JPS6215822B2 - - Google Patents

Info

Publication number
JPS6215822B2
JPS6215822B2 JP52152691A JP15269177A JPS6215822B2 JP S6215822 B2 JPS6215822 B2 JP S6215822B2 JP 52152691 A JP52152691 A JP 52152691A JP 15269177 A JP15269177 A JP 15269177A JP S6215822 B2 JPS6215822 B2 JP S6215822B2
Authority
JP
Japan
Prior art keywords
slit
spectroscopic crystal
rays
ray source
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52152691A
Other languages
Japanese (ja)
Other versions
JPS5484794A (en
Inventor
Shojiro Tagata
Ichiro Ando
Kazuyasu Kawabe
Masaki Saito
Toshiaki Myokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP15269177A priority Critical patent/JPS5484794A/en
Publication of JPS5484794A publication Critical patent/JPS5484794A/en
Publication of JPS6215822B2 publication Critical patent/JPS6215822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • G01N23/2076Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions for spectrometry, i.e. using an analysing crystal, e.g. for measuring X-ray fluorescence spectrum of a sample with wavelength-dispersion, i.e. WDXFS

Description

【発明の詳細な説明】 本発明はX線マイクロアナライザー等に使用さ
れるX線分光器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray spectrometer used in an X-ray microanalyzer or the like.

斯種装置に使用されるX線分光器としてはX線
強度を高めるために第1図aで示すようにX線源
1から放出されるX線Xをローランド円2の直径
の曲率半径をもつ分光結晶3にて分光せしめるこ
とにより分光されたX線を検出器4に集束させる
構造のもの(ヨハン型)が従来広く使用されてい
る。尚前記X線源1、分光結晶3及びX線検出器
4はローランド円2上に配置されている。又分光
結晶3に対するX線の入射角(ブラツク角)は分
光結晶が駆動棒5により直線状に移動することに
より変化する。しかして斯様なX線分光装置にお
いては分光結晶の入射側に固定スリツト6を配置
することにより入射X線の開口角をある程度以下
に制限し、バツクグラウンドノイズの原因となる
散乱X線等の分光結晶への入射を減少させてい
る。
In order to increase the intensity of X-rays, the X-ray spectrometer used in this type of device is designed so that the X-rays X emitted from the X-ray source 1 have a radius of curvature equal to the diameter of the Rowland circle 2, as shown in Figure 1a. Conventionally, a structure (Johann type) in which X-rays separated by spectroscopic crystal 3 are focused on detector 4 has been widely used. Note that the X-ray source 1, spectroscopic crystal 3, and X-ray detector 4 are arranged on the Rowland circle 2. Further, the angle of incidence (black angle) of the X-rays on the spectroscopic crystal 3 changes as the spectroscopic crystal is moved linearly by the drive rod 5. However, in such an X-ray spectrometer, by arranging a fixed slit 6 on the incident side of the spectroscopic crystal, the aperture angle of the incident X-rays is limited to a certain degree or less, and scattered X-rays, etc., which cause background noise, are suppressed. It reduces the incidence on the spectroscopic crystal.

この場合、固定スリツト6の開口は次のように
して定められている。先ず、第1図aのローラン
ド円面内でX線源1が分光結晶3を見込む角は
分光結晶3がローランド円上に張る円周角と等し
く、分光結晶に入射するX線のブラツク角を変化
させるために同図中一点鎖線aで示すように分光
結晶を移動させても、概略一定となるので、その
角でX線源1を見込むように固定スリツト6の
幅hが固定される。また、第1図bは第1図aに
対して垂直な方向における分光結晶3、X線源
1、スリツト6との関係を示しているが、この図
において、X線源1がローランド円面に垂直な方
向の分光結晶3の幅Wを見込む角φは、分光結晶
3とX線源1との距離によつて変化する。このた
め固定スリツトのスリツト幅Wは、分光結晶3が
X線源1に機構的に最も近付づいた時にも分光結
晶の全面にX線が入射するような幅に固定され
る。
In this case, the opening of the fixed slit 6 is determined as follows. First, the angle at which the X-ray source 1 looks at the spectroscopic crystal 3 within the Rowland circle shown in Figure 1a is equal to the circumferential angle that the spectrometer crystal 3 spans on the Rowland circle, and the Black angle of the X-rays incident on the spectrometer crystal is Even if the spectroscopic crystal is moved as shown by the dashed-dotted line a in the figure in order to change the angle, it remains approximately constant, so the width h of the fixed slit 6 is fixed so that the X-ray source 1 can be seen at that corner. Furthermore, FIG. 1b shows the relationship among the spectroscopic crystal 3, the X-ray source 1, and the slit 6 in the direction perpendicular to FIG. The angle φ that takes into account the width W of the spectroscopic crystal 3 in the direction perpendicular to the spectroscopic crystal 3 changes depending on the distance between the spectroscopic crystal 3 and the X-ray source 1. Therefore, the slit width W of the fixed slit is fixed to such a width that X-rays are incident on the entire surface of the spectroscopic crystal even when the spectroscopic crystal 3 is mechanically closest to the X-ray source 1.

ところで、強いX線強度を得るためにローラン
ド円面に平行な方向の分光結晶の幅を伸ばし、開
口角を大きくして行くと、このときヨハン型の
分光結晶においては開口角の大きさによる収差が
存在するため、始めは分光されるX線強度は増加
するが、ある程度以上のの値についてはそれ以
上を大きくしても殆んどX線強度は増加しなく
なり、しかも波長分解能、S/N比等が急速に低
下してしまう。従つて開口角にはその最適値
pptが存在する。又このpptは分光結晶の各位置
において一定とはならず、第2図中イで示すよう
に分光結晶がX線源に近づくにつれて減少するこ
とが実験により判明した。尚第2図のグラフにお
いて縦軸は最適開口角を、又横軸はX線源と分光
結晶との距離を夫々示し、Rはローランド円の半
径を示すものである。
By the way, when increasing the width of the spectroscopic crystal in the direction parallel to the Roland circular surface and increasing the aperture angle in order to obtain strong X-ray intensity, the Johann-type spectroscopic crystal suffers from aberrations due to the size of the aperture angle. Because of the presence of The ratio etc. will drop rapidly. Therefore, the aperture angle has its optimum value.
ppt exists. Moreover, it has been found through experiments that this ppt is not constant at each position of the spectroscopic crystal, but decreases as the spectroscopic crystal approaches the X-ray source, as shown by A in FIG. In the graph of FIG. 2, the vertical axis represents the optimum aperture angle, the horizontal axis represents the distance between the X-ray source and the spectroscopic crystal, and R represents the radius of the Rowland circle.

一方、第1図bでその状態を示すようにローラ
ンド円面に垂直な方向においても、入射するX線
に対して最適な開口角pptが存在し、又この開
口角pptは分光結晶の各位置において異なり、
第2図中ロで示すようにローランド円面に平行な
方向の開口角pptに対して略逆の変化を示すこ
とが実験により確認された。
On the other hand, as shown in Figure 1b, there is an optimal aperture angle ppt for incident X-rays even in the direction perpendicular to the Rowland circle, and this aperture angle ppt is different for each position of the spectroscopic crystal. differ in
It was confirmed through experiments that the aperture angle PPT exhibits a substantially opposite change in the direction parallel to the Rowland circular surface, as shown by B in FIG.

しかるに従来装置においては分光結晶に入射す
るX線の開口角ppt、φpptの値が分光結晶の位
置、つまりX線源と分光結晶との距離により変化
することを考慮に入れず、前述した様に固定スリ
ツトを使用しているので開口角及びφは一定で
ある。そのため入射X線の開口角及びφがpp
及びφpptより小さくなるような分光結晶の位置
においては信号強度が下がり、又逆に大きくなる
ような分光結晶の位置においては開口角の大きさ
に基づく収差により検出器には目的とする元素の
特性X線以外に近接する他の元素の特性X線や連
続X線が入射するので、波長分解能が低下し、バ
ツクグランドノイズが増大する欠点がある。
However, conventional devices do not take into account that the values of the aperture angle ppt and φ ppt of the X-rays incident on the spectroscopic crystal change depending on the position of the spectroscopic crystal, that is, the distance between the X-ray source and the spectroscopic crystal, and as described above. Since a fixed slit is used in the opening, the opening angle and φ are constant. Therefore, the aperture angle and φ of the incident X-ray are pp
At the position of the spectroscopic crystal where the signal intensity becomes smaller than t and φ ppt , the signal intensity decreases, and conversely, at the position of the spectrometer crystal where it becomes larger, the detector cannot detect the target element due to aberrations based on the size of the aperture angle. In addition to the characteristic X-rays, characteristic X-rays of other nearby elements and continuous X-rays are incident, resulting in a disadvantage that the wavelength resolution decreases and background noise increases.

本発明は斯様な不都合を解決するもので、以下
図面に基づき詳説する。
The present invention is intended to solve such inconveniences, and will be explained in detail below with reference to the drawings.

尚第1図と同一番号は同一構成要素を示す。 Note that the same numbers as in FIG. 1 indicate the same components.

第3図は本発明の一実施例を示す構成略図、第
4図は第3図のA―A断面図であり、7a及び7
bは互いに対向しておかれた二枚のスリツト板で
ある。該スリツト板は第1図aで示すX線源1に
接近して配置され、ローランド円面に平行な方向
における分光結晶3への入射X線の開口角を制
御するためのものである。又該両スリツト板は上
下におかれた案内板8a及び8bによつて平行移
動可能に保持されている。9a及び9bは前記ス
リツト板7a,7b上に互いに対向しておかれた
2枚のスリツト板で、該スリツト板9a,9bは
他方のスリツト板7a,7bに対して直交する方
向に配置され、ローランド円面に垂直な方向にお
ける分光結晶3への入射X線の開口角φを制御す
るためのものである。該スリツト板は左方におか
れた案内体10にアリ及びアリ溝(図示せず)を
介して平行移動可能に保持されている。前記スリ
ツト板7a及び7bには軸11a及び11bを介
して2枚のL字型の腕木12a,12b及び12
c,12dが夫々回転自在に取付られている。こ
れらの腕木は全て等しい寸法で形成され、しかも
各軸に取付けられた2枚の腕木は夫々の内側が互
いに対向するように配置されている。又該腕木の
内12aと12c及び12bと12dの他端は
夫々軸13a及び13bを介して前記スリツト9
a及び9bに回動可能に取付けられている。14
は前記スリツト板9aと9bとの間におかれるカ
ムで、該カムは第4図に示すように前記案内板1
0を回転可能に貫通した回転軸15に固定されて
いる。該回転軸15の他端には歯車16が固定さ
れ、この歯車は中間歯車17及び歯車18を介し
て駆動棒5に連結されている。該駆動棒5は第1
図で述べたように分光結晶3を直線状に移動さ
せ、入射X線のブラツク角を変化させる。19は
前記スリツト板9aと9bとの間に張架したスプ
リングで、両スリツト板を前記カム14に常に当
接させるためのものである。
FIG. 3 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 4 is a sectional view taken along line AA in FIG.
b are two slit plates facing each other. The slit plate is placed close to the X-ray source 1 shown in FIG. 1a, and is used to control the aperture angle of the X-rays incident on the spectroscopic crystal 3 in a direction parallel to the Rowland circular surface. Further, both the slit plates are held so as to be able to move in parallel by guide plates 8a and 8b placed above and below. 9a and 9b are two slit plates placed opposite each other on the slit plates 7a and 7b, and the slit plates 9a and 9b are arranged in a direction perpendicular to the other slit plate 7a and 7b, This is for controlling the aperture angle φ of the incident X-rays on the spectroscopic crystal 3 in the direction perpendicular to the Rowland circular surface. The slit plate is held by a guide member 10 placed on the left side through a dovetail and a dovetail groove (not shown) so as to be able to move in parallel. Two L-shaped arms 12a, 12b and 12 are connected to the slit plates 7a and 7b via shafts 11a and 11b.
c and 12d are each rotatably attached. These arms are all formed with equal dimensions, and the two arms attached to each shaft are arranged so that their inner sides face each other. The other ends of the arms 12a and 12c and 12b and 12d are connected to the slit 9 through shafts 13a and 13b, respectively.
It is rotatably attached to a and 9b. 14
is a cam placed between the slit plates 9a and 9b, and the cam is placed between the guide plate 1 as shown in FIG.
0 is fixed to a rotating shaft 15 that rotatably passes through the shaft. A gear 16 is fixed to the other end of the rotating shaft 15, and this gear is connected to the drive rod 5 via an intermediate gear 17 and a gear 18. The drive rod 5 is the first
As described in the figure, the spectroscopic crystal 3 is moved linearly to change the black angle of incident X-rays. A spring 19 is stretched between the slit plates 9a and 9b, and is used to keep both slit plates in constant contact with the cam 14.

しかして今、カム14を回転させてスリツト板
9aと9bとを互いに離間させると、腕木12
a,12c及び12b,12dの軸13aと13
b部分が同様に離間されるため、腕木の他端にお
ける軸11aと11bとは互いに引きよせられる
ので、該軸11a及び11bを夫々固定したスリ
ツト板7aと7bとが互いに接近する。逆にスリ
ツト板9aと9bとを互いに接近させると腕木1
2a,12b及び12c,12dの軸11aと1
1b部分とが前述とは逆の方向に移動し、スリツ
ト板7a,7bとは互いに離間する。つまりスリ
ツト板7a,7bと9a,9bとはカム14の回
転によりスリツト巾が互いに逆に変化するように
構成されている。従つてカム14の形状を適当に
選定することによりスリツト板7a,7bと9
a,9bにおけるスリツト巾、つまり開口角と
φとを第2図で示す曲線に略対応させて変化させ
ることができる。そこでカム14を第4図で示す
ように駆動棒5に連結させ、分光結晶3とX線源
1との距離が大きくなるにつれて、開口角は大
きくし、開口角φは小さくするようにすれば、近
似的に第2図に示した開口角ppt及びφpptを分
光結晶の位置に応じて得ることができる。
However, when the cam 14 is rotated to separate the slit plates 9a and 9b from each other, the arm 12
a, 12c and 12b, 12d axes 13a and 13
Since the portion b is similarly spaced apart, the shafts 11a and 11b at the other end of the arm are drawn toward each other, so that the slit plates 7a and 7b to which the shafts 11a and 11b are fixed, respectively, approach each other. Conversely, when the slit plates 9a and 9b are brought close to each other, the arm 1
2a, 12b and 12c, 12d axes 11a and 1
1b portion moves in the opposite direction to that described above, and the slit plates 7a and 7b are separated from each other. In other words, the slit plates 7a, 7b and 9a, 9b are constructed such that the slit widths of the slit plates 7a, 7b and 9a, 9b change inversely to each other as the cam 14 rotates. Therefore, by appropriately selecting the shape of the cam 14, the slit plates 7a, 7b and 9
The slit widths at a and 9b, that is, the aperture angle and φ can be changed approximately corresponding to the curve shown in FIG. Therefore, the cam 14 is connected to the drive rod 5 as shown in FIG. 4, and as the distance between the spectroscopic crystal 3 and the X-ray source 1 increases, the aperture angle becomes larger and the aperture angle φ becomes smaller. , the aperture angle ppt and φ ppt approximately shown in FIG. 2 can be obtained depending on the position of the spectroscopic crystal.

以上の如く構成することにより本発明は分光結
晶の各位置において最適な入射X線の開口角pp
及びφpptを得ることができるため、全波長の測
定にわたつてX線の信号強度と波長分解能とを低
下させることなく、S/N比を向上させることが
でき、実用性大なる効果を有する。
By configuring as described above, the present invention achieves the optimal aperture angle pp of incident X-rays at each position of the spectroscopic crystal.
t and φ ppt , it is possible to improve the S/N ratio without reducing the X-ray signal intensity and wavelength resolution over the measurement of all wavelengths, which has a great practical effect. have

尚、前述の説明は本発明の例示であり、実施に
あたつては幾多の変形が考えられる。
It should be noted that the above description is an illustration of the present invention, and many modifications may be made in implementing the present invention.

例えば、前述の実施例では、X線源と分光結晶
との距離に応じ、X線源と分光結晶との間のスリ
ツト板を制御し、分光結晶におけるX線入射部分
の面積を制限したが、このようにする代りに、分
光結晶の略全面にX線を入射させ、スリツトを分
光結晶と検出器との間に設け、分光結晶の特定表
面から分光されたX線のみを検出器に導くように
しても良い。この場合、X線源と分光結晶との間
の距離が大きくなるにつれて、2組のスリツト板
の一方(ローランド円面に平行な方向に開閉する
スリツト板)のスリツト幅は広くされ、他方(ロ
ーランド円面に垂直な方向に開閉するスリツト
板)のスリツト幅は狭くされ、分光結晶の位置に
応じ、不要なX線の検出器への入射が制限され
る。なお、スリツト板を分光結晶と検出器の間に
配置する場合、分光結晶3の位置、つまり分光結
晶に入射するX線のブラツク角の変化に応じて検
出器4が移動するため、前記2組のスリツトは検
出器4の支持台あるいは分光結晶3の支持台に取
付ける必要があり、また、駆動棒5と2組のスリ
ツトの開閉を制御するカム14の回転軸15とは
フレキシブルワイヤーを用いて連結する必要があ
る。
For example, in the above-mentioned embodiment, the slit plate between the X-ray source and the spectroscopic crystal was controlled according to the distance between the X-ray source and the spectroscopic crystal to limit the area of the X-ray incident portion of the spectroscopic crystal. Instead of doing this, X-rays are incident on almost the entire surface of the spectroscopic crystal, and a slit is provided between the spectroscopic crystal and the detector, so that only the X-rays separated from a specific surface of the spectroscopic crystal are guided to the detector. You can also do it. In this case, as the distance between the X-ray source and the spectroscopic crystal increases, the slit width of one of the two sets of slit plates (the slit plate that opens and closes in a direction parallel to the Roland circular surface) becomes wider, and the slit width of the other (the Roland The slit width of the slit plate (which opens and closes in a direction perpendicular to the circular surface) is narrowed to limit unnecessary X-rays from entering the detector depending on the position of the spectroscopic crystal. Note that when the slit plate is placed between the spectroscopic crystal and the detector, the detector 4 moves in accordance with the position of the spectroscopic crystal 3, that is, the black angle of the X-rays incident on the spectroscopic crystal, so that the two sets of The slit must be attached to the support stand of the detector 4 or the support stand of the spectroscopic crystal 3, and the rotation shaft 15 of the cam 14 that controls the opening and closing of the drive rod 5 and the two sets of slits is connected using a flexible wire. Need to be connected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bはヨハン型の彎曲結晶によるX線
分光を示しており、aはローランド円面に平行な
方向の分光状態を示し、bはローランド円面に垂
直な方向の分光状態を示し、第2図はX線源と分
光結晶との距離に対する最適な開口角を示すグラ
フ、第3図は本発明の一実施例を示す構成略図、
第4図は第3図のA―A断面を示す図である。 第3図及び第4図において、3は分光結晶、5
は駆動棒、7a,7b,9a及び9bはスリツト
板、8a,8b及び10は案内板、11a,11
b,13a及び13bは軸、12a乃至12dは
腕木、14はカム、15は回転軸、16及び18
は歯車、17は中間歯車、19はスプリングであ
る。
Figure 1 a and b show X-ray spectroscopy using a Johann-type curved crystal, where a shows the spectral state parallel to the Rowland circle, and b shows the spectral state perpendicular to the Rowland circle. , FIG. 2 is a graph showing the optimum aperture angle with respect to the distance between the X-ray source and the spectroscopic crystal, and FIG. 3 is a schematic configuration diagram showing an embodiment of the present invention.
FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. In Figures 3 and 4, 3 is a spectroscopic crystal, 5 is
is a drive rod, 7a, 7b, 9a and 9b are slit plates, 8a, 8b and 10 are guide plates, 11a, 11
b, 13a and 13b are shafts, 12a to 12d are arms, 14 is a cam, 15 is a rotating shaft, 16 and 18
17 is a gear, 17 is an intermediate gear, and 19 is a spring.

Claims (1)

【特許請求の範囲】[Claims] 1 X線源、分光結晶及び検出器がローランド円
周上にあるように構成した装置において、該X線
源と分光結晶との間あるいは分光結晶と検出器と
の間のいずれかのX線通路上に、該ローランド円
面に平行な方向におけるX線の通過を制御する第
1の組のスリツト板と、該ローランド円面に垂直
な方向におけるX線の通過を制御する第2の組の
スリツト板とより成るスリツト手段を設け、更
に、該X線源と分光結晶との間の距離が大きくな
るにつれて、該スリツト手段の第1の組のスリツ
ト板のスリツト幅を広くすると共に、第2の組の
スリツト板のスリツト幅を狭くするためのスリツ
ト幅制御手段を設けたことを特徴とするX線分光
器。
1. In a device configured such that the X-ray source, spectroscopic crystal, and detector are located on the Roland circumference, either the X-ray path between the X-ray source and the spectroscopic crystal or between the spectroscopic crystal and the detector a first set of slit plates for controlling the passage of X-rays in a direction parallel to the Roland circular surface; and a second set of slit plates for controlling the passage of X-rays in a direction perpendicular to the Roland circular surface; slit means comprising a plate, and further, as the distance between the X-ray source and the spectroscopic crystal increases, the slit width of the first set of slit plates of the slit means is increased, and the slit width of the second set of An X-ray spectrometer, characterized in that it is provided with slit width control means for narrowing the slit width of a set of slit plates.
JP15269177A 1977-12-19 1977-12-19 Xxray spectroscope Granted JPS5484794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15269177A JPS5484794A (en) 1977-12-19 1977-12-19 Xxray spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15269177A JPS5484794A (en) 1977-12-19 1977-12-19 Xxray spectroscope

Publications (2)

Publication Number Publication Date
JPS5484794A JPS5484794A (en) 1979-07-05
JPS6215822B2 true JPS6215822B2 (en) 1987-04-09

Family

ID=15546016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15269177A Granted JPS5484794A (en) 1977-12-19 1977-12-19 Xxray spectroscope

Country Status (1)

Country Link
JP (1) JPS5484794A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175244A (en) * 1984-09-20 1986-04-17 Jeol Ltd X-ray spectrometer
JPH0752611Y2 (en) * 1988-10-24 1995-11-29 横河電機株式会社 Device for measuring the properties of sheet materials
JP2007093581A (en) * 2005-09-01 2007-04-12 Jeol Ltd Wavelength dispersive x-ray spectrometer
US11699567B2 (en) 2020-11-27 2023-07-11 Jeol Ltd. X-ray detection apparatus and method
JP7245885B2 (en) * 2020-11-27 2023-03-24 日本電子株式会社 X-ray detection device and method

Also Published As

Publication number Publication date
JPS5484794A (en) 1979-07-05

Similar Documents

Publication Publication Date Title
BE1007349A3 (en) Asymmetrical 4-kristalmonochromator.
JPS6215822B2 (en)
JPS634127B2 (en)
US3306158A (en) Grating spectroscopes
JP3950239B2 (en) X-ray equipment
US3447873A (en) Filter grating monochromator
US3566111A (en) Apparatus for varying the detector slit width in fully focusing x-ray spectrometers
US5504576A (en) Monochromator
US3495909A (en) Vacuum monochromator having means for scanning the spectrum and maintaining a constant angle of incidence to the grating
JPH08145795A (en) Double/single color meter
US3051833A (en) X-ray spectrometer
JP2001033408A (en) X-ray spectrometer
US4082461A (en) Optical slit control apparatus
US5115460A (en) X-ray analysis apparatus comprising an adjustable slit diaphragm
US4490041A (en) Device for applying radiation at adjustable angles
JP3722455B2 (en) Monochromator device and X-ray device
US3229568A (en) Concave grating spectrometer
JPH0637400Y2 (en) Shading blade device
JPH08262196A (en) Variable slit device for x-ray device
US3518426A (en) Blazed diffraction grating x-ray spectrometer
JPH049247B2 (en)
JPS5942671Y2 (en) double monochromator
US4560276A (en) Diffraction grating mounting device for scanning monochromator
JP3098806B2 (en) X-ray spectrometer and EXAFS measurement device
JP3952330B2 (en) Spectrometer