JPS62158025A - Manufacture of thermoplastic resin in-mold foam molded body - Google Patents

Manufacture of thermoplastic resin in-mold foam molded body

Info

Publication number
JPS62158025A
JPS62158025A JP61001103A JP110386A JPS62158025A JP S62158025 A JPS62158025 A JP S62158025A JP 61001103 A JP61001103 A JP 61001103A JP 110386 A JP110386 A JP 110386A JP S62158025 A JPS62158025 A JP S62158025A
Authority
JP
Japan
Prior art keywords
mold
pressure
expanded particles
particles
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61001103A
Other languages
Japanese (ja)
Inventor
Hideki Kuwabara
英樹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP61001103A priority Critical patent/JPS62158025A/en
Publication of JPS62158025A publication Critical patent/JPS62158025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To manufacture a non-shrink foam molded body with favorable secondary expansibility by providing a process to vacuumize the interior of a mold and a process to pressurize a foam molded body in the mold with inorganic gas. CONSTITUTION:First, polyolefin-based thermoplastic resin pre-expanded particles with an intraparticle pressure of 1.2kg/cm<2> by absolute are filled in a mold. Secondly, the mold is vacuumized. Thirdly, vapor is fed in the mold for foam molding. Fourthly, the resultant foam molded body in the mold is pressurized with inorganic gas. For the heating of pre-expanded particles, vapor with a pressure of 2-5kg/cm<2> by gage is used normally. The pressure of the inorganic gas depends upon the material or the like of base material resin and lies within the range of about 0.01-5kg/cm<2> by gage, preferably of about 0.1-1.5kg/cm<2> by gage. The pressurizing with the inorganic gas prevents the gas in the molded part from escaping outside during the cooling period of the molded part and at the same time gives internal pressure to the molded part so as to prevent the molded part from shrinking.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱可塑性樹脂型内発泡成型体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a thermoplastic resin in-mold foam molded article.

〔従来の技術〕[Conventional technology]

熱可塑性樹脂の予備発泡粒子を成型用型内に充填し、加
熱発泡せしめて成型体とする型内発泡成型方法が従来か
ら行われており、例えば、予備発泡粒子を無機ガスによ
り加圧処理し、粒子内に無機ガスを圧入して発泡能を付
与した後、成型用型内に充填して加熱発泡せしめる方法
(特公昭52−22951号、特開昭49−12806
5号)或いは、予備発泡粒子を圧縮して成型用型内に充
填し加熱発泡せしめる方法(特公昭53−33996号
)、さらには大気圧に略等しい内圧の予備発泡粒子を成
型用型内に充填して加熱発泡せしめ、ついで得られた成
型体を所定の温度で養生する方法(特公昭55−781
6号、特開昭60−166442号)等が知られている
In-mold foam molding methods have traditionally been used in which pre-expanded particles of thermoplastic resin are filled into a mold and heated and foamed to form a molded product.For example, the pre-expanded particles are pressurized with an inorganic gas. , a method in which an inorganic gas is pressurized into particles to impart foaming ability, and then filled into a mold for heating and foaming (Japanese Patent Publication No. 52-22951, Japanese Patent Application Laid-Open No. 49-12806)
No. 5) or a method in which pre-expanded particles are compressed and filled into a mold for heating and foaming (Japanese Patent Publication No. 53-33996); A method of filling, heating and foaming, and then curing the obtained molded product at a predetermined temperature (Japanese Patent Publication No. 55-781
No. 6, JP-A-60-166442), etc. are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、特公昭52−22951号或いは特開昭
49−128065号公報に記載された方法では予備発
泡粒子内に圧入された無機ガスが粒子内に保持されてい
る時間は比較的短く、このため加圧処理して内圧を付与
した後、短時間で成型する必要があるとともに、予備発
泡粒子内に圧入された無機ガスの圧力が高くなると得ら
れる発泡体の収縮率は小さくなる傾向にあるものの、成
型サイクルは長くなり製造コストが高くなる欠点を有し
ていた。
However, in the method described in Japanese Patent Publication No. 52-22951 or Japanese Patent Application Laid-open No. 49-128065, the time that the inorganic gas pressurized into the pre-expanded particles is retained within the particles is relatively short, and therefore After applying internal pressure through pressure treatment, it is necessary to mold the product in a short time, and as the pressure of the inorganic gas injected into the pre-expanded particles increases, the shrinkage rate of the resulting foam tends to decrease. This has the disadvantage that the molding cycle becomes longer and the manufacturing cost becomes higher.

又、特公昭53−33996号公報に記載された方法で
は予備発泡粒子を圧縮することにより予備発泡粒子に発
泡能を付与するものであり、予備発泡粒子を圧縮して充
填するたための設備が必要であり、また圧縮充填のため
の設備と成型機とを連動させる必要があり、装置が複雑
化するという問題があった。
Furthermore, in the method described in Japanese Patent Publication No. 53-33996, foaming ability is imparted to the pre-expanded particles by compressing the pre-expanded particles, and equipment for compressing and filling the pre-expanded particles is required. In addition, it is necessary to link the equipment for compression filling and the molding machine, resulting in a problem that the equipment becomes complicated.

又、特公昭55−7816号公報、特開昭60−166
442号公報に記載された方法のように予備発泡粒子の
加圧処理を行わず、大気圧と略等しい内圧の予備発泡粒
子を成型すると予備発泡粒子の二次発泡能が乏しいこと
に起因してボイドの多い成型体しか得られず、このよう
な欠点を解決するために加熱時間を長くしたり、加熱成
型用蒸気の圧力を高くする等の方法を採用すると、成型
用型から室温雰囲気に取り出した成型体は一旦膨張し、
つい°で急激にヒケ収縮する。このため該方法では成型
後、成型体を所定温度で養生する必要があり、養生の際
に煩雑な温度管理、時間管理が必要であったり、成型サ
イクルが長くなり、効率良い成型が行い得ないという問
題があった。
Also, Japanese Patent Publication No. 55-7816, Japanese Patent Application Publication No. 60-166
If the pre-expanded particles are not pressurized and the pre-expanded particles are molded at an internal pressure approximately equal to atmospheric pressure as in the method described in Publication No. 442, the secondary foaming ability of the pre-expanded particles is poor. Only molded products with many voids can be obtained, and if methods such as lengthening the heating time or increasing the pressure of hot molding steam are adopted to solve this problem, the molded product can be removed from the mold into a room temperature atmosphere. The molded body expands once,
The shrinkage shrinks rapidly at just °. For this reason, in this method, it is necessary to cure the molded body at a predetermined temperature after molding, which requires complicated temperature control and time management during curing, lengthens the molding cycle, and makes it impossible to perform efficient molding. There was a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上記の点に漏み鋭意研究した結果、予備発泡
粒子を型内に充填した後、型内を減圧すること、又、粒
子を発泡させた後発泡成型体を無機ガスにて加圧するこ
とにより上記課題を解決することを見出し本発明を完成
するに至った。
As a result of intensive research into the above points, the present inventor found that after filling the mold with pre-expanded particles, the pressure inside the mold is reduced, and after foaming the particles, the foamed molded product is heated with inorganic gas. The inventors have found that the above problems can be solved by applying pressure, and have completed the present invention.

即ち、本発明は、熱可塑性樹脂予備発泡粒子を成型用型
内に充填した後型内を減圧とし、次いで型内に蒸気を供
給して発泡成型する工程と、発泡成型体を型内で無機ガ
スにて加圧する工程よりなることを特徴とする熱可塑性
樹脂型内発泡成型体の製造方法を要旨とするものである
That is, the present invention includes a process of filling pre-expanded thermoplastic resin particles into a mold, reducing the pressure in the mold, and then supplying steam into the mold to perform foam molding. The gist of the present invention is a method for manufacturing a thermoplastic resin in-mold foam molded article, which comprises a step of pressurizing with gas.

本発明において使用される熱可塑性樹脂予備発泡粒子の
基材樹脂としては、低密度ポリエチレン、直鎖低密度ポ
リエチレン、高密度ポリエチレン、エチレン−酢酸ビニ
ル共重合体或いはこれら2種以上の混合物からなる樹脂
等のポリオレフィン系樹脂、ポリスチレン、ポリーP−
メチルスチレン、スチレン−無水マレイン酸共重合体、
スチレン−アクリル酸共重合体、スチレン−アクリロニ
トリル共重合体、スチレン−ブタジェン−アクリロニト
リル共重合体、塩化ビニル、塩化ビニル−酢酸ビニル共
重合体、塩化ビニリデン樹脂が挙げられる。
The base resin of the thermoplastic resin pre-expanded particles used in the present invention includes low-density polyethylene, linear low-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, or a resin made of a mixture of two or more of these. Polyolefin resins such as polystyrene, polyP-
Methylstyrene, styrene-maleic anhydride copolymer,
Examples include styrene-acrylic acid copolymer, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile copolymer, vinyl chloride, vinyl chloride-vinyl acetate copolymer, and vinylidene chloride resin.

また、本発明によれば、高倍率が25倍以下で、且つ示
差走査熱量測定(以下rDscJと称す)の融解曲線に
おける高温ピークの融解エネルギーが8 J / g以
上である膜強度の高い(二次発泡しにくい)エチレン−
プロピレンランダム共重合体からなる予備発泡粒子を使
用しても低粒子内圧で、表面状態の優れた成型体を得る
ことが可能となる。
Further, according to the present invention, a film with high strength (two-layered) having a high magnification of 25 times or less and a melting energy of a high temperature peak in a melting curve of differential scanning calorimetry (hereinafter referred to as rDscJ) of 8 J/g or more Ethylene (difficult to foam)
Even if pre-expanded particles made of a propylene random copolymer are used, it is possible to obtain a molded article with an excellent surface condition at a low particle internal pressure.

尚、DSCの融解曲線における高温ピークとはポリプロ
ピレン系樹脂予備発泡粒子1〜3■を示差走査熱量計に
よってIθ℃/分の昇温速度で220℃まで昇温したと
きに得られる030曲線であり、例えば試料を室温から
220℃までlO℃/分の昇温速度で昇温した時に得ら
れる030曲線を第1回目の030曲線として、ついで
220℃から10℃/分の降温速度で40℃付近まで降
温しく再度10℃/分の昇温速度で220℃まで昇温し
た時に得られる030曲線を第2回目の030曲線とし
、これらの030曲線から固有ピーク、高温ピークを求
めることができる。
In addition, the high temperature peak in the DSC melting curve is the 030 curve obtained when the pre-expanded polypropylene resin particles 1 to 3 cm are heated to 220°C at a temperature increase rate of Iθ°C/min using a differential scanning calorimeter. For example, the first 030 curve is the 030 curve obtained when the sample is heated from room temperature to 220°C at a heating rate of 10°C/min, and then the sample is heated at a cooling rate of 10°C/min from 220°C to around 40°C. The second 030 curve is the 030 curve obtained when the temperature is lowered to 220° C. at a heating rate of 10° C./min, and the characteristic peak and high temperature peak can be determined from these 030 curves.

即ち、上記固有ピークとは、発泡粒子を構成するポリプ
ロピレン系樹脂固有の吸熱ピークであり、該ポリプロピ
レン系樹脂の所謂融解時の吸熱によるものであると考え
られる。該固有ピークは第1回目のDSC1lJll線
にも第2回目の030曲線にも現れ、ピークの頂点の温
度は第1回目と第2回目で多少異なる場合があるが、そ
の差は5℃未満、通常は2℃未満である。
That is, the above-mentioned characteristic peak is an endothermic peak unique to the polypropylene resin constituting the expanded particles, and is thought to be due to the so-called endotherm during melting of the polypropylene resin. The characteristic peak appears in both the first DSC1lJll line and the second 030 curve, and the temperature at the top of the peak may be slightly different between the first and second times, but the difference is less than 5 ° C. Usually below 2°C.

一方、上記高温ピークとは、第1回目のDSC曲線で上
記固有ピークより高温側に現れる吸熱ピークであり、高
温ピークの融解エネルギーとは固をピークより高温側に
現れる吸熱ピークの融解エネルギーである。
On the other hand, the high temperature peak is an endothermic peak that appears on the higher temperature side than the characteristic peak in the first DSC curve, and the melting energy of the high temperature peak is the melting energy of an endothermic peak that appears on the higher temperature side than the solid peak. .

本発明において用いられる予備発泡粒子は、発泡剤を含
有した発泡性樹脂粒子を耐圧容器内で加圧下に発泡させ
る方法、押出機内で樹脂と発泡剤とを溶融混練した後、
押出発泡せしめて発泡ストランドとし、これをカットす
る方法、耐圧容器内で分散媒に樹脂粒子と発泡剤とを分
散させて加圧下に加熱し、発泡剤を樹脂粒子に含浸させ
た後、大気圧下に放出して発泡させる方法等により得る
ことができる。
The pre-expanded particles used in the present invention can be obtained by foaming expandable resin particles containing a blowing agent under pressure in a pressure-resistant container, or by melt-kneading the resin and the blowing agent in an extruder.
A method in which resin particles and a foaming agent are dispersed in a dispersion medium in a pressure-resistant container, heated under pressure to impregnate the resin particles with the foaming agent, and then cut into a foamed strand. It can be obtained by, for example, a method of discharging it downward and foaming it.

上記予備発泡粒子は通常の成型同様に無機ガス、好まし
くは窒素あるいは空気等の窒素を主成分とする無機ガス
により加圧処理して無機ガスを粒子内に含有せしめて粒
子内圧(通常は1.2kr/cd・abs  (絶対圧
)より大)を付与した後成型に供してもよいが、本発明
においては加熱発泡せしめる予備発泡粒子の粒子内圧が
必ずしも1.2kg/−・absより上である必要はな
く、無機ガスにより加圧処理後、大気圧下に放置されて
内圧が1゜2 kg / cIa−abs以下に低下し
た予備発泡粒子や予備発泡粒子製造後、大気圧下に放置
され略大気圧と等しい粒子内圧を有する予備発泡粒子の
ように、無機ガスを主体とするガスにより粒子内圧が1
゜2 kg / crl−abs以下の予備発泡粒子を
用いることもできる。
The pre-expanded particles are pressurized with an inorganic gas, preferably nitrogen or an inorganic gas containing nitrogen as a main component, such as air, in the same way as in normal molding, so that the inorganic gas is contained in the particles, so that the internal pressure of the particles (usually 1. Although the particles may be subjected to molding after being given a pressure of more than 2kr/cd・abs (absolute pressure), in the present invention, the internal pressure of the pre-expanded particles to be heated and expanded is not necessarily higher than 1.2kg/-・abs. There is no need for pre-expanded particles that are pressurized with inorganic gas and then left under atmospheric pressure to reduce the internal pressure to below 1゜2 kg/cIa-abs. As with pre-expanded particles, which have an internal pressure equal to atmospheric pressure, the internal pressure of the particles can be reduced to 1 by using a gas mainly composed of inorganic gas.
Pre-expanded particles of less than 2 kg/crl-abs can also be used.

本発明に於いては予備発泡粒子を成型用型内に充填した
後、成型用型内を減圧とするが、減圧方法としては真空
ポンプを用いる方法、成型用型のドレイン排出口を開放
した状態でスチームを流し、スチームの流れによって減
圧にする方法等が挙げられるが、特に、真空ポンプを用
いる方法が減圧度を高めることができるので好ましい。
In the present invention, after the pre-expanded particles are filled into the mold, the pressure inside the mold is reduced, but the pressure reduction method includes a method using a vacuum pump, and a method in which the drain outlet of the mold is opened. Examples include a method of flowing steam and reducing the pressure by the flow of steam, but a method using a vacuum pump is particularly preferred because it can increase the degree of pressure reduction.

また、減圧した際の型内圧は予備発泡粒子の発泡倍率に
よっても異なるが、通常710 m511g以下、特に
66QmsHg以下が好ましい。
Further, the mold internal pressure when the pressure is reduced varies depending on the expansion ratio of the pre-expanded particles, but it is usually 710 m511 g or less, particularly preferably 66 QmsHg or less.

成型用型内に充填した予備発泡粒子は成型用型内を減圧
とした後、加熱して発泡成型されるが、予備発泡粒子の
加熱には通常2〜5 kg/cj HGの蒸気が用いら
れる。
The pre-expanded particles filled in the mold are heated and foam-molded after the inside of the mold is reduced in pressure, and steam of 2 to 5 kg/cj HG is usually used to heat the pre-expanded particles. .

本発明に於いては成型用型内で予備発泡粒子を加熱発泡
させ型通りの発泡成型体を得た後、該成型体を成型用型
内で無機ガスにて加圧する。成型体の無機ガスによる加
圧は成型体の冷却迄の間に成型体内のガスが外部に逃散
するのを防止するとともに成型体に内圧を付与して成型
体の収縮を防止するための工程である。
In the present invention, the pre-expanded particles are heated and foamed in a mold to obtain a foam molded article according to the mold, and then the molded article is pressurized with an inorganic gas in the mold. Pressurizing the molded body with inorganic gas is a process that prevents the gas inside the molded body from escaping to the outside until the molded body is cooled, and also applies internal pressure to the molded body to prevent shrinkage of the molded body. be.

加圧に使用される無機ガスとしては、空気、炭酸ガス、
窒素ガス等が挙げられ、なかでも窒素ガスを主成分とす
る無機ガス、例えば窒素ガスを50〜90%含有する無
機ガスが最も好ましいものである。
Inorganic gases used for pressurization include air, carbon dioxide,
Examples include nitrogen gas, and among these, an inorganic gas containing nitrogen gas as a main component, for example, an inorganic gas containing 50 to 90% nitrogen gas, is the most preferred.

無機ガスの圧力としては、基材樹脂の材質等により多少
の相違はあるが、0.01〜5 kg/ cnl・G程
度であり、好ましくは0.1〜1.5 kg/am−G
程度である。
The pressure of the inorganic gas varies slightly depending on the material of the base resin, etc., but is approximately 0.01 to 5 kg/cnl.G, preferably 0.1 to 1.5 kg/am-G.
That's about it.

型内における成型体の加圧は成型体の温度がある程度高
い状態で加圧することが好ましく、例えば60〜120
℃程度で、しかも成型体が面圧を有する間に加圧を開始
することが好ましい。又、加圧する時間は基材樹脂の種
類等により異なるが−aに1〜5分程度が最も好ましい
It is preferable to apply pressure to the molded body in the mold while the temperature of the molded body is high to some extent, for example, 60 to 120℃.
It is preferable to start applying pressure at a temperature of about 0.degree. C. while the molded body has a surface pressure. The time for applying pressure varies depending on the type of base resin, etc., but -a is most preferably about 1 to 5 minutes.

成型用型内で無機ガスによる加圧とともに或いは加圧終
了後冷却を行い、離型が容易に行い得るまで冷却してか
ら型内より取り出す。一般にどの冷却が不充分であると
型内より成型体を取出した際に成型体の膨張が大き過ぎ
、表面に割れを生し易い。成型体が成型用型より取出し
得る程度まで冷却されたかの度合は発泡体面圧によって
知ることができる。例えば、エチレン−プロピレンラン
ダム共重合体の場合、面圧が1〜0.5に+r/cII
l・G程度で成型用型より取り出すことが好ましい。
The material is cooled in the mold while being pressurized with inorganic gas or after the end of the pressurization, cooled until it can be easily released from the mold, and then taken out from the mold. In general, if the cooling is insufficient, the molded product expands too much when it is taken out from the mold, which tends to cause cracks on the surface. The degree to which the molded body has been cooled to the extent that it can be removed from the mold can be determined by the surface pressure of the foam. For example, in the case of ethylene-propylene random copolymer, the surface pressure is 1 to 0.5 +r/cII
It is preferable to take it out from the mold at about 1.1 G.

冷却方法としては通常の水冷却の他に、水冷却と真空乾
燥による冷却を併用しても良く、真空乾燥による冷却を
併用すると成型体の表面硬度が上がり、離型を良好に行
い得るとともに、得られた成型体を乾燥させる必要もな
くなる。
As a cooling method, in addition to normal water cooling, a combination of water cooling and cooling by vacuum drying may be used. When cooling by vacuum drying is used in combination, the surface hardness of the molded product increases, and mold release can be performed well. There is no need to dry the obtained molded body.

成型用型より取出した成型体は通常、取出し後加熱乾燥
させるが、例えばエチレン−プロピレンランダム共重合
体の場合この温度は一般に50〜110°Cが適当であ
り、短時間で乾燥させるためには60℃以上、特に70
℃以上とすることが好ましい。
The molded product taken out from the mold is usually heated and dried after being taken out. For example, in the case of ethylene-propylene random copolymer, the appropriate temperature is generally 50 to 110°C, and in order to dry it in a short time, 60℃ or higher, especially 70℃
It is preferable to set it as above degreeC.

本発明においては、予備発泡粒子充填後の型内減圧工程
と、成型体の無機ガスによる加圧工程とを有するため、
上述のように無機ガスを主成分とするガスによる粒子内
圧が1 、 2 kK/ cnl−abs以下という低
内圧の予備発泡粒子を用いても優れた成型体を得ること
ができ、このような低内圧の予備発泡粒子を用いた場合
、低圧の蒸気でも充分成型することができ、経済的な成
型を行いえる。即ち、通常の成型法の場合、発泡能の小
さい予備発泡粒子を用いると良好な発泡成型が行い難く
、このため粒子内圧が1 、 2 kg/ all−a
bsを越える発泡能の大きい予備発泡粒子を用いるが、
このような高内圧の予備発泡粒子の加熱に低圧蒸気を用
いると、粒子の発泡能が大きいことによって粒子が相互
に融着可能な温度に加熱される以前に二次発泡が起こり
、この結果、粒子間隙が小さくなって粒子間に充分蒸気
が浸透しなくなり、成型体中の粒子に融着不良を生じる
。このため高内圧の予備発泡粒子を用いる場合には高圧
蒸気により粒子相互の融着が生じ得る温度に一気に加熱
する必要があるが、低内圧の粒子の場合には発泡能が小
さいため、低圧蒸気により加熱しても粒子相互の融着が
生じ得る温度に粒子が加熱される以前に大きな二次発泡
を生しる虞れはなく、本発明方法では低内圧の予備発泡
粒子を用いて成型することができるから、低内圧の予備
発泡粒子を用いた場合には低圧蒸気を用いて効率良い成
型を行うことができる。従って、本発明においては低内
圧の予備発泡粒子を用いることが経済的な成型を行う上
で好ましいが、従来同様の高内圧の予備発泡粒子を用い
た場合でも、従来の成型法に比べて、より収縮の少ない
優れた成型体を得ることができる。
In the present invention, there is a step of depressurizing the mold after filling the pre-expanded particles and a step of pressurizing the molded body with an inorganic gas.
As mentioned above, excellent molded bodies can be obtained even by using pre-expanded particles with a low internal pressure of 1 or 2 kK/cnl-abs or less due to a gas containing an inorganic gas as the main component. When pre-expanded particles under internal pressure are used, molding can be carried out satisfactorily even with low-pressure steam, and economical molding can be performed. That is, in the case of normal molding methods, it is difficult to perform good foam molding when pre-expanded particles with low foaming ability are used, and for this reason, the internal pressure of the particles is 1 to 2 kg/all-a.
Although pre-expanded particles with a large foaming ability exceeding bs are used,
When low-pressure steam is used to heat such pre-expanded particles with high internal pressure, secondary foaming occurs before the particles are heated to a temperature at which they can fuse together due to the large foaming ability of the particles, and as a result, The gaps between the particles become smaller and steam cannot penetrate between the particles sufficiently, resulting in poor fusion of the particles in the molded body. For this reason, when using pre-expanded particles with high internal pressure, it is necessary to heat them all at once using high-pressure steam to a temperature that can cause the particles to fuse together, but in the case of particles with low internal pressure, the foaming ability is small, so low-pressure steam Even if the particles are heated by heating, there is no risk of large secondary foaming occurring before the particles are heated to a temperature that can cause mutual fusion, and the method of the present invention uses pre-expanded particles with low internal pressure for molding. Therefore, when pre-expanded particles with low internal pressure are used, efficient molding can be performed using low pressure steam. Therefore, in the present invention, it is preferable to use pre-expanded particles with a low internal pressure for economical molding, but even when pre-expanded particles with a high internal pressure similar to those used in the past are used, compared to the conventional molding method, An excellent molded body with less shrinkage can be obtained.

しかも本発明においては、上記した予備発泡粒子を用い
た際に発泡倍率が5〜70倍と高発泡の発泡成型体を得
ることができる。
Moreover, in the present invention, when the above-mentioned pre-expanded particles are used, a highly foamed molded article having an expansion ratio of 5 to 70 times can be obtained.

尚、上記説明中「kg / cA−abs Jは絶対圧
を、rkg/cj−GJはゲージ圧を示す。
In the above description, "kg/cA-abs J" indicates absolute pressure, and "rkg/cj-GJ" indicates gauge pressure.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に詳細に説明する。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1〜5 第1表に示す熱可塑性樹脂を基材樹脂とする第1表に示
す予備発泡粒子(ただし、エチレン−プロピレンランダ
ム共重合体からなるものはDSCの融解曲線における高
温ピークの融解エネルギーが10〜12 J/gの範囲
にある)を、300×30On+x5+4+n(内寸法
)の成型用金型に充填し、型内圧力を真空装置を使用し
て同表に示す圧力に減圧しついで蒸気により加熱して発
泡成型した。加熱発泡後、型内において空気にて90秒
間加圧し、しかる後第1表に示す成型体面圧となるまで
水で冷却してから取出した。
Examples 1 to 5 Pre-expanded particles shown in Table 1 using the thermoplastic resin shown in Table 1 as the base resin (however, particles made of ethylene-propylene random copolymer have a high temperature peak in the DSC melting curve) (with energy in the range of 10 to 12 J/g) was filled into a mold of 300 x 30 On + x 5 + 4 + n (inner dimensions), and the pressure inside the mold was reduced to the pressure shown in the same table using a vacuum device. Foam molding was performed by heating with steam. After heating and foaming, the mold was pressurized with air for 90 seconds, and then cooled with water until the surface pressure of the molded product was as shown in Table 1, and then taken out.

得られた成型体を80℃で6時間乾燥させた後の成型体
の性状を第1表に示す。
Table 1 shows the properties of the obtained molded product after drying it at 80° C. for 6 hours.

比較例1〜6 第1表に示す熱可塑性樹脂を基材樹脂とする第1表に示
す予備発泡粒子(ただし、エチレン−プロピレンランダ
ム共重合体からなるものはDSCの融解曲線における高
温ピークの融解エネルギーが10〜12J/gの範囲に
ある)を型内を減圧とする工程又は/かつ無機ガスにて
加圧する工程を行わなかった以外は実施例と同様の方法
で拓泡成型体を得た。得られた成型体を実施例と同様に
乾燥させた後の成型体の性状を第1表に併せて示す。
Comparative Examples 1 to 6 Pre-expanded particles shown in Table 1 using the thermoplastic resin shown in Table 1 as the base resin (however, particles made of an ethylene-propylene random copolymer have a high temperature peak in the DSC melting curve) An expanded foam molded body was obtained in the same manner as in the example except that the step of reducing the pressure in the mold and/or pressurizing with an inorganic gas (with energy in the range of 10 to 12 J/g) was not performed. . Table 1 also shows the properties of the obtained molded product after drying it in the same manner as in Examples.

※1 次の式により粒子内圧(kg / cIA−ab
s )を求めた 粒子内圧= (a−b)(g) Xo、082 X(273+t)(
’K)Xl、0332空気分子量(28,8g) x粒
子内の気泡容積(1)+ 1.0332 式中aは成型時点での20℃雰囲気の予備発泡粒子の重
量(g) 、bは予備発泡後−週間養生した時の20℃
雰囲気下の上記予備発泡粒子の重量(g) 、0.08
2は気体定数、tは室温(本例では20°c) 、1.
0332はatm単位をkg / cnl単位に変換す
るための係数を表す。
*1 Particle internal pressure (kg/cIA-ab
s ) = (a-b) (g) Xo, 082 X (273 + t) (
'K) After foaming - 20℃ after curing for a week
Weight (g) of the above pre-expanded particles under atmosphere: 0.08
2 is a gas constant, t is room temperature (20°C in this example), 1.
0332 represents a coefficient for converting atm units to kg/cnl units.

また、粒子内の気泡容積(1)は、 粒子内の気泡容積(1)=予備発泡粒子の真のにより求
めた。
In addition, the bubble volume (1) within the particle was determined by the equation: bubble volume (1) within the particle=true value of the pre-expanded particle.

ただし、予備発泡粒子の真の体積(1)は該粒子をメス
シリンダー中の水に浸漬してその体積を測定した。
However, the true volume (1) of the pre-expanded particles was measured by immersing the particles in water in a graduated cylinder.

※2 乾燥して室温にて24時間放置した後の成型体の
寸法を測定し、金型の面方向寸法に対する収縮率を求め
、収縮率が 3%未満・・・・・・・・・0 3%以上5%未満・・・・・△ 5%以上・・・・・・・・・× として判定した。
*2 Measure the dimensions of the molded product after drying and leaving it at room temperature for 24 hours, and calculate the shrinkage rate with respect to the surface direction dimension of the mold. If the shrinkage rate is less than 3%...0 It was judged as 3% or more and less than 5%: △ 5% or more: ×.

※3 乾燥して室温にて24時間放置した後の成型体中
央部の厚さを測定し、金型の厚さに対する収縮率を求め
、収縮率が 3%未満・・・・・・・・・0 3%以上5%未満・・・・・△ 5%以上・・・・・・・・・× として判定した。
*3 After drying and leaving at room temperature for 24 hours, measure the thickness of the center of the molded body, calculate the shrinkage rate relative to the mold thickness, and find that the shrinkage rate is less than 3%.・0 3% or more and less than 5%・・・Δ 5% or more・・・×

※4 成型体表面を観察し、 表面平滑・・・・・・・・・○ 表面にボイドややあり・・・△ 表面にボイドが多い・・・・× として判定した。*4 Observe the surface of the molded product, Surface smoothness・・・・・・○ There are some voids on the surface...△ There are many voids on the surface...× It was judged as.

※5 発泡体をテンシロンにて引張り破壊し、その断面
の粒子間破壊、材料破壊により融着性を求め、 材料破壊70%以上・・・・・・○ 材料破壊70%未満40%以上・・・△材料破壊40%
未満・・・・・・× として判定した。
*5 The foam is tensilely fractured using Tensilon, and the fusion property is determined by the interparticle fracture and material fracture of the cross section, and the material fracture is 70% or more... ○ Less than 70% material fracture 40% or more...・△Material destruction 40%
Less than... It was judged as ×.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明方法においては、成型用型
内を減圧とする工程及び発泡成型体を型内で無機ガスに
て加圧する工程を有するため、1゜2kg/c4・ab
s以下という低粒子内圧の状態において、膜強度がさほ
ど高くない予備発泡粒子はもとより、膜強度が高い(二
次発泡しにくい)予備発泡粒子を使用しても収縮のない
、又、二次発泡性が良好な発泡成型体を製造することが
可能である。
As explained above, the method of the present invention includes the step of reducing the pressure inside the mold and the step of pressurizing the foam molded product in the mold with inorganic gas.
Under conditions of low particle internal pressure of s or less, there is no shrinkage or secondary foaming even when using not only pre-foamed particles whose membrane strength is not very high but also pre-expanded particles whose membrane strength is high (hard to cause secondary foaming). It is possible to produce a foamed molded article with good properties.

又、大気圧と略等しい内圧の予備発泡粒子を使用して成
型を行うことができるため、従来のように大規模な力■
圧装置、或いは予備発泡粒子の圧縮装置等の設備を必要
とせず、又、予備発泡粒子を製造した後加圧処理等によ
り内圧を高めることなく直ちに使用しても充分に良好な
成型体の製造を行うことができ、更に成型後、成型体を
所定温度で養生する必要もなく、その結果成型サイクル
の短縮が行え効率の良い成型が行える。また、低内圧の
予備発泡粒子を用いた場合には低圧ア気による加熱成型
が可能であり、経済的に成型を行うことができる。更に
従来の成型法に用いると同様の高内圧の予備発泡粒子を
用いた場合にも従来の方法に比して、より収縮の少ない
寸法精度に優れた成型体を得ることができる等の効果を
有する。
In addition, since molding can be performed using pre-expanded particles with an internal pressure approximately equal to atmospheric pressure, large-scale force ■
Production of a molded product that does not require equipment such as a pressure device or a compression device for pre-expanded particles, and is sufficiently good to be used immediately without increasing the internal pressure by pressure treatment after producing pre-expanded particles. Moreover, there is no need to cure the molded body at a predetermined temperature after molding, and as a result, the molding cycle can be shortened and molding can be carried out with high efficiency. Further, when pre-expanded particles with low internal pressure are used, heating molding using low pressure air is possible, and molding can be performed economically. Furthermore, even when using pre-expanded particles with the same high internal pressure as used in conventional molding methods, it is possible to obtain molded objects with less shrinkage and excellent dimensional accuracy compared to conventional methods. have

コ゛1−3Jε(市正書(自発)7゜ 昭和61年3月11日  (1 特許庁長官 宇 賀 道 部 殿 1、事件の表示            宅外昭和61
年特許廓第1103号 2、発明の名称 熱可塑性樹脂型内発泡成型体の製造方法   (23、
補正をする者                 (3
事件との関係 特許出願人 住所 東京都千代田区内幸町2丁目1番1号名称  口
本スチレンペーパー株式会社代表者 内 山 昌 世 4、代理人 〒101 住所 東京都千代田区神田佐久間町2−7わ 5、補正命令の日付 → 補正の内容 明細書第13頁10〜11行及び第14頁4〜5行の「
高温ピークの融解エネルギーが10〜12J/gの範囲
にある)」を「高温ピークの融解エネルギーを第1表に
示す。)」と補正する。
Ko゛1-3Jε (City Official Book (Spontaneous) 7゜March 11, 1986 (1. Director General of the Patent Office, Uga Michibe 1, Indication of Incident Outside the House, Showa 61)
Patent Office No. 1103 2, Title of invention: Method for manufacturing thermoplastic resin in-mold foam molding (23,
Person who makes amendments (3
Relationship to the case Patent applicant address: 2-1-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo Name: Kuchimoto Styrene Paper Co., Ltd. Representative: Masayo Uchiyama 4, Agent 101 Address: 2-7 Kanda Sakuma-cho, Chiyoda-ku, Tokyo 5. Date of amendment order → “Description of contents of amendment” on page 13, lines 10-11 and page 14, lines 4-5
"The melting energy of the high temperature peak is in the range of 10 to 12 J/g)" is corrected to "The melting energy of the high temperature peak is shown in Table 1.)".

: 同第15頁の第1表を別紙の通り補正する・。: Table 1 on page 15 of the same page is amended as shown in the attached sheet.

) 同第18頁9行と10行の間に以下の文を挿入する
) Insert the following sentence between lines 9 and 10 on page 18.

「※6 ゲル分率は試料を沸騰キシレン中で8時間煮沸
した後のキシレン不)容置重量の、煮沸前の試料の重工
に対する割合を%で示したものである。」 以    上
*6 Gel fraction is the ratio of the weight of the xylene-free container after boiling the sample in boiling xylene for 8 hours to the weight of the sample before boiling, expressed as a percentage.

Claims (3)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂予備発泡粒子を成型用型内に充填し
た後型内を減圧とし、次いで型内に蒸気を供給して発泡
成型する工程と、発泡成型体を型内で無機ガスにて加圧
する工程よりなることを特徴とする熱可塑性樹脂型内発
泡成型体の製造方法。
(1) After filling a mold with pre-expanded thermoplastic resin particles, the pressure inside the mold is reduced, and then steam is supplied into the mold to perform foam molding, and the foam molded product is heated in the mold with an inorganic gas. 1. A method for producing a thermoplastic resin in-mold foam molded article, comprising a pressurizing step.
(2)熱可塑性樹脂がポリオレフィン系樹脂である特許
請求の範囲第1項記載の熱可塑性樹脂型内発泡成型体の
製造方法。
(2) The method for producing a thermoplastic resin in-mold foam molded article according to claim 1, wherein the thermoplastic resin is a polyolefin resin.
(3)成型用型内に充填する予備発泡粒子が、無機ガス
を主成分とするガスによる1.2kg/cm^2・ab
s以下の粒子内圧を有するポリオレフィン系樹脂予備発
泡粒子である特許請求の範囲第1項記載の熱可塑性樹脂
型内発泡成型体の製造方法。
(3) The pre-expanded particles filled into the mold are 1.2 kg/cm^2・ab by a gas whose main component is inorganic gas.
2. The method for producing a thermoplastic resin in-mold foam molded article according to claim 1, wherein the polyolefin resin pre-expanded particles have an internal particle pressure of s or less.
JP61001103A 1986-01-07 1986-01-07 Manufacture of thermoplastic resin in-mold foam molded body Pending JPS62158025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61001103A JPS62158025A (en) 1986-01-07 1986-01-07 Manufacture of thermoplastic resin in-mold foam molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61001103A JPS62158025A (en) 1986-01-07 1986-01-07 Manufacture of thermoplastic resin in-mold foam molded body

Publications (1)

Publication Number Publication Date
JPS62158025A true JPS62158025A (en) 1987-07-14

Family

ID=11492145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61001103A Pending JPS62158025A (en) 1986-01-07 1986-01-07 Manufacture of thermoplastic resin in-mold foam molded body

Country Status (1)

Country Link
JP (1) JPS62158025A (en)

Similar Documents

Publication Publication Date Title
US7358280B2 (en) Process for processing expandable polymer particles and foam article thereof
JPS5825334A (en) Production of polypropylene resin foam
JPS6230219B2 (en)
US4483809A (en) Process for preparing polyolefin foam
JP3207219B2 (en) Low-expanded particles of polyolefin resin and method for producing the same
JP2022127578A (en) Foamed particle and method for producing the same
JPS63278805A (en) Prefoaming process of polyolefin resin particle
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JPS60166442A (en) Curing method of polyolefin expansion molded shape
JPH01156338A (en) Prefoamed polypropylene resin particle and production thereof
JPH0421698B2 (en)
JPS62158025A (en) Manufacture of thermoplastic resin in-mold foam molded body
JPH01136726A (en) Expansion molding process of polypropylene resin in mold
JPS62130831A (en) Manufacture of in-mold expansion-molded body of polyolefin-based resin
JPH0386737A (en) Production of foamed polyolefin resin particle
JPS5851123A (en) Method of molding preliminarily foamed polypropylene resin particles in mold
WO2023067953A1 (en) Polyethylene resin foam particles, and method for producing same
JPS62231729A (en) Preparation of thermoplastic resin foamed molding in mold
JPS599333B2 (en) Method for manufacturing ethylene resin multifoam molded products
JPS62174135A (en) Manufacture of thermoplastic resin in-mold foam molded body
JP2599103B2 (en) Method for producing expanded polypropylene resin particles
JPS60151029A (en) Foamed molding method in mold of foamable synthetic resin material
JPS6024933A (en) Pressurizing treatment of pre-expanded particle
JPH02289633A (en) Production of foamed polyolefin resin particle
JPH0218225B2 (en)