JPH0585725B2 - - Google Patents

Info

Publication number
JPH0585725B2
JPH0585725B2 JP19786A JP19786A JPH0585725B2 JP H0585725 B2 JPH0585725 B2 JP H0585725B2 JP 19786 A JP19786 A JP 19786A JP 19786 A JP19786 A JP 19786A JP H0585725 B2 JPH0585725 B2 JP H0585725B2
Authority
JP
Japan
Prior art keywords
cam
intake
lift
collar
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19786A
Other languages
Japanese (ja)
Other versions
JPS62159710A (en
Inventor
Seinosuke Hara
Hiromichi Bito
Yasuo Matsumoto
Manabu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19786A priority Critical patent/JPS62159710A/en
Publication of JPS62159710A publication Critical patent/JPS62159710A/en
Publication of JPH0585725B2 publication Critical patent/JPH0585725B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は吸・排気弁のリフト特性(開閉時期及
びリフト量)を機関運転状態に応じて可変制御す
る内燃機関の吸・排気弁駆動装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an intake/exhaust valve drive device for an internal combustion engine that variably controls the lift characteristics (opening/closing timing and lift amount) of intake/exhaust valves according to engine operating conditions. Regarding.

〈従来の技術〉 内燃機関の吸・排気弁駆動装置の従来例として
第8図及び第9図に示すようなものがある。(特
開昭60−26109号公報及び特願昭59−81052号参
照)。
<Prior Art> Conventional examples of intake/exhaust valve drive devices for internal combustion engines include those shown in FIGS. 8 and 9. (Refer to Japanese Patent Application Laid-Open No. 60-26109 and Japanese Patent Application No. 81052-1982).

即ち、機関回転に同期して回転する吸・排気弁
駆動カム1と、吸・排気弁2のステムエンドとに
両端を当接させてロツカアーム3が設けられ、該
ロツカアーム3の湾曲形成された背面3aを支点
接触させると共に、ロツカアーム3の両側壁から
突出するシヤフト3bを保持部材4を介して凹溝
5a内に保持するレバー5が設けられる。レバー
5に形成されたスプリングシート5bと保持部材
4の間には、ロツカアーム3を下方向に付勢する
バネ定数小のスプリング6が介装される。
That is, a rocker arm 3 is provided with both ends in contact with an intake/exhaust valve driving cam 1 that rotates in synchronization with engine rotation and a stem end of the intake/exhaust valve 2, and a curved rear surface of the rocker arm 3 is provided. A lever 5 is provided that brings the shaft 3a into fulcrum contact and holds the shaft 3b protruding from both side walls of the rocker arm 3 in the groove 5a via the holding member 4. A spring 6 with a small spring constant is interposed between the spring seat 5b formed on the lever 5 and the holding member 4 to bias the rocker arm 3 downward.

又シリンダヘツド7に介装されたブラケツト8
に嵌挿保持された油圧ピボツト9の球状の下端面
がレバー5の吸・排気弁2ステムエンド側の他端
部頂壁に形成された凹陥部5cに嵌合して、該嵌
合部を中心としてレバー5を揺動自由に支持する
と共に、ブラケツト8に対して後述する如く回転
自由に取付けられたリフト制御カム10がレバー
5の吸・排気弁駆動カム1側の端部頂壁に当接し
てレバー5の揺動位置を規制している。
Also, a bracket 8 interposed in the cylinder head 7
The spherical lower end surface of the hydraulic pivot 9 fitted and held in the lever 5 fits into the recessed part 5c formed in the top wall of the other end on the stem end side of the intake/exhaust valve 2, and the fitting part is opened. A lift control cam 10, which supports the lever 5 at its center so that it can freely swing and is rotatably attached to the bracket 8 as described later, touches the top wall of the end of the lever 5 on the side of the intake/exhaust valve drive cam 1. The swing position of the lever 5 is regulated by contacting the lever 5.

前記油圧ピボツト9は下端面が前記レバー5の
凹陥部5cに嵌合すると共に周面がブラケツト8
に形成した取付孔8a内に摺動自由に嵌挿された
外筒9aと、該外筒9a内に嵌挿される内筒9b
とを備え、かつ、両者の間に形成された油圧室9
cにチエツクバルブ9dを備えて形成される。そ
して、ブラケツト8内部に形成された油圧供給通
路8bから内筒9b内部及びチエツクバルブ9d
を介して油圧を油圧室9cに供給してバルブクリ
アランスを一定に保つようになつている。
The hydraulic pivot 9 has a lower end surface that fits into the concave portion 5c of the lever 5, and a peripheral surface that fits into the bracket 8.
An outer cylinder 9a that is slidably inserted into a mounting hole 8a formed in the outer cylinder 9a, and an inner cylinder 9b that is fitted into the outer cylinder 9a.
and a hydraulic chamber 9 formed between the two.
c is provided with a check valve 9d. Then, from the hydraulic pressure supply passage 8b formed inside the bracket 8 to the inside of the inner cylinder 9b and the check valve 9d.
The valve clearance is kept constant by supplying hydraulic pressure to the hydraulic chamber 9c through the hydraulic pressure chamber 9c.

リフト制御カム10は中空状の支軸11にキー
接続され、支軸11の中空部は潤滑オイルの通路
になつている。前記支軸11は軸受12により回
転自由に支持され、軸受12は前記ブラケツト8
に取付けられている。前記支軸11には第1ギア
13が回転自由に取付けられ、この第1ギヤ13
の側部にはコイルスプリング14の一端が係止さ
れている。コイルスプリング14の他端は前記リ
フト制御カム10の側部に係止されている。
The lift control cam 10 is keyed to a hollow support shaft 11, and the hollow portion of the support shaft 11 serves as a passage for lubricating oil. The support shaft 11 is rotatably supported by a bearing 12, and the bearing 12 is supported by the bracket 8.
installed on. A first gear 13 is rotatably attached to the support shaft 11, and the first gear 13
One end of a coil spring 14 is locked to the side of the coil spring 14. The other end of the coil spring 14 is locked to the side of the lift control cam 10.

また、第1ギヤ13には第2ギヤ15が噛合さ
れ、この第2ギヤ15はカム制御軸16に固定さ
れている。カム制御軸16は前記ブラケツト8或
いは軸受12に回転自由に支持され、カム制御軸
16の一端はコネクタ17を介してステツピング
モータ18の回転軸に連結されている。ステツピ
ングモータ18は制御回路19により、機関回転
数、絞り弁開度、冷却水温度、吸入空気流量、吸
入負圧等の機関運転条件に基づいて駆動され、カ
ム制御軸16を回転させるようになつている。
尚、20はバルブスプリング、20a,20bは
夫々スナツプリングである。
Further, a second gear 15 is meshed with the first gear 13, and this second gear 15 is fixed to a cam control shaft 16. The cam control shaft 16 is rotatably supported by the bracket 8 or the bearing 12, and one end of the cam control shaft 16 is connected to the rotating shaft of a stepping motor 18 via a connector 17. The stepping motor 18 is driven by a control circuit 19 based on engine operating conditions such as engine speed, throttle valve opening, cooling water temperature, intake air flow rate, and intake negative pressure, so as to rotate the cam control shaft 16. It's summery.
In addition, 20 is a valve spring, and 20a and 20b are respective snap springs.

そして、リフト制御カム10が最もリフト量の
大きいカム面でレバー5に当接している状態で
は、レバー5が吸・排気弁駆動カム1側に最も押
し下げられた状態となる。このため、ロツカアー
ム3の背面3aに支点接触されるレバー5の下面
も下がり、支点接触点Aが吸・排気弁駆動カム1
側に移動しつつ吸・排気弁2に伝達されリフト量
が大きく、かつ、開弁時期が早く閉弁時期が遅い
特性となる。
When the lift control cam 10 is in contact with the lever 5 at the cam surface with the largest lift amount, the lever 5 is pushed down the most toward the intake/exhaust valve drive cam 1 side. Therefore, the lower surface of the lever 5, which is in fulcrum contact with the back surface 3a of the rocker arm 3, also lowers, and the fulcrum contact point A is brought into contact with the intake/exhaust valve drive cam 1.
It is transmitted to the intake/exhaust valve 2 while moving to the side, and the lift amount is large, and the valve opening timing is early and the valve closing timing is late.

一方、リフト制御カム1が回転し、例えば、リ
フト量が小さいカム面でレバー5に当接するよう
にすると、レバー5の吸・排気弁駆動カム1側の
端部は凹陥部5cを支点とした揺動によつて上昇
し、吸・排気弁駆動カム1がベースサークルでロ
ツカアーム3に当接している状態の支点の初期位
置が、前記リフト量大のカム面でレバー5が当接
している時に比べて第8図で右側、即ちリフト後
に支点が移動する方向から遠ざかる側に移動す
る。この結果、リフト量が小さく、かつ開弁時期
が遅れ、閉弁時期が早まる特性となる。
On the other hand, when the lift control cam 1 rotates and, for example, comes into contact with the lever 5 with a cam surface having a small lift amount, the end of the lever 5 on the intake/exhaust valve drive cam 1 side uses the concave portion 5c as a fulcrum. The initial position of the fulcrum, which is raised by rocking and in which the intake/exhaust valve driving cam 1 is in contact with the rocker arm 3 at the base circle, is when the lever 5 is in contact with the cam surface with the large lift amount. In comparison, it moves to the right in FIG. 8, that is, to the side away from the direction in which the fulcrum moves after the lift. As a result, the lift amount is small, the valve opening timing is delayed, and the valve closing timing is advanced.

このようにして、リフト制御カム10を回動し
てカム面のいずれかをレバー5に当接させること
により、吸・排気弁2のリフト特性を段階的に変
化させることができる。
In this way, by rotating the lift control cam 10 and bringing either of the cam surfaces into contact with the lever 5, the lift characteristics of the intake/exhaust valves 2 can be changed in stages.

ここで、前記リフト制御カム10の回動は、ス
テツピングモータ18の駆動によりカム制御軸1
6、第2ギア15、第1ギア13及びコイルスプ
リング14を介して行われる。即ち、前記制御回
路19は、機関運転状態に応じた信号に基づけて
設定した駆動パルスをステツピングモータ18に
出力する。この駆動パルスは、ステツピングモー
タ18の回転軸を予め設定した角度だけ回動さ
せ、コネクタ17を介してカム制御軸16も回動
する。
Here, the rotation of the lift control cam 10 is caused by driving the cam control shaft 18 by the stepping motor 18.
6, through the second gear 15, the first gear 13, and the coil spring 14. That is, the control circuit 19 outputs a drive pulse to the stepping motor 18, which is set based on a signal corresponding to the engine operating state. This drive pulse rotates the rotating shaft of the stepping motor 18 by a preset angle, and also rotates the cam control shaft 16 via the connector 17.

いま、カム制御軸16が回動するタイミング
で、吸・排気弁2がリフト中にある気筒において
は、ロツカアーム3とレバー5との接触支点が
吸・排気弁駆動カム1側に移動しているため、バ
ルブスプリング20の大きな反力がロツカアーム
3、レバー5を介してリフト制御カム10に作用
する。このため、リフト制御カム10は静止され
たまま、コイルスプリング14を捩りつ、カム制
御軸16、第2ギア15及び第1ギア13が回転
する。次いで、吸・排気弁駆動カム1が回転して
吸・排気弁2が閉じた後は、ロツカアーム3とレ
バー5との接触支点は、略吸・排気弁2の上方近
くに位置するため、バルブスプリング20の反力
は、リフト制御カム10には作用せず、リフト制
御カム10に作用する力は、ロツカアーム3とレ
バー5との間に取付けられたスプリング6の弱い
力のみとなる。したがつて、吸・排気弁2のリフ
ト中にコイルスプリング14に貯えられた捩りト
ルクが前記スプリング6の弱い力に打ち勝つて、
リフト制御カム10及び支軸11を回動させるこ
とができる。
Now, at the timing when the cam control shaft 16 rotates, in the cylinder where the intake/exhaust valve 2 is in lift, the contact fulcrum between the rocker arm 3 and the lever 5 is moving toward the intake/exhaust valve drive cam 1 side. Therefore, a large reaction force of the valve spring 20 acts on the lift control cam 10 via the rocker arm 3 and lever 5. Therefore, while the lift control cam 10 remains stationary, the cam control shaft 16, second gear 15, and first gear 13 rotate while twisting the coil spring 14. Next, after the intake/exhaust valve drive cam 1 rotates and the intake/exhaust valves 2 are closed, the contact fulcrum between the rocker arm 3 and the lever 5 is located approximately above the intake/exhaust valves 2. The reaction force of the spring 20 does not act on the lift control cam 10, and the only force acting on the lift control cam 10 is the weak force of the spring 6 attached between the rocker arm 3 and the lever 5. Therefore, the torsional torque stored in the coil spring 14 during the lift of the intake/exhaust valve 2 overcomes the weak force of the spring 6,
The lift control cam 10 and the support shaft 11 can be rotated.

〈発明が解決しようとする問題点〉 しかしながら、このような従来の吸・排気弁駆
動装置においては、カム制御軸16の回動量をコ
イルスプリング14の捩りトルクとして貯えた
後、所定タイミングで貯えられた捩りトルクによ
りリフト制御カム10を回動させリフト特性を変
化させ、かつリフト制御カム10を第8図中時計
方向と反時計方向とに回動させるようにしている
ので、コイルスプリング14はコイルの差込側と
巻戻し側とに交互に捩られるいわゆる両振りにな
つていた。このため、コイルスプリング14の疲
労強度が著しく低下しコイルスプリング14を折
損するおそれがあつた。
<Problems to be Solved by the Invention> However, in such a conventional intake/exhaust valve drive device, after the amount of rotation of the cam control shaft 16 is stored as the torsional torque of the coil spring 14, the amount of rotation is stored at a predetermined timing. The lift control cam 10 is rotated by torsional torque to change the lift characteristics, and the lift control cam 10 is rotated clockwise and counterclockwise in FIG. It was twisted alternately on the insertion side and the rewind side, so-called double-sided. For this reason, the fatigue strength of the coil spring 14 was significantly reduced, and there was a risk that the coil spring 14 would break.

本発明は、このような実状に鑑みてなされたも
ので、所定のタイミングでリフト制御カムを回動
させリフト特性を可変しつつスプリングの耐久性
を向上させる内燃機関の吸・排気弁駆動装置を提
供することを目的とする。
The present invention was made in view of the above circumstances, and provides an intake/exhaust valve drive device for an internal combustion engine that rotates a lift control cam at a predetermined timing to vary the lift characteristics and improve the durability of the spring. The purpose is to provide.

〈問題点を解決するための手段〉 このため、本発明は前記リフト制御カムのカム
制御軸と、該カム制御軸に固定されるストツパ
と、該ストツパと所定間隔を設けて前記カム制御
軸に該カム制御軸の軸方向に移動自由に取付けら
れるカラーと、該カラーと前記ストツパとに当接
させて設けられる弾性部材と、前記カラーとリフ
ト制御カムとの一方に形成される突出部と、前記
カラーとリフト制御カムとの他方に形成された前
記弾性部材の拡開力により前記突出部に係合しか
つ該係合面が前記弾性体を圧縮すべく前記カラー
を軸方向に移動させるように傾斜する傾斜部と、
前記カム制御軸を機関運転態に応じて所定量回転
駆動する駆動手段と、を備えるようにした。
<Means for Solving the Problems> For this reason, the present invention provides a cam control shaft of the lift control cam, a stopper fixed to the cam control shaft, and a stopper fixed to the cam control shaft at a predetermined distance from the stopper. a collar mounted to be freely movable in the axial direction of the cam control shaft; an elastic member provided in contact with the collar and the stopper; and a protrusion formed on one of the collar and the lift control cam; The elastic member formed on the other of the collar and the lift control cam engages with the protrusion by an expanding force, and the engagement surface moves the collar in the axial direction to compress the elastic body. an inclined part inclined to;
A drive means for rotationally driving the cam control shaft by a predetermined amount depending on the engine operating condition is provided.

〈作用〉 このようにして、原動側のカム制御軸の回動力
を係合面の傾斜により軸方向の力に変換してロツ
ク状態にあるリフト制御カムに連結された前記弾
性体を圧縮した後所定タイミングでロツク状態を
解放されたリフト制御カムを前記弾性体の圧縮復
元力を係合面の傾斜により変換された回動力によ
り回動させリフト特性を変化させるようにした。
<Operation> In this way, the rotational force of the drive-side cam control shaft is converted into axial force by the inclination of the engagement surface, and the elastic body connected to the lift control cam in the locked state is compressed. The lift control cam, which is released from the locked state at a predetermined timing, is rotated by the rotational force converted from the compressive restoring force of the elastic body by the inclination of the engagement surface, thereby changing the lift characteristics.

〈実施例〉 以下に、本発明の実施例を図面に基づいて説明
する。尚、従来例と同一要素には第8図及び第9
図と同一符号を付して説明を省略する。
<Example> Below, an example of the present invention will be described based on the drawings. Note that the same elements as the conventional example are shown in Figures 8 and 9.
The same reference numerals as those in the figure are used to omit the explanation.

第1図〜第4図は本発明の一実施例を示す。 1 to 4 show an embodiment of the present invention.

図において、リフト制御カム21の外周面には
従来例と同様に吸・排気弁2のリフト特性を段階
的に変化させるように略平らな複数のカム面が形
成され、これらカム面のいずれか一つがレバー5
の吸・排気弁駆動カム1側の端部頂壁に当接しレ
バー5の揺動位置を規制している。
In the figure, a plurality of substantially flat cam surfaces are formed on the outer circumferential surface of the lift control cam 21 so as to change the lift characteristics of the intake/exhaust valves 2 in stages, as in the conventional example. One is lever 5
The lever 5 contacts the top wall of the end on the intake/exhaust valve drive cam 1 side to regulate the swinging position of the lever 5.

前記リフト制御カム21の中心部には後述する
カム制御軸22が挿通される孔21aが形成され
ている。また、リフト制御カム21の両側部には
円筒部21b,21cが突出形成され、これら円
筒部21b,21cは第2図及び第3図に示すよ
うにブラケツト23に形成された下部円弧溝23
aと、ブラケツト23上にボルト24で締結され
た一対のキヤツプ25に形成された上部円弧溝2
5aとの間に回動自由に夫々保持される。
A hole 21a is formed in the center of the lift control cam 21, into which a cam control shaft 22, which will be described later, is inserted. Furthermore, cylindrical portions 21b and 21c are formed protruding from both sides of the lift control cam 21, and these cylindrical portions 21b and 21c are connected to a lower arcuate groove 23 formed in a bracket 23, as shown in FIGS.
a, and an upper arcuate groove 2 formed in a pair of caps 25 fastened to the bracket 23 with bolts 24.
5a, and are each held rotatably.

そして、気筒数個設けたリフト制御カム21の
中心部を貫通して形成された孔21aには一本の
カム制御軸26が挿入されている。カム制御軸2
6には円筒状のストツパ27がビスにより緊締さ
れている。また、カム制御軸26には円筒状のカ
ラー28が前記ストツパ27と所定間隔を有して
第2図及び第5図に示すようにキー29によりカ
ム制御軸26の軸方向に摺動自由に取付けられて
いる。
A cam control shaft 26 is inserted into a hole 21a formed through the center of the lift control cams 21 provided in several cylinders. Cam control axis 2
6 has a cylindrical stopper 27 tightened with a screw. Further, a cylindrical collar 28 is provided on the cam control shaft 26 at a predetermined distance from the stopper 27, and is freely slidable in the axial direction of the cam control shaft 26 by means of a key 29, as shown in FIGS. 2 and 5. installed.

前記リフト制御カム21の一方の円筒部21b
側壁には第2図及び第3図に示すように傾斜部と
しての凹部30a,30bが2ケ所形成されてい
る。前記カラー28の側壁には前記凹部30a,
30bに夫々臨む一対の突出部31が形成されて
いる。前記ストツパ27とカラー28との間には
弾性部材としての圧縮コイルスプリング32が介
装され、圧縮コイルスプリング32の拡開力によ
り前記カラー28の突出部31を前記凹部30
a,30b内壁に押圧するようになつている。
One cylindrical portion 21b of the lift control cam 21
As shown in FIGS. 2 and 3, two recessed portions 30a and 30b are formed as inclined portions on the side wall. The side wall of the collar 28 has the recess 30a,
A pair of protrusions 31 are formed respectively facing 30b. A compression coil spring 32 as an elastic member is interposed between the stopper 27 and the collar 28, and the expansion force of the compression coil spring 32 causes the protrusion 31 of the collar 28 to be pushed into the recess 30.
a, 30b are pressed against the inner walls.

前記凹部30a,30bの突出部31に接触す
る内壁は第2図に示すように中央部から両側部に
向かうにつれ突出部31側に徐々に突出するよう
に傾斜して形成されている。
As shown in FIG. 2, the inner walls of the recesses 30a and 30b that come into contact with the protrusion 31 are formed to be inclined so as to gradually protrude toward the protrusion 31 from the center toward both sides.

前記カム制御軸26の一端は、コネクタ17を
介して駆動手段としてのステツピングモータ18
の回動軸に連結されている。ステツピングモータ
18は制御回路19により、機関回転数、絞り弁
開度、冷却水温度、吸入空気流量、吸入負圧等の
機関運転条件に基づいて駆動され、カム制御軸2
6を回転させるようになつている。尚、33は、
リフト制御カム21の移動を規制するストツパで
ある。
One end of the cam control shaft 26 is connected to a stepping motor 18 as a driving means via a connector 17.
It is connected to the rotating shaft of. The stepping motor 18 is driven by a control circuit 19 based on engine operating conditions such as engine speed, throttle valve opening, cooling water temperature, intake air flow rate, and intake negative pressure.
It is designed to rotate 6. In addition, 33 is
This is a stopper that restricts the movement of the lift control cam 21.

次に作用を説明する。 Next, the action will be explained.

レバー5とロツカアーム3の背面3aとの接触
位置を変えて吸・排気弁のリフト特性を変えるた
めにはリフト制御カム21を回動させレバー5の
吸・排気弁駆動カム1側の高さを変化させる必要
があるが、4気筒等の多気筒内燃機関では常時い
ずれかの気筒の吸・排気弁が作動している。この
ため、各気筒に設けられたリフト制御カム21の
いずれかにはバルプスプリング20の強大な反力
が作用しているので、バルブスプリング20の反
力の小さな吸・排気弁2の閉弁時に、小さな制御
力でリフト制御カム21を回動させるようにして
いる。
In order to change the lift characteristics of the intake/exhaust valves by changing the contact position between the lever 5 and the back surface 3a of the rocker arm 3, the lift control cam 21 is rotated to change the height of the lever 5 on the intake/exhaust valve drive cam 1 side. Although it needs to be changed, in a multi-cylinder internal combustion engine such as a four-cylinder engine, the intake and exhaust valves of one of the cylinders are always operating. Therefore, a strong reaction force of the valve spring 20 acts on one of the lift control cams 21 provided in each cylinder, so when the intake/exhaust valve 2 with a small reaction force of the valve spring 20 is closed, , the lift control cam 21 is rotated with a small control force.

すなわち、機関回転数、絞り弁開度、冷却水温
度、吸入空気流量、吸入負圧等の機関運転条件に
基づく制御回路19からの信号によりステツピン
グモータ18が駆動され、カム制御軸26が回動
される。
That is, the stepping motor 18 is driven by a signal from the control circuit 19 based on engine operating conditions such as engine speed, throttle valve opening, cooling water temperature, intake air flow rate, and intake negative pressure, and the cam control shaft 26 is rotated. be moved.

カム制御軸26の回動と共にカラー28も回動
されるが、カラー28に形成された突出部31が
当接する凹部30a,30bが傾斜されているの
で、凹部30a,30bの反力によりカラー28
は第6図に示すようにキー29に沿つてカム制御
軸26の軸方向(第6図中下方)に移動する。こ
れにより、圧縮コイルスプリング32が圧縮され
る。したがつて、圧縮コイルスプリング32の拡
開力によりカラー28の突出部31が凹部30
a,30b内壁を第6図中上方に押圧するため、
この押圧力によりリフト制御カム21が回動され
ようとする。尚、第2図中における凹部30a,
30bと突出部31との係合状態は圧縮コイルス
プリング32がほとんど圧縮されない状態であ
る。
The collar 28 is also rotated with the rotation of the cam control shaft 26, but since the recesses 30a and 30b that the protrusion 31 formed on the collar 28 abuts are inclined, the reaction force of the recesses 30a and 30b causes the collar 28 to rotate.
moves in the axial direction of the cam control shaft 26 (downward in FIG. 6) along the key 29, as shown in FIG. As a result, the compression coil spring 32 is compressed. Therefore, the expansion force of the compression coil spring 32 causes the protrusion 31 of the collar 28 to move into the recess 30.
In order to press the inner walls a and 30b upward in FIG.
This pressing force tends to rotate the lift control cam 21. Note that the recesses 30a in FIG.
The engagement state between 30b and the protrusion 31 is a state in which the compression coil spring 32 is hardly compressed.

上記期間中は吸・排気弁2が開弁動作中である
ため、バルブスプリング20の反力が大きくリフ
ト制御カム21は回動されることなく静止状態に
維持される。
During the above period, since the intake/exhaust valves 2 are in the opening operation, the reaction force of the valve spring 20 is large and the lift control cam 21 is maintained in a stationary state without being rotated.

そして、吸・排気弁2の閉弁時期に近づくとバ
ルブスプリング20の反力が弱まるため、前記圧
縮コイルスプリング32の拡開力にて発生する突
出部31の押圧力によりリフト制御カム21が回
動され、もつて吸・排気弁2のバルブ特性を変化
させることができる。
Then, as the closing timing of the intake/exhaust valve 2 approaches, the reaction force of the valve spring 20 weakens, so the lift control cam 21 is rotated by the pressing force of the protrusion 31 generated by the expansion force of the compression coil spring 32. The valve characteristics of the intake/exhaust valve 2 can be changed by moving the intake/exhaust valve 2.

以上説明したように、圧縮コイルスプリング3
2を圧縮させ圧縮力を係合面の傾斜により回動力
に変換させてリフト制御カム21を回動させるよ
うにしたので、従来のコイルスプリングに較べ相
反転する方向の捩り回転による疲労が解消される
ため圧縮コイルスプリング32の折損等を防止で
き耐久性を向上できる。
As explained above, compression coil spring 3
2 is compressed and the compression force is converted into rotational force by the inclination of the engagement surface to rotate the lift control cam 21. Compared to conventional coil springs, fatigue caused by torsional rotation in the opposite direction is eliminated. Therefore, breakage of the compression coil spring 32 can be prevented and durability can be improved.

また、従来例における支軸11とカム制御軸1
6とを一体化してカム制御軸26を形成したの
で、第1及び第2ギヤ13,15等が不要となり
装置の小型化を図れる。
In addition, the support shaft 11 and the cam control shaft 1 in the conventional example
6 is integrated to form the cam control shaft 26, the first and second gears 13, 15, etc. are unnecessary, and the device can be made more compact.

第7図は本発明の他の実施例を示す。 FIG. 7 shows another embodiment of the invention.

本実施例は、吸・排気弁2のリフト量を増加さ
せる方向にリフト制御カム21を回動させるとき
にはリフト制御カム21の回動力が大きくなる一
方、吸・排気弁2のリフト量を減少させる方向に
リフト制御カム21を回動させるときにはリフト
制御カム21の回動力が小さくなるために提案さ
れたものである。
In this embodiment, when the lift control cam 21 is rotated in the direction of increasing the lift amount of the intake/exhaust valves 2, the rotational force of the lift control cam 21 increases, while the lift amount of the intake/exhaust valves 2 is decreased. This was proposed because the rotational force of the lift control cam 21 becomes smaller when the lift control cam 21 is rotated in the direction.

即ち、リフト制御カム21の円筒部21b側部
に凹部35を前記実施例と同様に2ケ所形成す
る。そして、リフト制御カム21を吸・排気弁2
のリフト量を増加させるように回動する方向に対
してはカラー28の突出部31に接触する凹部3
5内壁を第7図に示すように中央部から一側部に
向かうにつれ突出部31に急激に突出するように
急傾斜部35aに形成する。一方、吸・排気弁2
のリフト量を減少させるようにリフト制御カム2
1を回動する方向に対しては前記凹部35内壁を
第7図に示すように中央部から他側部に向かうに
つれ突出部31側に緩やかに突出するように緩傾
斜部35bを形成する。
That is, two recesses 35 are formed on the side of the cylindrical portion 21b of the lift control cam 21, as in the previous embodiment. Then, the lift control cam 21 is connected to the intake/exhaust valve 2.
The recess 3 that contacts the protrusion 31 of the collar 28 in the direction of rotation to increase the amount of lift of the collar 28
As shown in FIG. 7, the inner wall 5 is formed into a steeply inclined part 35a so as to sharply protrude into the protruding part 31 from the center toward one side. On the other hand, intake/exhaust valve 2
lift control cam 2 to reduce the lift amount of
As shown in FIG. 7, the inner wall of the recess 35 is formed with a gentle slope 35b so as to gently protrude toward the protrusion 31 from the center toward the other side.

かかる構成によれば、前記実施例と同様な効果
を奏する他、吸・排気弁2のリフト量を増加する
方向にリフト制御カム21を回動させるときには
急傾斜部35aによりカラー28が軸方向に大き
く移動されるため圧縮コイルスプリング32の圧
縮力が大きくなる。したがつて、圧縮コイルスプ
リング32の拡開力が大となる。
According to this configuration, in addition to producing the same effects as in the embodiment described above, when the lift control cam 21 is rotated in a direction to increase the lift amount of the intake/exhaust valve 2, the collar 28 is moved in the axial direction by the steeply inclined portion 35a. Since it is moved largely, the compression force of the compression coil spring 32 becomes large. Therefore, the expansion force of the compression coil spring 32 becomes large.

また、吸・排気弁2のリフト量を減少させるよ
うにリフト制御カム21を回動させるときには緩
傾斜部35bによりカラー28が軸方向に移動さ
れるためその移動力が小さく圧縮コイルスプリン
グ32の圧縮力が小さくなりその拡開力が小さく
なる。
Further, when the lift control cam 21 is rotated to reduce the lift amount of the intake/exhaust valve 2, the collar 28 is moved in the axial direction by the gently inclined portion 35b, so that the moving force is small and the compression coil spring 32 is compressed. The force becomes smaller, and the spreading force becomes smaller.

これらの結果、前述したリフト制御カム21の
回動力に対応させることができる。
As a result, it is possible to correspond to the rotational force of the lift control cam 21 described above.

尚、各実施例とは逆に凹部をカラー側に設ける
一方、突出部をリフト制御カム側に設けてもよ
い。
In addition, contrary to each embodiment, the concave portion may be provided on the collar side, while the protrusion portion may be provided on the lift control cam side.

〈発明の効果〉 本発明は、以上説明したように、リフト制御カ
ムのカム制御軸の回動力により弾性部材を圧縮さ
せてこの圧縮力によりリフト制御カムを回動させ
るようにしたので、装置の小型化を図りつつ弾性
部材の疲労強度を向上させることができ、弾性部
材の耐久性を図ることができる。
<Effects of the Invention> As explained above, the present invention compresses the elastic member by the rotational force of the cam control shaft of the lift control cam, and the lift control cam is rotated by this compression force. The fatigue strength of the elastic member can be improved while reducing the size, and the durability of the elastic member can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2
図は同上の平面図、第3図は同上の要部斜視図、
第4図は第2図の−矢視図、第5図は同上の
要部分解図、第6図は同上の作用を説明するため
の図、第7図は本発明の他の実施例を示す要部平
面図、第8図は内燃機関の吸・排気弁駆動装置の
従来例を示す断面図、第9図は同上の平面図であ
る。 1…吸・排気弁駆動カム、2…吸・排気弁、3
…ロツカアーム、3a…背面、5…レバー、18
…ステツピングモータ、19…制御回路、21…
リフト制御カム、21a…孔、22…カム制御
軸、27…ストツパ、28…カラー、30a,3
0b,35…凹部、31…突出部、32…圧縮コ
イルスプリング。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG.
The figure is a plan view of the same as above, Figure 3 is a perspective view of the main part of the same as above,
4 is a view taken along the - arrow in FIG. 2, FIG. 5 is an exploded view of the main parts of the same, FIG. 6 is a diagram for explaining the operation of the same, and FIG. 7 is a view showing another embodiment of the present invention. 8 is a sectional view showing a conventional example of an intake/exhaust valve drive device for an internal combustion engine, and FIG. 9 is a plan view of the same. 1... Intake/exhaust valve drive cam, 2... Intake/exhaust valve, 3
...Lotsuka arm, 3a...back, 5...lever, 18
...Stepping motor, 19...Control circuit, 21...
Lift control cam, 21a... hole, 22... cam control shaft, 27... stopper, 28... collar, 30a, 3
0b, 35... recess, 31... protrusion, 32... compression coil spring.

Claims (1)

【特許請求の範囲】[Claims] 1 吸・排気弁駆動カムと吸・排気弁に係合する
ロツカアームの背面を、該背面に沿つて機関本体
に揺動自由に取付けられたレバーに支点接触さ
せ、該レバーの一端部に係合させたリフト制御カ
ムの回動量を制御して前記レバーと前記ロツカア
ームの背面とが接触する支点位置を変化させ、
吸・排気弁のリフト特性を可変制御するようにし
た内燃機関の吸・排気弁駆動装置において、前記
リフト制御カムのカム制御軸と、該カム制御軸に
固定されるストツパと、該ストツパと所定間隔を
設けて前記カム制御軸に該カム制御軸の軸方向に
移動自由に取付けられるカラーと、該カラーと前
記ストツパとに当接させて設けられる弾性部材
と、前記カラーとリフト制御カムとの一方に形成
される突出部と、前記カラーとリフト制御カムと
の他方に形成され前記弾性部材の拡開力により前
記突出部に係合しかつ該係合面が前記弾性体を圧
縮すべく前記カラーを軸方向に移動させるように
傾斜する傾斜部と、前記カム制御軸を機関運転状
態に応じて所定量回転駆動する駆動手段と、を備
えたことを特徴とする内燃機関の吸・排気弁駆動
装置。
1. Bring the back side of the rocker arm that engages the intake/exhaust valve drive cam and the intake/exhaust valve into fulcrum contact with a lever that is swingably attached to the engine body along the back side, and engage one end of the lever. controlling the amount of rotation of the lift control cam so as to change the fulcrum position where the lever and the back surface of the rocker arm come into contact;
In an internal combustion engine intake/exhaust valve drive device configured to variably control the lift characteristics of the intake/exhaust valves, a cam control shaft of the lift control cam, a stopper fixed to the cam control shaft, and a stopper fixed to the stopper and a predetermined a collar attached to the cam control shaft with a space therebetween so as to be freely movable in the axial direction of the cam control shaft; an elastic member provided in contact with the collar and the stopper; and a link between the collar and the lift control cam. a protrusion formed on one side, and a protrusion formed on the other of the collar and lift control cam that engages with the protrusion due to the expansion force of the elastic member, and the engagement surface compresses the elastic body. An intake/exhaust valve for an internal combustion engine, comprising an inclined part that is inclined so as to move a collar in the axial direction, and a driving means that rotates the cam control shaft by a predetermined amount depending on the engine operating state. Drive device.
JP19786A 1986-01-07 1986-01-07 Intake and exhaust valve driving device for internal combustion engine Granted JPS62159710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19786A JPS62159710A (en) 1986-01-07 1986-01-07 Intake and exhaust valve driving device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19786A JPS62159710A (en) 1986-01-07 1986-01-07 Intake and exhaust valve driving device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62159710A JPS62159710A (en) 1987-07-15
JPH0585725B2 true JPH0585725B2 (en) 1993-12-08

Family

ID=11467264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19786A Granted JPS62159710A (en) 1986-01-07 1986-01-07 Intake and exhaust valve driving device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62159710A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900173B2 (en) * 2007-10-01 2012-03-21 株式会社デンソー Actuator of valve lift control device

Also Published As

Publication number Publication date
JPS62159710A (en) 1987-07-15

Similar Documents

Publication Publication Date Title
EP1101017B1 (en) Desmodromic cam driven variable valve timing mechanism
JP2003035111A (en) Internal combustion engine
US20010037781A1 (en) Variable valve mechanism having an eccentric-driven frame
JP4697011B2 (en) Variable valve mechanism
JP4063622B2 (en) Variable valve mechanism
JP4469341B2 (en) Variable valve mechanism
JP4084542B2 (en) Variable valve mechanism
JP4507997B2 (en) Variable valve operating device for internal combustion engine
JPH0585725B2 (en)
JP4622431B2 (en) Variable valve gear for engine
JP3968184B2 (en) Variable valve operating device for internal combustion engine
JP4031973B2 (en) Variable valve operating device for internal combustion engine
JP4063623B2 (en) Variable valve mechanism
JP4225294B2 (en) Variable valve operating device for internal combustion engine
KR970000748B1 (en) Variable timing type valve driving apparatus for internal combustion engine
JP4367317B2 (en) Variable valve operating device for internal combustion engine
JPH0545762Y2 (en)
JPH0326246Y2 (en)
JPS62218608A (en) Control device for tappet of internal combustion engine
JP2003206714A (en) Variable valve unit
JPS6139049Y2 (en)
JPH05340226A (en) Variable lift valve
JP4180012B2 (en) Variable valve operating device for internal combustion engine
JPH0218247Y2 (en)
JPH0672525B2 (en) Valve drive controller for internal combustion engine