグラフ、第2図は本発明の一実施例におけるフロー
シート、第3図は要部の斜視図である。 1・・・給水管、      2・・・前処理装置、3
・・・濾過器、      4・・・側熱交換器、5・
・・冷凍機、      6・・・入口管、7・・・出
口管、      8・・・冷却器、10・・・高圧ポ
ンプ、   11・・・膜モジュール、17・・・透過
本伝熱管束、19・・・濃縮水伝熱管束、21・・・冷
媒伝熱管束。 特許出願人   株式会社笹倉機械製作所第3図
FIG. 1 is a graph showing a trend in the amount of permeated water over time due to compaction of the membrane, FIG. 2 is a flow sheet in an embodiment of the present invention, and FIG. 3 is a perspective view of the main parts. 1... Water supply pipe, 2... Pretreatment device, 3
...Filter, 4...Side heat exchanger, 5.
... Refrigerator, 6... Inlet pipe, 7... Outlet pipe, 8... Cooler, 10... High pressure pump, 11... Membrane module, 17... Permeation main heat exchanger tube bundle, 19... Concentrated water heat transfer tube bundle, 21... Refrigerant heat transfer tube bundle. Patent applicant Sasakura Machinery Co., Ltd. Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)前処理によって汚濁物質を除去した給水を熱交換
器に送り、ここで逆浸透圧式脱塩装置から導入した低温
の透過水および又は低温の濃縮水と熱交換したのち、更
に低温冷媒と熱交換して一層冷却し、この低温に維持し
た給水を逆浸透膜モジュールに送水し、生成した低温の
透過水、濃縮水は前記熱交換器に還流させることを特徴
とする低温給水による膜分離方法。
(1) Feed water from which pollutants have been removed through pretreatment is sent to a heat exchanger, where it is heat exchanged with low-temperature permeated water and/or low-temperature concentrated water introduced from a reverse osmosis desalination device, and then further heated with low-temperature refrigerant. Membrane separation using low-temperature feed water, characterized in that the feed water is further cooled by heat exchange, the feed water maintained at this low temperature is sent to a reverse osmosis membrane module, and the generated low-temperature permeate water and concentrated water are returned to the heat exchanger. Method.
(2)ケーシングに設けた給水入口と、その下方に位置
するろ過層と、更にその下流に配置した透過水伝熱管束
、濃縮水伝熱管束およびさらにその下流に配置した冷媒
伝熱管束と、下部の給水出口とを備えた低温前処理装置
が、冷凍機と逆浸透膜モジュールに連絡してなる低温給
水による膜分離装置。
(2) a water supply inlet provided in the casing, a filtration layer located below it, a permeated water heat transfer tube bundle, a concentrated water heat transfer tube bundle, and a refrigerant heat transfer tube bundle placed further downstream thereof; A membrane separation device using low-temperature water supply, in which a low-temperature pretreatment device equipped with a water supply outlet at the bottom is connected to a refrigerator and a reverse osmosis membrane module.
JP29946285A 1985-12-28 1985-12-28 Method and device for separating membrane by supplying low temperature water Pending JPS62160106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29946285A JPS62160106A (en) 1985-12-28 1985-12-28 Method and device for separating membrane by supplying low temperature water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29946285A JPS62160106A (en) 1985-12-28 1985-12-28 Method and device for separating membrane by supplying low temperature water

Publications (1)

Publication Number Publication Date
JPS62160106A true JPS62160106A (en) 1987-07-16

Family

ID=17872883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29946285A Pending JPS62160106A (en) 1985-12-28 1985-12-28 Method and device for separating membrane by supplying low temperature water

Country Status (1)

Country Link
JP (1) JPS62160106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205603A (en) * 2006-01-31 2007-08-16 Babcock Hitachi Kk Waterwall structure for boiler
WO2017119051A1 (en) * 2016-01-04 2017-07-13 三菱重工業株式会社 Water treatment system and water treatment method
KR20210055162A (en) * 2019-11-07 2021-05-17 김재구 Impurity reduction system of the used etching liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205603A (en) * 2006-01-31 2007-08-16 Babcock Hitachi Kk Waterwall structure for boiler
WO2017119051A1 (en) * 2016-01-04 2017-07-13 三菱重工業株式会社 Water treatment system and water treatment method
KR20210055162A (en) * 2019-11-07 2021-05-17 김재구 Impurity reduction system of the used etching liquid

Similar Documents

Publication Publication Date Title
JP5413709B2 (en) Water treatment equipment.
CN102834016B (en) Membrane filtration and membrane filtration assembly
JPS62160106A (en) Method and device for separating membrane by supplying low temperature water
JPS62500735A (en) Heat exchange method and heat exchanger
KR100935206B1 (en) Apparatus for manufacturing water with high oxygen content
CN101815916A (en) Methods for producing sterile cryogenic fluids
Van Gassel et al. An energy-efficient membrane distillation process
CN102471110A (en) A method and an apparatus for continuously steralizing water for spraying the pistons in a piston pump or a homogenizer
JP4280942B2 (en) Method and apparatus for cooling products using condensed gas
KR100550113B1 (en) clean water system
JPH1129301A (en) Production apparatus of ultrapure hydrogen gas
JP6206204B2 (en) Backwash type filtration device and plate heat exchanger
CN214384437U (en) Gas cooling device for air separation system
JP4513230B2 (en) Chilled heat storage system and cooling medium regeneration method
JP4271640B2 (en) Water treatment apparatus and method for circulating operation of treated water in the water treatment apparatus
JP3544270B2 (en) How to freeze aqueous solution
JPS61164195A (en) Method of treating nuclear power waste water
JPS60228894A (en) Flow down liquid film type heat exchanger
JP2594489B2 (en) Liquid heat sterilizer
CN214693724U (en) Pure water treatment system
RU2200272C2 (en) Method for preparing hydrocarbon gas for transporting it
JP3506260B2 (en) Unpurified liquid purification device
JPH0351454B2 (en)
EP4098338A1 (en) Evaporator and cooling device
JP3628457B2 (en) Waste heat recovery aseptic line