JPS62159710A - Intake and exhaust valve driving device for internal combustion engine - Google Patents

Intake and exhaust valve driving device for internal combustion engine

Info

Publication number
JPS62159710A
JPS62159710A JP19786A JP19786A JPS62159710A JP S62159710 A JPS62159710 A JP S62159710A JP 19786 A JP19786 A JP 19786A JP 19786 A JP19786 A JP 19786A JP S62159710 A JPS62159710 A JP S62159710A
Authority
JP
Japan
Prior art keywords
cam
intake
lift
collar
control shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19786A
Other languages
Japanese (ja)
Other versions
JPH0585725B2 (en
Inventor
Seinosuke Hara
誠之助 原
Hiromichi Bito
尾藤 博通
Yasuo Matsumoto
松本 泰郎
Manabu Kato
学 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19786A priority Critical patent/JPS62159710A/en
Publication of JPS62159710A publication Critical patent/JPS62159710A/en
Publication of JPH0585725B2 publication Critical patent/JPH0585725B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To make the device compact, by converting a torque of a cam control shaft on a prime motor side to an axial force to compress an elastic member, and rotating an unlocked lift control cam by a force of the elastic member at a predetermined timing. CONSTITUTION:A lift control cam 21 is formed at its outer periphery with a plurality of substantially flat cam surfaces so as to stepwise change a lift characteristic of suction and exhaust valves 2. A cam control shaft 26 to be rotated by a stepping motor 18 is inserted through a central portion of the lift control cam 21. A cylindrical stopper 27 is fixed to the cam control shaft 26. A cylindrical collar 28 is axially slidably mounted on the cam control shaft 26, and a compression coil spring 32 is interposed between the stopper 27 and the collar 28. One cylindrical portion 21b of the cam 21 is formed at its side wall with a recess 30a forming an inclined portion, and the collar 28 is provided at its side wall with a projection 31 projecting into the recess 30a. Thus, a spring force of the spring 32 is converted to a torque at the inclined portion 30a, thereby rotating the cam 21.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は吸・排気弁のリフト特性(開閉時期及びリフト
量)を機関運転状態に応じて可変制御する内燃機関の吸
・排気弁駆動装置に関する。
[Detailed Description of the Invention] <Industrial Application Fields> The present invention relates to an intake/exhaust valve drive device for an internal combustion engine that variably controls the lift characteristics (opening/closing timing and lift amount) of the intake/exhaust valves according to engine operating conditions. Regarding.

〈従来の技術) 内燃機関の吸・排気弁駆動装置の従来例として第8図及
び第9図に示すようなものがある(特開昭60−261
09号公報及び特願昭59−81052号参照)。
<Prior Art> As a conventional example of an intake/exhaust valve drive device for an internal combustion engine, there is one as shown in FIGS.
(See Publication No. 09 and Japanese Patent Application No. 59-81052).

即ち、機関回転に同期して回転する吸・排気弁駆動カム
1と、吸・排気弁2のステムエンドとに両端を当接させ
てロッカアーム3が設けられ、該ロッカアーム3の湾曲
形成された背面3aを支点接触させると共に、ロッカア
ーム3の両側壁から突出するシャフト3bを保持部材4
を介して凹溝5a内に保持するレバー5が設けられる。
That is, a rocker arm 3 is provided with both ends abutting an intake/exhaust valve drive cam 1 that rotates in synchronization with engine rotation and a stem end of the intake/exhaust valve 2, and a curved back surface of the rocker arm 3. 3a in fulcrum contact, and the shaft 3b protruding from both side walls of the rocker arm 3 with the holding member 4.
A lever 5 is provided which is held in the groove 5a via the lever 5a.

レバー5に形成されたスプリングシート5bと保持部材
4の間には、ロッカアーム3を下方向に付勢するバネ定
数小のスプリング6が介装される。
A spring 6 with a small spring constant is interposed between the spring seat 5b formed on the lever 5 and the holding member 4 to bias the rocker arm 3 downward.

又シリンダヘッド7に介装されたブラケット8に嵌挿保
持された油圧ピボット9の球状の下端面がレバー5の吸
・排気弁2ステムエンド側の他端部頂壁に形成された凹
陥部5Cに嵌合して、該嵌合部を中心としてレバー5を
揺動自由に支持すると共に、ブラケット8に対して後述
する如く回転自由に取付けられたリフト制御カム10が
レバー5の吸・排気弁駆動カム1側の端部頂壁に当接し
てレバー5の揺動位置を規制している。
Further, the spherical lower end surface of the hydraulic pivot 9, which is fitted and held by a bracket 8 interposed in the cylinder head 7, is in a concave portion 5C formed on the top wall of the other end of the lever 5 on the stem end side of the intake/exhaust valve 2. The lift control cam 10, which is fitted into the bracket 8 to freely swing and support the lever 5 around the fitting part, is connected to the intake/exhaust valve of the lever 5. The swinging position of the lever 5 is regulated by coming into contact with the top wall of the end portion on the drive cam 1 side.

前記油圧ピボット9は下端面が前記レバー5の凹陥部5
Cに嵌合すると共に周面がブラケット8に形成した取付
孔8a内に摺動自由に嵌挿された外筒9aと、該外筒9
a内に嵌挿される内筒9bとを備え、かつ、両者の間に
形成された油圧室9Cにチェックバルブ9dを備えて形
成される。そして、ブラケット8内部に形成された油圧
供給通路8bから内筒9b内部及びチェックバルブ9d
を介して油圧を油圧室9Cに供給してバルブクリアラン
スを一定に保つようになっている。
The hydraulic pivot 9 has a lower end surface that is connected to the concave portion 5 of the lever 5.
an outer cylinder 9a that fits into the bracket C and whose peripheral surface is slidably inserted into a mounting hole 8a formed in the bracket 8;
The hydraulic pressure chamber 9C is formed between the inner cylinder 9b and the inner cylinder 9b, which is inserted into the inner cylinder 9b, and a check valve 9d is provided in the hydraulic chamber 9C formed between the two. Then, from the hydraulic pressure supply passage 8b formed inside the bracket 8 to the inside of the inner cylinder 9b and the check valve 9d.
The valve clearance is kept constant by supplying hydraulic pressure to the hydraulic chamber 9C via the hydraulic pressure chamber 9C.

リフト制御カム10は中空状の支軸11にキー接続され
、支軸11の中空部は潤滑オイルの通路になっている。
The lift control cam 10 is keyed to a hollow support shaft 11, and the hollow portion of the support shaft 11 serves as a passage for lubricating oil.

前記支軸11は軸受12により回転自由に支持され、軸
受12は前記ブラケット8に取付けられている。前記支
軸11には第1ギア13が回転自由に取付けられ、この
第1ギヤ13の側部にはコイルスプリング14の一端が
係止されている。コイルスプリング14の他端は前記リ
フト制御カム10の側部に係止されている。
The support shaft 11 is rotatably supported by a bearing 12, and the bearing 12 is attached to the bracket 8. A first gear 13 is rotatably attached to the support shaft 11, and one end of a coil spring 14 is locked to the side of the first gear 13. The other end of the coil spring 14 is locked to the side of the lift control cam 10.

また、第1ギヤ13には第2ギヤ15が噛合され、この
第2ギヤ15はカム制御軸16に固定されている。
Further, a second gear 15 is meshed with the first gear 13, and this second gear 15 is fixed to a cam control shaft 16.

カム制御軸16は前記ブラケット8或いは軸受12に回
転自由に支持され、カム制御軸16の一端はコネクタ1
7を介してステッピングモータ18の回転軸に連結され
ている。ステッピングモータ18は制御回路19により
、機関回転数、絞り弁開度、冷却水温度、吸入空気流量
、吸入負圧等の機関運転条件に基づいて駆動され、カム
制御軸16を回転させるようになっている。尚、20は
バルブスプリング、20a、2Qbは夫々スナップリン
グである。
The cam control shaft 16 is rotatably supported by the bracket 8 or the bearing 12, and one end of the cam control shaft 16 is connected to the connector 1.
The rotating shaft of the stepping motor 18 is connected to the rotating shaft of the stepping motor 18 via the motor 7. The stepping motor 18 is driven by a control circuit 19 based on engine operating conditions such as engine speed, throttle valve opening, cooling water temperature, intake air flow rate, and intake negative pressure, and rotates the cam control shaft 16. ing. Note that 20 is a valve spring, and 20a and 2Qb are snap rings, respectively.

そして、リフト制御カム10が最もリフト量の大きいカ
ム面でレバー5に当接している状態では、レバー5が吸
・排気弁駆動カム1側に最も押し下げられた状態となる
。このため、ロッカアーム3の背面3aに支点接触され
るレバー5の下面も下がり、支点接触点Aが吸・排気弁
駆動カム1側に移動しつつ吸・排気弁2に伝達されリフ
ト量が大きく、かつ、開弁時期が早く閉弁時期が遅い特
性となる。
When the lift control cam 10 is in contact with the lever 5 at the cam surface with the largest lift amount, the lever 5 is pushed down the most toward the intake/exhaust valve drive cam 1 side. For this reason, the lower surface of the lever 5, which is in fulcrum contact with the back surface 3a of the rocker arm 3, is also lowered, and the fulcrum contact point A moves toward the intake/exhaust valve drive cam 1 side and is transmitted to the intake/exhaust valves 2, increasing the amount of lift. In addition, the valve opening timing is early and the valve closing timing is late.

一方、リフト制御カム10が回転し、例えば、リフト量
が小さいカム面でレバー5に当接するようにすると、レ
バー5の吸・排気弁駆動カム1側の端部は凹陥部5cを
支点とした揺動によって上昇し・吸・排気弁駆動カム1
がベースサークルでロッカアーム3に当接している状態
の支点の初期位置が、前記リフト量大のカム面でレバー
5が当接している時に比べて第8図で右側、即ちリフト
後に支点が移動する方向から遠ざかる側に移動する。
On the other hand, when the lift control cam 10 rotates and, for example, comes into contact with the lever 5 with a cam surface having a small lift amount, the end of the lever 5 on the intake/exhaust valve drive cam 1 side uses the concave portion 5c as a fulcrum. Intake/exhaust valve drive cam 1 that rises by rocking
The initial position of the fulcrum when it is in contact with the rocker arm 3 at the base circle is to the right in Fig. 8 compared to when the lever 5 is in contact with the cam surface with the large lift amount, that is, the fulcrum moves after the lift. Move away from the direction.

この結果、リフト量が小さく、かつ開弁時期が遅れ、閉
弁時期が早まる特性となる。
As a result, the lift amount is small, the valve opening timing is delayed, and the valve closing timing is advanced.

このようにして、リフト制御カム10を回動してカム面
のいずれかをレバー5に当接させることにより、吸・排
気弁2のリフト特性を段階的に変化させることができる
In this way, by rotating the lift control cam 10 and bringing either of the cam surfaces into contact with the lever 5, the lift characteristics of the intake/exhaust valves 2 can be changed in stages.

ここで、前記リフト制御カム10の回動は、ステッピン
グモータ18の駆動によりカム制御軸16.第2ギア1
5.第1ギア13及びコイルスプリング14を介して行
われる。即ち、前記制御回路19は、機関運転状態に応
じた信号に基づいて設定した駆動パルスをステッピング
モータ18に出力する。この駆動パルスは、ステッピン
グモータ18の回転軸を予め設定した角度だけ回動させ
、コネクタ17を介してカム制御軸16も回動する。
Here, the rotation of the lift control cam 10 is caused by the driving of the stepping motor 18 on the cam control shaft 16. 2nd gear 1
5. This is done via the first gear 13 and the coil spring 14. That is, the control circuit 19 outputs a drive pulse set to the stepping motor 18 based on a signal corresponding to the engine operating state. This drive pulse rotates the rotating shaft of the stepping motor 18 by a preset angle, and also rotates the cam control shaft 16 via the connector 17.

いま、カム制御軸16が回動するタイミングで、吸・排
気弁2がリフト中にある気筒においては、ロッカアーム
3とレバー5との接触支点が吸・排気弁駆動カム1側に
移動しているため、パルプスプリング20の大きな反力
がロッカアーム3.レバー5を介してリフト制御カム1
0に作用する。このため、リフト制御カム10は静止さ
れたまま、コイルスプリング14を捩りつつ、カム制御
軸16.第2ギア15及び第1ギア13が回転する。次
いで、吸・排気弁駆動カム1が回転して吸・排気弁2が
閉じた後は、ロッカアーム3とレバー5との接触支点は
、略吸・排気弁2の上方近くに位置するため、バルブス
プリング20の反力は、リフト制御カム10には作用せ
ず、リフト制御カム10に作用する力は、ロッカアーム
3とレバー5との間に取付けられたスプリング6の弱い
力のみとなる。したがって、吸・排気弁2のリフト中に
コイルスプリング14に貯えられた捩りトルクが前記ス
プリング6の弱い力に打ち勝って、リフト制御カム10
及び支軸11を回動させることができる。
Now, at the timing when the cam control shaft 16 rotates, the fulcrum of contact between the rocker arm 3 and the lever 5 is moving toward the intake/exhaust valve drive cam 1 in the cylinder where the intake/exhaust valve 2 is in lift. Therefore, a large reaction force of the pulp spring 20 is applied to the rocker arm 3. Lift control cam 1 via lever 5
Acts on 0. Therefore, while the lift control cam 10 remains stationary and twists the coil spring 14, the cam control shaft 16. The second gear 15 and the first gear 13 rotate. Next, after the intake/exhaust valve drive cam 1 rotates and the intake/exhaust valves 2 are closed, the contact fulcrum between the rocker arm 3 and the lever 5 is located approximately above the intake/exhaust valves 2. The reaction force of the spring 20 does not act on the lift control cam 10, and the only force acting on the lift control cam 10 is the weak force of the spring 6 attached between the rocker arm 3 and the lever 5. Therefore, the torsional torque stored in the coil spring 14 during the lift of the intake/exhaust valve 2 overcomes the weak force of the spring 6, and the lift control cam 10
And the support shaft 11 can be rotated.

(発明が解決しようとする問題点〉 しかしながら、このような従来の吸・排気弁駆動装置に
おいては、力、ム制御軸16の回動量をコイルスプリン
グ14の捩りトルクとして貯えた後、所定タイミングで
貯えられた捩りトルクによりリフト制御カム10を回動
させリフト特性を変化させ、かつリフト制御カム10を
第8図中時計方向と反時計方向とに回動させるようにし
ているので、コイルスプリング14はコイルの差込側と
巻戻し側とに交互に涙られるいわゆる両振りになってい
た。このため、コイルスプリング14の疲労強度が著し
く低下しコイルスプリング14を折損するおそれがあっ
た。
(Problems to be Solved by the Invention) However, in such a conventional intake/exhaust valve drive device, after the force and the amount of rotation of the control shaft 16 are stored as the torsional torque of the coil spring 14, the force is stored at a predetermined timing. The stored torsional torque rotates the lift control cam 10 to change the lift characteristics, and the lift control cam 10 is rotated clockwise and counterclockwise in FIG. 8, so that the coil spring 14 The coil spring 14 has a so-called double-sided structure in which the coil springs alternately tear on the insertion side and the unwinding side.As a result, the fatigue strength of the coil spring 14 is significantly reduced, and there is a risk that the coil spring 14 may break.

本発明は、このような実状に鑑みてなされたもので、所
定のタイミングでリフト制御カムを回動させリフト特性
を可変しつつスプリングの耐久性を向上させる内燃機関
の吸・排気弁駆動装置を提供することを目的とする。
The present invention was made in view of the above circumstances, and provides an intake/exhaust valve drive device for an internal combustion engine that rotates a lift control cam at a predetermined timing to vary the lift characteristics and improve the durability of the spring. The purpose is to provide.

(問題点を解決するための手段〉 このため、本発明は前記リフト制御カムのカム制御軸と
、該カム制御軸に固定されるストッパと、該ストッパと
所定間隔を設けて前記カム制御軸に該カム制御軸の軸方
向に移動自由に取付けられるカラーと、該カラーと前記
ストッパとに当接させて設けられる弾性部材と、前記カ
ラーとリフト制御カムとの一方に形成される突出部と、
前記カラーとリフト制御カムとの他方に形成され前記弾
性部材の拡開力により前記突出部に係合しかつ該係合面
が前記弾性体を圧縮すべく前記カラーを軸方向に移動さ
せるように傾斜する傾斜部と、前記カム制御軸を機関運
転状態に応じて所定量回転駆動する駆動手段と、を備え
るようにした。
(Means for Solving the Problems) Therefore, the present invention provides a cam control shaft of the lift control cam, a stopper fixed to the cam control shaft, and a stopper fixed to the cam control shaft with a predetermined spacing between the lift control cam and the cam control shaft. a collar mounted to be freely movable in the axial direction of the cam control shaft; an elastic member provided in contact with the collar and the stopper; and a protrusion formed on one of the collar and the lift control cam;
formed on the other of the collar and the lift control cam so as to engage the protrusion by the expansion force of the elastic member and move the collar in the axial direction so that the engagement surface compresses the elastic body; The engine is provided with an inclined portion that slopes, and a drive means that rotates the cam control shaft by a predetermined amount depending on the engine operating state.

〈作用〉 このようにして、原動側のカム制御軸の回動力を係合面
の傾斜により軸方向の力に変換してロック状態にあるリ
フト制御カムに連結された前記弾性体を圧縮した後所定
タイミングでロック状態を解放されたリフト制御カムを
前記弾性体の圧縮復元力を係合面の傾斜により変換され
た回動力により回動させリフト特性を変化させるように
した。
<Operation> In this way, the rotational force of the driving side cam control shaft is converted into an axial force by the inclination of the engagement surface, and the elastic body connected to the lift control cam in the locked state is compressed. The lift control cam, which is released from the locked state at a predetermined timing, is rotated by the rotational force converted from the compressive restoring force of the elastic body by the inclination of the engagement surface, thereby changing the lift characteristics.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。尚
、従来例と同一要素には第8図及び第9図と同一符号を
付して説明を省略する。
<Example> Below, an example of the present invention will be described based on the drawings. Incidentally, the same elements as in the conventional example are given the same reference numerals as in FIGS. 8 and 9, and the explanation thereof will be omitted.

第1図〜第4図は本発明の一実施例を示す。1 to 4 show one embodiment of the present invention.

図において、リフト制御カム21の外周面には従来例と
同様に吸・排気弁2のリフY特性を段階的に変化させる
ように略平らな複数のカム面が形成され、これらカム面
のいずれか一つがレバー5の吸・排気弁駆動カム1側の
端部頂壁に当接しレバー5の揺動位置を規制している。
In the figure, a plurality of substantially flat cam surfaces are formed on the outer circumferential surface of the lift control cam 21 so as to change the lift Y characteristics of the intake/exhaust valves 2 in stages, as in the conventional example. One of the two contacts the top wall of the end of the lever 5 on the side of the intake/exhaust valve drive cam 1 to restrict the swinging position of the lever 5.

前記リフト制御カム21の中心部には後述するカム制御
軸22が挿通される孔21aが形成されている。
A hole 21a is formed in the center of the lift control cam 21, into which a cam control shaft 22, which will be described later, is inserted.

また、リフト制御カム21の両側部には円筒部21b。Further, the lift control cam 21 has cylindrical portions 21b on both sides.

21cが突出形成され、これら円筒部21b、21Cは
第2図及び第3図に示すようにブラケット23に形成さ
れた下部円弧溝23aと、ブラケット23上にボルト2
4で締結された一対のキャップ25に形成された上部円
弧溝25aとの間に回動自由に夫々保持される。
21c is formed protrudingly, and these cylindrical parts 21b and 21C are connected to a lower circular groove 23a formed in the bracket 23 and a bolt 2 on the bracket 23, as shown in FIGS. 2 and 3.
The caps 25 are held freely rotatably between the upper arcuate grooves 25a formed in the pair of caps 25 that are fastened together.

そして、気筒数個設けたリフト制御カム21の中心部を
貫通して形成された孔21aには一本のカム制御軸26
が挿入されている。カム制御軸26に番よ円筒状のスト
ッパ27がビスにより緊締されている。
A cam control shaft 26 is inserted into the hole 21a formed through the center of the lift control cam 21 provided with several cylinders.
is inserted. A cylindrical stopper 27 is fastened to the cam control shaft 26 with a screw.

また、カム制御軸26には円筒状のカラー28が前記ス
トッパ27と所定間隔を有して第2図及び第5図に示す
ようにキー29によりカム制御軸26の軸方向に摺動自
由に取付けられている。
Further, a cylindrical collar 28 is provided on the cam control shaft 26 at a predetermined distance from the stopper 27, and can be freely slid in the axial direction of the cam control shaft 26 by means of a key 29, as shown in FIGS. 2 and 5. installed.

前記リフト制御カム21の一方の円筒部21b側壁には
第2図及び第3図に示すように傾斜部としての凹部30
a、30bが2ケ所形成されている。前記カラー28の
側壁には前記凹部3Qa、30bに夫々臨む一対の突出
部31が形成されている。前記ストッパ27とカラー2
8との間には弾性部材としての圧縮コイルスプリング3
2が介装され、圧縮コイルスプリング32の拡開力によ
り前記カラー28の突出部31を前記凹部30a、30
b内壁に押圧するようになっている。
The side wall of one cylindrical portion 21b of the lift control cam 21 is provided with a recess 30 as an inclined portion, as shown in FIGS. 2 and 3.
A and 30b are formed at two locations. A pair of protrusions 31 are formed on the side wall of the collar 28, facing the recesses 3Qa and 30b, respectively. The stopper 27 and the collar 2
8 is a compression coil spring 3 as an elastic member.
2 is interposed, and the expansion force of the compression coil spring 32 causes the protrusion 31 of the collar 28 to be pushed into the recesses 30a, 30.
b It is designed to be pressed against the inner wall.

前記凹部30a、30bの突出部31に接触する内壁は
第2図に示すように中央部から両側部に向かうにつれ突
出部31側に徐々に突出するように傾斜して形成されて
いる。
As shown in FIG. 2, the inner walls of the recesses 30a and 30b that come into contact with the protrusion 31 are formed to be inclined so as to gradually protrude toward the protrusion 31 from the center toward both sides.

前記カム制御軸26の一端は、コネクタ17を介して駆
動手段としてのステッピングモータ18の回動輪に連結
されている。ステッピングモータ18は制御回路19に
より、機関回転数、絞り弁開度、冷却水温度、吸入空気
流量、吸入負圧等の機関運転条件に基づいて駆動され、
カム制御軸26を回転させるようになっている。尚、3
3は、リフト制御カム21の移動を規制するストッパ、
23aは油圧供給通路である。
One end of the cam control shaft 26 is connected via a connector 17 to a rotating wheel of a stepping motor 18 serving as a driving means. The stepping motor 18 is driven by a control circuit 19 based on engine operating conditions such as engine speed, throttle valve opening, cooling water temperature, intake air flow rate, and intake negative pressure.
The cam control shaft 26 is rotated. In addition, 3
3 is a stopper that restricts movement of the lift control cam 21;
23a is a hydraulic pressure supply passage.

次に作用を説明する。Next, the effect will be explained.

レバー5とロッカアーム3の背面3aとの接触位置を変
えて吸・排気弁のリフト特性を変えるためにはリフト制
御カム21を回動させレバー5の吸・排気弁駆動カム1
側の高さを変化させる必要があるが、4気筒等の多気筒
内燃機関では常時いずれかの気筒の吸・排気弁が作動し
ている。このため、各気筒に設けられたリフト制御カム
21のいずれかにはバルブスプリング20の強大な反力
が作用しているので、バルブスプリング20の反力の小
さな吸・排気弁2の閉弁時に、小さな制御力でリフト制
御カム21を回動させる“ようにしている。
In order to change the contact position between the lever 5 and the back surface 3a of the rocker arm 3 to change the lift characteristics of the intake/exhaust valves, the lift control cam 21 is rotated and the intake/exhaust valve drive cam 1 of the lever 5 is rotated.
Although it is necessary to change the side height, in a multi-cylinder internal combustion engine such as a four-cylinder engine, the intake and exhaust valves of one of the cylinders are always in operation. For this reason, a strong reaction force of the valve spring 20 acts on one of the lift control cams 21 provided in each cylinder, so when the intake/exhaust valve 2 is closed, the reaction force of the valve spring 20 is small. , the lift control cam 21 is rotated with a small control force.

すなわち、機関回転数、絞り弁開度、冷却水温度、吸入
空気流量、吸入負圧等の機関運転条件に基づく制御回路
19からの信号によりステッピングモータ18が駆動さ
れ、カム制御軸26が回動される。
That is, the stepping motor 18 is driven by a signal from the control circuit 19 based on engine operating conditions such as engine speed, throttle valve opening, cooling water temperature, intake air flow rate, and intake negative pressure, and the cam control shaft 26 is rotated. be done.

カム制御軸26の回動と共にカラー28も回動されるが
、カラー28に形成された突出部31が当接する凹部3
0a、30bが傾斜されているので、凹部30a。
The collar 28 is also rotated with the rotation of the cam control shaft 26, and the recess 3 that the protrusion 31 formed on the collar 28 comes into contact with
Since 0a and 30b are inclined, the recessed portion 30a.

30bの反力によりカラー28は第6図に示すようにキ
ー29に沿ってカム制御軸26の軸方向(第6図中下方
)に移動する。これにより、圧縮コイルスプリング32
が圧縮される。したがって、圧縮コイルスプリング32
の拡開力によりカラー28の突出部31が凹部30a、
30b内壁を第6図中上方に押圧するため、この押圧力
によりリフト制御カム21が回動されようとする。尚、
第2図中における凹部30a。
Due to the reaction force of 30b, the collar 28 moves in the axial direction of the cam control shaft 26 (downward in FIG. 6) along the key 29, as shown in FIG. As a result, the compression coil spring 32
is compressed. Therefore, the compression coil spring 32
Due to the expanding force of
Since the inner wall 30b is pressed upward in FIG. 6, the lift control cam 21 tends to be rotated by this pressing force. still,
Recessed portion 30a in FIG.

30bと突出部31との係合状態は圧縮コイルスプリン
グ32がほとんど圧縮されない状態である。
The engagement state between 30b and the protrusion 31 is a state in which the compression coil spring 32 is hardly compressed.

上記期間中は吸・排気弁2が開弁動作中であるため、バ
ルブスプリング20の反力が大きくリフト制御カム21
は回動されることなく静止状態に維持される。
During the above period, the intake and exhaust valves 2 are in the opening operation, so the reaction force of the valve spring 20 is large and the lift control cam 21
remains stationary without being rotated.

そして、吸・排気弁2の閉弁時期に近づくとバルブスプ
リング20の反力が弱まるため、前記圧縮コイルスプリ
ング32の拡開力にて発生する突出部31の押圧力によ
りリフト制御カム21が回動され、もって吸・排気弁2
のバルブ特性を変化させることができる。
Then, as the closing timing of the intake/exhaust valve 2 approaches, the reaction force of the valve spring 20 weakens, so the lift control cam 21 is rotated by the pressing force of the protrusion 31 generated by the expansion force of the compression coil spring 32. The intake/exhaust valve 2
The valve characteristics can be changed.

以上説明したように、圧縮コイルスプリング32を圧縮
させ圧縮力を係合面の傾斜により回動力に変換させてリ
フト制御カム21を回動させるようにしたので、従来の
コイルスプリングに較べ相反転する方向の捩り回転によ
る疲労が解消されるため圧縮コイルスプリング32の折
損等を防止でき耐久性を向上できる。
As explained above, since the compression coil spring 32 is compressed and the compression force is converted into rotational force by the inclination of the engagement surface, and the lift control cam 21 is rotated, the rotational force is reversed compared to the conventional coil spring. Since fatigue caused by torsional rotation in the direction is eliminated, breakage of the compression coil spring 32 can be prevented and durability can be improved.

また、従来例における支軸11とカム制御軸16とを一
体化してカム制御軸26を形成したので、第1及び第2
ギヤ13.15等が不要となり装置の小型化を図れる。
Furthermore, since the support shaft 11 and the cam control shaft 16 in the conventional example are integrated to form the cam control shaft 26, the first and second
Gears 13, 15, etc. are not required, and the device can be made smaller.

第7図は本発明の他の実施例を示す。FIG. 7 shows another embodiment of the invention.

本実施例は、吸・排気弁2のリフitを増加させる方向
にリフト制御カム21を回動させるときにはリフト制御
カム21の回動力が大きくなる一方、吸・排気弁2のリ
フト量を減少させる方向にリフト制御カム21を回動さ
せるときにはリフト制御カム21の回動力が小さくなる
ために提案されたものである。
In this embodiment, when the lift control cam 21 is rotated in the direction of increasing the lift of the intake/exhaust valve 2, the rotational force of the lift control cam 21 increases, while the amount of lift of the intake/exhaust valve 2 is decreased. This was proposed because the rotational force of the lift control cam 21 becomes smaller when the lift control cam 21 is rotated in the direction.

即ち、リフト制御カム21の円筒部21b側部に凹部3
5を前記実施例と同様に2ケ所形成する。そして、リフ
ト制御カム21を吸・排気弁2のリフト量を増加させる
ように回動する方向に対してはカラー28の突出部31
に接触する凹部35内壁を第7図に示すように中央部か
ら一側部に向かうにつれ突出部31側に急激に突出する
ように急傾斜部35aに形成する。一方、吸・排気弁2
のリフト量を減少させるようにリフト制御カム21を回
動する方向に対しては前記凹部35内壁を第7図に示す
ように中央部から他側部に向かうにつれ突出部31側に
緩やかに突出するように緩傾斜部35bを形成する。
That is, the recess 3 is formed on the side of the cylindrical portion 21b of the lift control cam 21.
5 are formed at two locations in the same manner as in the previous embodiment. In the direction in which the lift control cam 21 is rotated to increase the lift amount of the intake/exhaust valve 2, the protrusion 31 of the collar 28
As shown in FIG. 7, the inner wall of the recess 35 that comes into contact with the inner wall of the recess 35 is formed into a steep slope 35a so as to protrude rapidly toward the protrusion 31 from the center toward one side. On the other hand, intake/exhaust valve 2
In the direction in which the lift control cam 21 is rotated to reduce the lift amount, the inner wall of the recess 35 gently protrudes toward the protrusion 31 from the center toward the other side, as shown in FIG. The gently sloped portion 35b is formed so as to.

かかる構成によれば、前記実施例と同様な効果を奏する
他、吸・排気弁2のリフトtを増加する方向にリフト制
御カム21を回動させるときには急傾斜部35aにより
カラー28が軸方向に太き(移動されるため圧縮コイル
スプリング32の圧縮力が大きくなる。したがって、圧
縮コイルスプリング32の拡開力が大となる。
According to this configuration, in addition to producing the same effects as in the embodiment described above, when the lift control cam 21 is rotated in the direction of increasing the lift t of the intake/exhaust valve 2, the collar 28 is moved in the axial direction by the steeply inclined portion 35a. The compressive force of the compression coil spring 32 becomes large because it is moved thickly. Therefore, the expansion force of the compression coil spring 32 becomes large.

また、吸・排気弁2のリフト量を減少させるようにリフ
ト制御カム21を回動させるときには緩傾斜部35bに
よりカラー28が軸方向に移動されるためその移動力が
小さく圧縮コイルスプリング32の圧縮力が小さくなり
その拡開力が小さくなる。
Furthermore, when the lift control cam 21 is rotated to reduce the lift amount of the intake/exhaust valve 2, the collar 28 is moved in the axial direction by the gently inclined portion 35b, so that the moving force is small and the compression coil spring 32 is compressed. The force becomes smaller, and the spreading force becomes smaller.

これらの結果、前述したリフト制御カム2Iの回動力に
対応させることができる。
As a result, it is possible to correspond to the rotational force of the lift control cam 2I mentioned above.

尚、各実施例とは逆に凹部をカラー側に設ける一方、突
出部をリフト制御カム側に設けてもよい。  −〈発明
の効果〉 本発明は、以上説明したように、リフト制御カムのカム
制御軸の回動力により弾性部材を圧縮させてこの圧縮力
によりリフト制御カムを回動させるようにしたので、装
置の小型化を図りつつ弾性部材の疲労強度を向上させる
ことができ、弾性部材の耐久性を図ることができる。
In addition, contrary to each embodiment, the concave portion may be provided on the collar side, while the protrusion portion may be provided on the lift control cam side. - <Effects of the Invention> As explained above, the present invention compresses the elastic member by the rotational force of the cam control shaft of the lift control cam, and the lift control cam is rotated by this compression force. The fatigue strength of the elastic member can be improved while reducing the size of the elastic member, and the durability of the elastic member can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は同上
の平面図、第3図は同上の要部斜視図、第4図は第2図
のIV−IV矢視図、第5図は同上の要部分解図、第6
図は同上の作用を説明するための図、第7図は本発明の
他の実施例を示す要部平面図、第8図は内燃機関の吸・
排気弁駆動装置の従来例を示す断面図、第9図は同上の
平面図である。 ■・・・吸・排気弁駆動カム  2・・・吸・排気弁3
・・・ロッカアーム  3a・・・背面  5・・・レ
バーI8・・・ステンピングモータ  19・・・′#
JI jHH路21・・・リフト制御カム  21a・
・・孔  22・・・カム制御軸  27・・・ストッ
パ  28・・・カラー  30a。 30b、35・・・凹部  31・・・突出部  32
・・・圧縮コイルスプリング 特許出願人  日産自動車株式会社 代理人 弁理士 笹 島  富二雄 1・・・吸・排気弁駆動カム 2・・・吸・排気弁 3・・・ロッカアーム 3a・・・背面 21a・・・孔 22・・・カム制御軸 第1図 第3図 第4図 第9図
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a plan view of the same, FIG. 3 is a perspective view of essential parts of the same, FIG. 4 is a view taken along the line IV-IV in FIG. Figure 5 is an exploded view of the main parts of the same as above, Figure 6
7 is a plan view of a main part showing another embodiment of the present invention, and FIG.
FIG. 9 is a sectional view showing a conventional example of an exhaust valve drive device, and FIG. 9 is a plan view of the same. ■...Suction/exhaust valve drive cam 2...Suction/exhaust valve 3
...Rocker arm 3a...Back 5...Lever I8...Stemping motor 19...'#
JI jHH road 21... Lift control cam 21a.
... Hole 22 ... Cam control shaft 27 ... Stopper 28 ... Collar 30a. 30b, 35... recess 31... protrusion 32
... Compression coil spring patent applicant Nissan Motor Co., Ltd. agent Patent attorney Fujio Sasashima 1... Intake/exhaust valve drive cam 2... Intake/exhaust valve 3... Rocker arm 3a... Back side 21a... ... Hole 22 ... Cam control shaft Fig. 1 Fig. 3 Fig. 4 Fig. 9

Claims (1)

【特許請求の範囲】[Claims] 吸・排気弁駆動カムと吸・排気弁に係合するロッカアー
ムの背面を、該背面に沿って機関本体に揺動自由に取付
けられたレバーに支点接触させ、該レバーの一端部に係
合させたリフト制御カムの回動量を制御して前記レバー
と前記ロッカアームの背面とが接触する支点位置を変化
させ、吸・排気弁のリフト特性を可変制御するようにし
た内燃機関の吸・排気弁駆動装置において、前記リフト
制御カムのカム制御軸と、該カム制御軸に固定されるス
トッパと、該ストッパと所定間隔を設けて前記カム制御
軸に該カム制御軸の軸方向に移動自由に取付けられるカ
ラーと、該カラーと前記ストッパとに当接させて設けら
れる弾性部材と、前記カラーとリフト制御カムとの一方
に形成される突出部と、前記カラーとリフト制御カムと
の他方に形成され前記弾性部材の拡開力により前記突出
部に係合しかつ該係合面が前記弾性体を圧縮すべく前記
カラーを軸方向に移動させるように傾斜する傾斜部と、
前記カム制御軸を機関運転状態に応じて所定量回転駆動
する駆動手段と、を備えたことを特徴とする内燃機関の
吸・排気弁駆動装置。
The back side of the rocker arm that engages the intake/exhaust valve drive cam and the intake/exhaust valve is brought into fulcrum contact with a lever that is swingably attached to the engine body along the back side, and is engaged with one end of the lever. An intake/exhaust valve drive for an internal combustion engine in which lift characteristics of the intake/exhaust valves are variably controlled by controlling the amount of rotation of a lift control cam to change the fulcrum position where the lever and the back surface of the rocker arm contact each other. In the device, a cam control shaft of the lift control cam, a stopper fixed to the cam control shaft, and a stopper attached to the cam control shaft with a predetermined distance from the stopper so as to be movable in the axial direction of the cam control shaft. a collar, an elastic member provided in contact with the collar and the stopper, a protrusion formed on one of the collar and the lift control cam, and a protrusion formed on the other of the collar and the lift control cam. an inclined part that engages with the protrusion by the expansion force of the elastic member and is inclined so that the engagement surface moves the collar in the axial direction to compress the elastic body;
An intake/exhaust valve drive device for an internal combustion engine, comprising: drive means for rotationally driving the cam control shaft by a predetermined amount depending on an engine operating state.
JP19786A 1986-01-07 1986-01-07 Intake and exhaust valve driving device for internal combustion engine Granted JPS62159710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19786A JPS62159710A (en) 1986-01-07 1986-01-07 Intake and exhaust valve driving device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19786A JPS62159710A (en) 1986-01-07 1986-01-07 Intake and exhaust valve driving device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62159710A true JPS62159710A (en) 1987-07-15
JPH0585725B2 JPH0585725B2 (en) 1993-12-08

Family

ID=11467264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19786A Granted JPS62159710A (en) 1986-01-07 1986-01-07 Intake and exhaust valve driving device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62159710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085133A (en) * 2007-10-01 2009-04-23 Denso Corp Actuator of valve lift control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085133A (en) * 2007-10-01 2009-04-23 Denso Corp Actuator of valve lift control device

Also Published As

Publication number Publication date
JPH0585725B2 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
JPS6226562Y2 (en)
EP1101017B1 (en) Desmodromic cam driven variable valve timing mechanism
JP2003035111A (en) Internal combustion engine
US5601056A (en) Device for actuating the valves in internal combustion engines by means of revolving cams
JP4084542B2 (en) Variable valve mechanism
JPS62159710A (en) Intake and exhaust valve driving device for internal combustion engine
JP4622431B2 (en) Variable valve gear for engine
JP2000213315A (en) Variable valve system for internal combustion engine
JP3330635B2 (en) Variable engine valve timing device
JP3330640B2 (en) Variable engine valve timing device
JP3996238B2 (en) Intake / exhaust valve control device and control method for internal combustion engine
JP3386236B2 (en) Intake and exhaust valve drive control device for internal combustion engine
US7284515B2 (en) Variable valve apparatus of internal combustion engine
JP3383988B2 (en) Variable lift valve
JP4063623B2 (en) Variable valve mechanism
JP2002242626A (en) Variable valve system of internal combustion engine
JPS62214207A (en) Tappet controller for internal combustion engine
KR970000748B1 (en) Variable timing type valve driving apparatus for internal combustion engine
JP4051179B2 (en) Variable valve mechanism
JP4010879B2 (en) Variable valve mechanism
JP2004340106A (en) Variable valve system in internal combustion engine
JPS6131125Y2 (en)
JPH0545762Y2 (en)
JP3143272B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP4251359B2 (en) Valve mechanism for a 4-cycle internal combustion engine