JPS62160006A - Controlling method for dead slow speed of unmanned conveying vehicle - Google Patents

Controlling method for dead slow speed of unmanned conveying vehicle

Info

Publication number
JPS62160006A
JPS62160006A JP60298469A JP29846985A JPS62160006A JP S62160006 A JPS62160006 A JP S62160006A JP 60298469 A JP60298469 A JP 60298469A JP 29846985 A JP29846985 A JP 29846985A JP S62160006 A JPS62160006 A JP S62160006A
Authority
JP
Japan
Prior art keywords
current
vehicle
speed
motor
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60298469A
Other languages
Japanese (ja)
Inventor
Takehiro Miyata
武弘 宮田
Minoru Okada
実 岡田
Fumio Tani
文雄 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yusoki Co Ltd
Original Assignee
Nippon Yusoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yusoki Co Ltd filed Critical Nippon Yusoki Co Ltd
Priority to JP60298469A priority Critical patent/JPS62160006A/en
Publication of JPS62160006A publication Critical patent/JPS62160006A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Motor And Converter Starters (AREA)

Abstract

PURPOSE:To smoothly move an unmanned conveying vehicle by increasing a current flowing to a motor when judging that the vehicle is in a stopped state. CONSTITUTION:A speed controller 3 compares a speed command 1 with the output of an encoder 9 and outputs a current command. A current controller 5 compares the current command with a current signal detected by a current detector 8, and applies a control signal to a converter 6. A vehicle stop detector 10 calculates the output of the encoder 9, and when the detector 10 detects the stop of the vehicle, it outputs a motor current rise command to a comparator 4. Thus, it can prevent the vehicle from stopping in a recessed terrain or a slope and can travel the vehicle smoothly on a flat road.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無人搬送車の微速制御方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a slow speed control method for an automatic guided vehicle.

〔従来技術〕[Prior art]

従来の無人搬送車の速度制御方法を第1図にて説明する
と、速度指令信号を高速、中速、低速および微速の4種
類を設け、各速度指令に対し、エンコーダにより車速を
検出・比較することにより比例制御し、その出力と電流
検出器の出力とを比較することにより、同様に比例制御
し、その出力を変換器に送りモータの速度制御を行って
いる。
The conventional speed control method for automatic guided vehicles is explained using Figure 1. Four types of speed command signals are provided: high speed, medium speed, low speed, and slow speed, and the vehicle speed is detected and compared using an encoder for each speed command. Proportional control is performed by comparing the output with the output of the current detector, and the output is sent to the converter to control the speed of the motor.

〔解決すべき問題点〕[Problems to be solved]

無人搬送車は、通常速度精度があまり要求されないので
、上述のように調整の容易な比例制御が採用されている
。従って、速度指令と車速検出値との差が電流指令にな
るので、微速指令時は変換器の有する最大可制御電流値
まで流れない。
Automated guided vehicles usually do not require much speed accuracy, so proportional control, which is easy to adjust as described above, is adopted. Therefore, since the difference between the speed command and the vehicle speed detection value becomes the current command, the current does not flow up to the maximum controllable current value of the converter when the slow speed command is given.

また、無人搬送車の使用される環境は、路面に窪みや坂
がある場合もあり、上述のような制御では、停車するこ
ともあった。
Furthermore, the environment in which automatic guided vehicles are used may include potholes and slopes on the road surface, and the above-mentioned control may cause the vehicles to stop.

そのような場合は、比例制御ゲインを上げていたが制御
の滑らかさがなくなり、時にはハンチングすることもあ
った。
In such cases, the proportional control gain was increased, but the control became less smooth and sometimes hunting occurred.

C問題点を解決する手段〕 本発明は、速度信号と電流信号とをフィードバック速度
制御を行う無人搬送車において、速度指令信号と無人搬
送車のモータに連結したエンコーダからの信号とにより
停車検出器で無人搬送車が停車状態であると判断した時
、モータに流れる電流を大きくするモータ電流指令信号
を発して、無人搬送車のスムースな運行を図っている。
Means for Solving Problem C] The present invention provides an automatic guided vehicle that performs feedback speed control using a speed signal and a current signal. When it is determined that the automatic guided vehicle is in a stopped state, it issues a motor current command signal that increases the current flowing to the motor to ensure smooth operation of the automatic guided vehicle.

〔実施例〕〔Example〕

本発明の一実施例を第2図に基づき説明すると、■は速
度指令、2は比較器、3は速度制御回路、4は比較器、
5は電流制御回路、6は変換器、7はモータ、8は電流
検出器、9はモータ7に連結したエンコーダ、10はエ
ンコーダ9の停車検出器で、比較器2には速度指令1と
エンコーダ9の出力とが印加され、比較器4にはモータ
7に流れる電流を電流検出器8で検出した信号と停車検
出器10からの信号とが印加される。
An embodiment of the present invention will be explained based on FIG. 2. ■ is a speed command, 2 is a comparator, 3 is a speed control circuit, 4 is a comparator,
5 is a current control circuit, 6 is a converter, 7 is a motor, 8 is a current detector, 9 is an encoder connected to the motor 7, 10 is a stop detector for the encoder 9, and the comparator 2 has a speed command 1 and an encoder. A signal obtained by detecting the current flowing through the motor 7 by a current detector 8 and a signal from a stop detector 10 are applied to the comparator 4.

〔動作〕〔motion〕

速度指令1とエンコーダ9の出力とを比較器2で比較し
、その出力を速度制御回路3で演算し、その結果とモー
タ7に流れる電流を検出する電流検出器8の出力を比較
器4で比較する。ここで、エンコーダ9の出力を停車検
出器10が演算し、停車を検出した場合は比較器4にモ
ータ電流上昇指令を出力する。
The speed command 1 and the output of the encoder 9 are compared by a comparator 2, the output is calculated by the speed control circuit 3, and the result and the output of a current detector 8 that detects the current flowing through the motor 7 are compared by the comparator 4. compare. Here, a stop detector 10 calculates the output of the encoder 9, and outputs a motor current increase command to the comparator 4 when a stop is detected.

比較器4の出力を電流制御回路5が演算し、変換器6に
指令を与え、モータ7の速度制御を行う。
A current control circuit 5 calculates the output of the comparator 4, gives a command to a converter 6, and controls the speed of the motor 7.

〔効果〕〔effect〕

以上説明したように、速度指令信号が出力されているに
もかかわらず、無人搬送車が停車した場合、停車検出器
10によりモータ電流上昇指令を出力し、窪みや坂道で
の停止を防止すると共に、かつ平坦路ではスムースな走
行が可能となるなどの効果がある。
As explained above, if the automatic guided vehicle stops despite the speed command signal being output, the stop detector 10 outputs a motor current increase command to prevent it from stopping in a pothole or on a slope. , and enables smooth driving on flat roads.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の無人搬送車の制御ブロック図である。 第2図は本発明の無人搬送車の制御ブロック図である。 1・・・速度指令、   2・・・比較器。 FIG. 1 is a control block diagram of a conventional automatic guided vehicle. FIG. 2 is a control block diagram of the automatic guided vehicle of the present invention. 1...Speed command, 2...Comparator.

Claims (1)

【特許請求の範囲】[Claims] 速度信号と電流信号とをフィードバック速度制御を行う
無人搬送車において、速度指令信号と無人搬送車のモー
タに連結したエンコーダからの信号とにより停車検出器
で無人搬送車が停車状態であると判断した時、モータに
流れる電流を大きくするモータ電流指令信号を発する無
人搬送車の微速制御方法。
In an automatic guided vehicle that performs feedback speed control using speed signals and current signals, a stop detector determines that the automatic guided vehicle is in a stopped state based on the speed command signal and a signal from an encoder connected to the motor of the automatic guided vehicle. A slow speed control method for automatic guided vehicles that issues a motor current command signal that increases the current flowing through the motor.
JP60298469A 1985-12-31 1985-12-31 Controlling method for dead slow speed of unmanned conveying vehicle Pending JPS62160006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298469A JPS62160006A (en) 1985-12-31 1985-12-31 Controlling method for dead slow speed of unmanned conveying vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298469A JPS62160006A (en) 1985-12-31 1985-12-31 Controlling method for dead slow speed of unmanned conveying vehicle

Publications (1)

Publication Number Publication Date
JPS62160006A true JPS62160006A (en) 1987-07-16

Family

ID=17860106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298469A Pending JPS62160006A (en) 1985-12-31 1985-12-31 Controlling method for dead slow speed of unmanned conveying vehicle

Country Status (1)

Country Link
JP (1) JPS62160006A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513613A (en) * 1978-07-12 1980-01-30 Hitachi Ltd Speed controller for electric motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513613A (en) * 1978-07-12 1980-01-30 Hitachi Ltd Speed controller for electric motor

Similar Documents

Publication Publication Date Title
KR970066776A (en) Vehicle control device
US5502639A (en) Controlling apparatus of steering angle of rear wheels of four-wheel steering vehicle
US5009279A (en) Method and system for detecting wheel slippage
US20190171219A1 (en) Automated guided vehicle
EP0698574A2 (en) Elevator control system
JPS62160006A (en) Controlling method for dead slow speed of unmanned conveying vehicle
KR102427502B1 (en) Limitation of Target Values for Control Variables in Driver Assistance Systems
JP2950897B2 (en) Vehicle lamp direction control device
JPS57183283A (en) Controlling method for position of motor and position controller
JP2517221B2 (en) Automated guided vehicle control device
JPH07132757A (en) Vehicle running control device
JPH02228204A (en) Speed control device of electric motor car
JP3261942B2 (en) Automated guided vehicle program steering method
KR0175840B1 (en) Curve Driving Method of Unmanned Vehicle
JP2502797B2 (en) Constant speed traveling equipment for vehicles
JPH10254540A (en) Sensor height controller for carrier
JPH03282705A (en) Steering angle controller for unmanned carrier vehicle
JPS6237710A (en) Traveling control method for unmanned carrier
JPS60118912A (en) Stop controller of unattended track
KR19980060218A (en) Brake control system
JP2512975B2 (en) Travel control device for automatic guided vehicles
KR19980027739A (en) Unmanned Vehicle Steering Method and Steering System
JPS61246807A (en) Runaway detecting method
JPH01304508A (en) Unmanned carrier
JP2951526B2 (en) Vehicle acceleration control method of acceleration / deceleration device