JPS6215771A - Organic electrolyte cell - Google Patents

Organic electrolyte cell

Info

Publication number
JPS6215771A
JPS6215771A JP60154599A JP15459985A JPS6215771A JP S6215771 A JPS6215771 A JP S6215771A JP 60154599 A JP60154599 A JP 60154599A JP 15459985 A JP15459985 A JP 15459985A JP S6215771 A JPS6215771 A JP S6215771A
Authority
JP
Japan
Prior art keywords
dioxolane
electrolyte
battery
electrolytic solution
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60154599A
Other languages
Japanese (ja)
Other versions
JPH0610995B2 (en
Inventor
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60154599A priority Critical patent/JPH0610995B2/en
Publication of JPS6215771A publication Critical patent/JPS6215771A/en
Publication of JPH0610995B2 publication Critical patent/JPH0610995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve not only discharging voltage for a primary cell, but also efficiency of charging as well as discharging for a secondary one, by using a single composed of specific 1,3-dioxolane compound or its mixture with a solvent as the electrolytic solution. CONSTITUTION:The electrolytic solution is composed of 1,3-dioxolane (for example: 2-tetrafluoroethyl-4-pentafluoroethyl-1,3-dioxolane) alone with fluoroalkyl radicals at more than one position of 2, 5 and or its mixture with other solvent (for example: propylene carbonate), and more than one kind of solute (for example: lithim perchlorate) dissolved in the above solvent. This electrolytic solution 4 is used for a cell consisting of a positive electrode 1, a negative electrode 2 and a separator 3. This composition can improve not only discharging voltage for a primary cell, but also efficiency of charging as well as discharging for a secondary cell.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液を用いた一次電池および二次電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to primary and secondary batteries using organic electrolytes.

従来の技術 有機電解液電池は、従来の水溶液を用いた電池に比べ高
エネルギー密度になることが期待され、−次電池、二次
電池として盛んに研究されている。
BACKGROUND OF THE INVENTION Organic electrolyte batteries are expected to have higher energy density than conventional batteries using aqueous solutions, and are being actively researched as secondary batteries and secondary batteries.

その中で、負極にリチウム、正(至)にフッ化炭素や二
酸化マンガン、酸化銅を用いた電池はすでに高エネルギ
ー密度−次電池として実用化されている。
Among these, batteries that use lithium for the negative electrode and carbon fluoride, manganese dioxide, or copper oxide for the positive electrode have already been put into practical use as high-energy-density secondary batteries.

これらの有機電解液−次電池の電解液としては、過塩素
酸リチウム(LiCAO4)やホウフ、ノ化リチウム(
LiBF4)  をプロピレンカーボネート(pc)や
γ−ブチロラクトン(γ−BL)に溶解したもの、ある
いはPCとジメトキシエタン(DME )、PCとジオ
キソラン(DiOx )の混合溶媒に溶解したものなど
が実用されて来た。
As the electrolyte for these organic electrolyte-secondary batteries, lithium perchlorate (LiCAO4), Houf, lithium nitride (
LiBF4) dissolved in propylene carbonate (PC) or γ-butyrolactone (γ-BL), or dissolved in a mixed solvent of PC and dimethoxyethane (DME) or PC and dioxolane (DiOx) have been put into practical use. Ta.

また最近では、有機電解液二次電池として、正面として
二硫化チタン(TiS2 )  やポリアセチレン、ポ
リピロール、ポリアニリンなどのいわゆる合成金属が良
好な特性を示すことが報告されている。
Recently, it has been reported that so-called synthetic metals such as titanium disulfide (TiS2), polyacetylene, polypyrrole, and polyaniline exhibit good characteristics as front surfaces for organic electrolyte secondary batteries.

一方、負(至)においても、リチウム余端電極の他、可
融合金やアルミニウムを用い、充電により電解液中のリ
チウムイオンを吸蔵し、放電によりリチウムイオンとし
て電解液中に放出する電極、あるいはポリアセチレンや
ポリアニリンを用いて、電解液中のリチウムイオンや、
テトラブチルアンモニウムイオンを充電により吸蔵し、
放電により放出する電層などが検討されている。
On the other hand, in addition to the lithium surplus electrode, there are also electrodes that occlude lithium ions in the electrolyte when charged, and release them as lithium ions into the electrolyte when discharged, in addition to lithium surplus electrodes. Using polyacetylene and polyaniline, lithium ions in the electrolyte,
Occludes tetrabutylammonium ions by charging,
Electrostatic layers that emit electricity through discharge are being considered.

これら二次電池の電解液として、先に述べた一次電池と
同じ電解液のほかに、溶媒に2−メチルテトラヒドロフ
ラン、溶質にリチウムへキサフロロアルセネート(LI
ASF6 )  +過塩素酸テトラブチルアンモニウム
などの組み合わせが検討されている。
In addition to the same electrolyte as the primary battery mentioned above, the electrolyte for these secondary batteries includes 2-methyltetrahydrofuran as a solvent and lithium hexafluoroarsenate (LI) as a solute.
Combinations such as ASF6) + tetrabutylammonium perchlorate are being considered.

発明が解決しようとする問題点 上記に述べた負極や正(至)を用いた有機電解質電池で
は、放電電圧が低かったり、あるいは二次電池では充放
電効率が低いという欠点があり、本発明はこれらの欠点
を改良するものである。
Problems to be Solved by the Invention Organic electrolyte batteries using negative electrodes and positive electrodes as described above have drawbacks such as low discharge voltage and low charge/discharge efficiency in secondary batteries. This is intended to improve these shortcomings.

問題点を解決するための手段 本発明は、少なくとも1つの有機溶媒と少なくとも1つ
の溶質からなる電解液を用いる有機電解液電池において
、前記有機溶媒として、2,4゜6の位置の少くとも1
つにフルオロアルキル基含有する1、3−ジオキソラン
単独かまたはこれを成分とする混合溶媒を用いるもので
ある。ここで負極には、リチウムの他電解液中で充電で
カオオンを吸蔵し、放電により放出する可融合金、アル
ミニウム、ポリアセチレンなどの合成金属など、正(至
)には金属酸化物、金属カルコケン化物、フッ化炭素、
および充電により有機電解液中のアニオンを吸蔵し、放
電によシ放出するポリアセチレン。
Means for Solving the Problems The present invention provides an organic electrolyte battery using an electrolyte consisting of at least one organic solvent and at least one solute, in which the organic solvent is at least one at a position of 2.4°6.
1,3-dioxolane containing a fluoroalkyl group alone or a mixed solvent containing this as a component is used. Here, negative electrodes include synthetic metals such as fusible alloys, aluminum, and polyacetylene, which occlude kaions during charging in an electrolyte other than lithium and release them during discharge, and positive electrodes include metal oxides and metal calcosaponides. , fluorocarbon,
and polyacetylene, which absorbs anions in organic electrolytes when charged and releases them when discharged.

ポリピロール、ポリアニリンなどの合成金属などが用い
られる。
Synthetic metals such as polypyrrole and polyaniline are used.

電解液中でアニオン、カチオンに解離する溶質は、過塩
素酸リチウム、ホウフッ化リチウム、六ブッ化リン酸リ
チウムなどのリチウム塩や、過塩素酸テトラブチルアン
モニウムなどの過塩素酸四級アンモニウム塩が用いられ
る。これらの溶質を2.4.5の位置の少くとも1つに
フルオロアルキル基を有する1、3−ジオキソラン単独
か、またはこれを成分とし、他の成分としてPC,エチ
レンカーポネー)(Ice)、γ−BL 、DME 。
The solutes that dissociate into anions and cations in the electrolyte include lithium salts such as lithium perchlorate, lithium borofluoride, and lithium hexabutyphosphate, and quaternary ammonium perchlorate salts such as tetrabutylammonium perchlorate. used. These solutes are mixed with 1,3-dioxolane having a fluoroalkyl group at at least one of the 2.4.5 positions, or with 1,3-dioxolane as a component and other components as PC, ethylene carbonate (Ice), γ-BL, DME.

DiOx  、 a−メチルジオキソラン、テトラヒド
ロフラン、2−メチルテトラヒドロフランの1つまたは
2以上の組み合わせが用いられる。
One or a combination of two or more of DiOx, a-methyldioxolane, tetrahydrofuran, and 2-methyltetrahydrofuran is used.

作用 2.4.5の位置の少くとも1つにフルオロアルキル基
を有する1、3−ジオキソランは、すべて誘電率は10
以下であり、これを溶媒とした時の前記リチウム塩や、
四級アンモニウム塩の溶解度は、従来のPCやγ−BL
に比べて小さい。
Effect 2.4.5 All 1,3-dioxolanes having a fluoroalkyl group in at least one position have a dielectric constant of 10.
The following is the lithium salt when this is used as a solvent,
The solubility of quaternary ammonium salt is higher than that of conventional PC or γ-BL.
small compared to

さらに、上記溶質を飽和状態まで溶解した電解液の電気
伝導度は、大体2X10 ’Ω−1・α−1までf6す
、従来(7)1−E:A// l ノLiCJOaをp
cに溶解した電解液の5X10 ’Ω−” ・cm−’
 、 P CとDMEの1:1混合溶媒に溶解した電解
液の1,4X10−2Ω−1・cIrL−1に比べ1〜
2桁低く、有機電解液電池用の電解液に不適当かと思わ
れていた。
Furthermore, the electrical conductivity of the electrolytic solution in which the above solute is dissolved to a saturated state is approximately 2×10'Ω−1・α−1.
5X10 'Ω-'cm-' of electrolyte dissolved in c
, 1~1 compared to 1,4X10-2Ω-1・cIrL-1 of the electrolyte dissolved in a 1:1 mixed solvent of PC and DME.
It was two orders of magnitude lower and was thought to be inappropriate as an electrolyte for organic electrolyte batteries.

しかし、低率放電では、正(至)にMnO2や0110
などの金属酸化物、 TiS2 、 Fe50 、 C
uFeS2などの金属カルコゲン化物、フッ化炭素ある
いはポリアセチレンやポリピロールなどの合成金属を用
いた電池では、従来の電解液を用いた電池に比べ放電電
圧が高くなり、また二次電池では、充放電効率が向上す
る。さらに負極に、ポリアセチレンや、ポリアニリンを
用いた二次電池でも充放電効率の向上が見られ、また放
電電圧も低くなり、負極の特性を向上させることがわか
った。
However, in low rate discharge, MnO2 and 0110
Metal oxides such as TiS2, Fe50, C
Batteries that use metal chalcogenides such as uFeS2, fluorocarbons, or synthetic metals such as polyacetylene and polypyrrole have higher discharge voltages than batteries that use conventional electrolytes, and secondary batteries have lower charging and discharging efficiency. improves. Furthermore, it was found that secondary batteries using polyacetylene or polyaniline as negative electrodes also showed improved charge/discharge efficiency, lowered the discharge voltage, and improved the characteristics of the negative electrode.

これは、従来のPCやγ−BL、DMEを用いた電解液
糸に比べて、電(至)の濡れが向上したためと考えられ
るが詳細な理由は明らかでない。
This is thought to be due to improved wetting of the electric current compared to conventional electrolyte threads using PC, γ-BL, or DME, but the detailed reason is not clear.

さらに、2,4.5の位置の少くとも1つにフルオロア
ルキル基(−C:F5や一02F5 、−CHF2 。
Furthermore, at least one of the 2, 4, and 5 positions has a fluoroalkyl group (-C:F5, -02F5, -CHF2).

−CH2F 、 −0H(CF3)2 、  CH2(
CFs) 、 −CH2−CF3など、一般に示される
炭化水素のアルキのうち、少くとも1つ以上の水素がフ
ッ素で置換されたもの)を有する1、3−ジオキソラン
に、他の成分として、PCやγ−BL 、DMEなどを
加えた混合溶媒用いることにより電解液として、溶質の
溶解度が増し、電気伝導度が向上するため、高率放電に
おいても、従来の電解液を用いた場合に較べ、放電電圧
の向上、および二次電池においては、充放電効率の向上
が見られる。
-CH2F, -0H(CF3)2, CH2(
CFs), -CH2-CF3, etc., in which at least one or more hydrogens are substituted with fluorine) is added to 1,3-dioxolane having PC and other components. By using a mixed solvent containing γ-BL, DME, etc. as an electrolyte, the solubility of the solute increases and the electrical conductivity improves, so even in high rate discharge, the discharge is faster than when using a conventional electrolyte. Improvements in voltage and charge/discharge efficiency can be seen in secondary batteries.

このフルオロアルキル基を有する1、3−ジオキソラン
を電解液に用いる時の作用・効果は、従来の電解液にフ
ッ素系界面活性剤を添加した場合とは相当具なる。
The action and effect when using this 1,3-dioxolane having a fluoroalkyl group in an electrolytic solution are comparable to those when a fluorine-based surfactant is added to a conventional electrolytic solution.

従来のフッ素糸界面活性剤は、直鎖状あるいは、2つに
分枝したフッ素化したアルキル基に、親水性、あるいは
親油性を持たせるためにスルフォン酸やスルフォン酸エ
ステルを結合したものである。
Conventional fluorine fiber surfactants are made by bonding sulfonic acid or sulfonic acid ester to a linear or two-branched fluorinated alkyl group to make it hydrophilic or lipophilic. .

これは、フッ素したアルキル基のみでは、まったく親水
性、親油性がないためである。さらに本発明のフルオロ
アルギル基を有する1、3−ジオキソランとの作用上の
局な相違は、溶質の溶解性にある。従来のフッ素糸界面
活性剤の溶質溶解性はまったくないのに対して、本発明
のフルオロアルキル基を有する1、3−ジオキソランは
、0.01〜0,2モ/L/ / l程度の溶解性を持
っている。このため、電池に所用した際の効果として次
のように大きく異ってくる。
This is because a fluorinated alkyl group alone has no hydrophilicity or lipophilicity. Furthermore, the main functional difference between the present invention and the 1,3-dioxolane having a fluoroargyl group lies in the solubility of the solute. While conventional fluorine thread surfactants have no solute solubility, the 1,3-dioxolane having a fluoroalkyl group of the present invention has a solubility of about 0.01 to 0.2 mo/L/L. have sex. For this reason, the effects when used in batteries vary greatly as follows.

従来のフッ素系界面活性剤を使用した場合には。When using conventional fluorosurfactants.

電解液を電池中に注液した段階では、界面活性剤が正負
極に作用して、よく濡れ、正負極と電解液がよく接触し
、優れた電池性能を示す。しかし、電池試作後、放置す
ると、電池性能が低下した。
At the stage when the electrolyte is injected into the battery, the surfactant acts on the positive and negative electrodes to wet them well, resulting in good contact between the positive and negative electrodes and the electrolyte, resulting in excellent battery performance. However, after the battery was prototyped and left unattended, the battery performance deteriorated.

これは、界面活性剤が正負極の表面に集まシ、界面活憔
剤自体が溶質の溶解性を持たないために、すなわちイオ
ン導電性がないため、一種の薄い絶縁膜を形成したのと
同じ状態になったためと考えられる。本発明のフルオロ
アルキル基を有する1゜3−ジオキソランは、溶質の溶
解性を持ち、1o−4Ω口 程度の導電性を有し、正負
極の表面に集まっても絶縁膜のような状態にならないた
め、あるいは化学構造の基本がジオキソラン構造である
ため、他の溶媒たとえばPC+DME、γ−BLと親和
性があり、正負極表面へのフルオロアルキル基を持った
1、3−ジオキソランの集まりが少いため、電池試作直
後、あるいは放置後においても安定した優れた電池性能
を示した。
This is because the surfactant gathers on the surface of the positive and negative electrodes, and because the surfactant itself does not have solubility for solutes, that is, it does not have ionic conductivity, it forms a kind of thin insulating film. This is probably because they are in the same state. The 1°3-dioxolane having a fluoroalkyl group of the present invention has solute solubility and conductivity of about 10-4Ω, and does not form an insulating film-like state even if it collects on the surface of the positive and negative electrodes. or because the basic chemical structure is dioxolane structure, it has affinity with other solvents such as PC+DME, γ-BL, and there is less collection of 1,3-dioxolane with fluoroalkyl group on the surface of the positive and negative electrodes. The battery exhibited stable and excellent performance even immediately after battery prototype production or after being left unused.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

実施例1 負極に金属リチウム、正極活物質にフッ化炭素を用いた
。正瞳はフッ化炭素100重量部に、導電剤のアセチレ
ンブラック20重量部、結着剤のポリ四フッ化エチレン
10重量部加え、よく混合し合剤とした。この合剤0,
6gを合剤中に集電体としてのチタンエキスバンドメタ
ルが埋没するようにして、大きさ2cIrL×2crr
Lにプレス成形した。
Example 1 Metallic lithium was used for the negative electrode, and fluorocarbon was used for the positive electrode active material. For the normal pupil, 100 parts by weight of fluorocarbon, 20 parts by weight of acetylene black as a conductive agent, and 10 parts by weight of polytetrafluoroethylene as a binder were added and mixed thoroughly to form a mixture. This mixture 0,
6g was buried in the mixture so that the titanium extracted band metal as a current collector was buried, and the size was 2cIrL x 2crr.
Press molded into L.

この正極の端の合剤を除き、リードとしてのチタンリボ
ンを集電体にスポット溶接した。この正(至)の理論電
気容量は、332 mAhである。
The mixture at the end of the positive electrode was removed, and a titanium ribbon serving as a lead was spot welded to the current collector. This positive theoretical capacitance is 332 mAh.

負極としては、大きさ2cW1×2CIn、厚さ0.2
 mn+のリチウムをニッケルネットに圧着し、ネット
の端よりニッケフレリボンでリードをとったもので、理
論電気容量は1600mAhである。上記の正極。
The negative electrode has a size of 2cW1×2CIn and a thickness of 0.2
It is made by crimping mn+ lithium onto a nickel net, and taking a lead from the edge of the net with a Nickefle ribbon, and has a theoretical electric capacity of 1600 mAh. Positive electrode above.

負(至)をセパレータとしてのポリプロピレン製不織布
を介して、密着させるようにして電槽中に入れた。これ
に電解液を入れて、真空含浸して、正極合剤中に電解液
を含ませた。
The negative (to) was placed in a battery case with a polypropylene nonwoven fabric as a separator interposed therebetween so that they were in close contact with each other. An electrolytic solution was added to this and vacuum impregnation was performed to impregnate the positive electrode mixture with the electrolytic solution.

この電池の概略図を第1図に示す。図中1は正極、2は
負極、3はセパレータ、4は電解液、6は電槽である。
A schematic diagram of this battery is shown in FIG. In the figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is an electrolytic solution, and 6 is a battery container.

電解液には、本発明の溶媒として、2−ジ(トリフルオ
ロ)イソプロピル− エチル−1,3−ジオキソラン を使用し、これに0.2モル/7iのL工CIOa 全
溶解したものを使った電池を人とする。比較例として1
モル/βのLiClO4を溶解したγ−B!,を用いた
電池をB,1.3−ジオキソランに1モiv/1のLi
Cβ04を溶解した電解液を用いた電池をCとする。第
2図にこれらの電池の20’C1111A定電流放電で
の放電曲線を示す。図よシ明らかなように、低率放電に
おいて、本発明の電解液を用いたものAが、放電電圧が
高くなっていることがわかる。
For the electrolytic solution, 2-di(trifluoro)isopropyl-ethyl-1,3-dioxolane was used as the solvent of the present invention, and 0.2 mol/7i of L-CIOa was completely dissolved in this. Turning batteries into people. As a comparative example 1
γ-B with mol/β of LiClO4 dissolved! , B, 1,3-dioxolane with 1 moiv/1 Li
C is a battery using an electrolyte in which Cβ04 is dissolved. FIG. 2 shows the discharge curves of these batteries in 20'C1111A constant current discharge. As is clear from the figure, in low rate discharge, the discharge voltage is higher in case A using the electrolytic solution of the present invention.

次に2.4.5の位置にフルオロアルキρ基ヲ有する1
.3−ジオキソランのうち、どの位置のフルオロアルキ
ル基が有効がを検討した。2.4のいずれか1つの位置
にアルキル基として、ベンCH2 0H2−CH2 タフルオロエチル基(−CFzCFs)  ヲ有スル1
 。
Next, 1 has a fluoroalkyl ρ group at the 2.4.5 position.
.. We investigated which position of the fluoroalkyl group in 3-dioxolane is effective. 2.4 as an alkyl group, benCH2 0H2-CH2 tafluoroethyl group (-CFzCFs) 1
.

3−ジオキソランで前述と同様の検討を行った結果、2
の位置にフルオロアルキル基を有する1゜3−ジオキソ
ランを用いた方が放電電圧、および正(至)の利用率が
犬であった。この場合4の位置と6の位置は、分子の対
称性より同じである。
As a result of the same study as above with 3-dioxolane, 2
When 1°3-dioxolane having a fluoroalkyl group at the position was used, the discharge voltage and the utilization rate were better. In this case, the positions 4 and 6 are the same due to the symmetry of the molecule.

次に、フルオロアルキル基の種類による影響を検討シた
。1,3−ジオキソランの2の位置のCH2の一方の水
素をフルオロアルキル基で置換した1、3−ジオキソラ
ンを用いて、前述と同様の検討を行った結果 −CFs< −CzFs<−CsF7>  CaF9ノ
ilであった。フルオロアルキル基がブチルになると、
溶媒の溶質溶解性は低下し、宝典性能は低下した。
Next, we investigated the influence of the type of fluoroalkyl group. Using 1,3-dioxolane in which one hydrogen of CH2 at position 2 of 1,3-dioxolane was substituted with a fluoroalkyl group, the same study as above was conducted, and the result was -CFs<-CzFs<-CsF7> CaF9 It was noil. When a fluoroalkyl group becomes butyl,
The solute solubility of the solvent decreased, and the treasure performance decreased.

マタ、フルオロアルキル基中のフッ素の数ニ対しての影
響を検討した。この場合、2の位置にイソプロピルのフ
ロロアルキル基を有する1、3−ジオキソランで検討し
た。その結果は05F6H)03F7≧05F5H2)
 C5F4H5、> 03F5H4の順であり、アルキ
ル基の水素が1つで、残りが全てフッ素である場合が最
とも良かった。
The effect on the number of fluorine atoms in the fluoroalkyl group was investigated. In this case, 1,3-dioxolane having an isopropyl fluoroalkyl group at the 2-position was investigated. The result is 05F6H)03F7≧05F5H2)
The order was C5F4H5 > 03F5H4, and the best case was when the alkyl group had one hydrogen and the rest were all fluorine.

tた、1,3−ジオキソランのCH2の中で、水素1つ
がフルオロアルキル基に置換したもの、水素2つが、2
つのフルオロアルキル基に置換したものを検討した結果
、水素2つが、2つのフルオロアルキル基に置換してい
る方が、電池に適用した場合性能が良かった。
In addition, in CH2 of 1,3-dioxolane, one hydrogen is substituted with a fluoroalkyl group, and two hydrogens are substituted with 2
As a result of examining the substitution of two fluoroalkyl groups, it was found that the one in which two hydrogen atoms were substituted with two fluoroalkyl groups had better performance when applied to a battery.

実施例2 実施例1と同じ構成の電池を用い、電解液のみを変えた
。溶質は全てLよりF4で、その濃度は1モル/2であ
る。peso体積%体積−テトラフルオロエチ/v−4
−ペンタフルオロエチ/L’−1,3−ジオキソラン6
0体積%よりなる混合溶媒を用いた電池をり、peso
体積%体積−3−ジオキソラン50体積%よシなる混合
溶媒を用いたものをE、比較例として、peso体積%
体積−E60体積%より混合溶媒を用いたものをF、p
c5゜体積%、DMK49,9体積%に市販のフッ素糸
界面活性剤をQj体積%加えた混合溶媒を用いた電池を
Gとする。第3図には、試作直後の電池の20°C30
mAの定電流放電を行った時の放電曲線を示す。これよ
り、フルオロアルキル基を有スる1、3−ジオキソラン
を溶媒の成分とすることによシ良好な電池性能を得るこ
とができる。
Example 2 A battery having the same configuration as Example 1 was used, except that only the electrolyte was changed. All solutes are F4 rather than L, and their concentration is 1 mol/2. peso volume% volume-tetrafluoroethyl/v-4
-Pentafluoroethyl/L'-1,3-dioxolane 6
A battery using a mixed solvent consisting of 0% by volume, peso
Volume % volume - E using a mixed solvent such as 50 volume % of 3-dioxolane, and as a comparative example, peso volume %
Volume - F, p using a mixed solvent from 60 volume %
A battery using a mixed solvent of c5° volume %, DMK 49.9 volume %, and Qj volume % of a commercially available fluorine thread surfactant is designated as G. Figure 3 shows the temperature of the battery at 20°C30 immediately after prototype production.
A discharge curve when mA constant current discharge is performed is shown. From this, good battery performance can be obtained by using 1,3-dioxolane having a fluoroalkyl group as a component of the solvent.

第4図には、試作後10日間放置したDとGの電池の2
0°C30mA放電の放電曲線を示す。Gの電池では、
第3図の結果に比べ、放置により相当性能が低下してい
る。しかし、本発明のDの電池では、はとんど性能に差
がないことがわかる。
Figure 4 shows two batteries, D and G, which were left for 10 days after prototype production.
The discharge curve of 0°C 30mA discharge is shown. In the G battery,
Compared to the results shown in FIG. 3, the performance deteriorated considerably due to neglect. However, it can be seen that in the battery D of the present invention, there is almost no difference in performance.

以上の実施例では、正庵活物質にフッ化炭素を用いた例
を示したが、これ以外に、MnO2、CuOなどの金属
酸化物、 TiS2やFeS2 、 CuFeS2など
の金属カルコゲン化物を用いた場合にも同様の効果が見
られた。
In the above example, an example was shown in which fluorocarbon was used as the active material, but in addition to this, metal oxides such as MnO2 and CuO, and metal chalcogenides such as TiS2, FeS2, and CuFeS2 may be used. A similar effect was also seen.

また−次電池以外にも、負(至)にリチウム、ポリアセ
チレン、ポリパラフェニレン、可融合金やアルミニウム
などのように充放電によジリチウムを吸蔵、放出する材
料を正氏にTiS2やMnO2、ポリアセチレン、ポリ
ピロール、ポリパラフェニレンなどを用いた二次電池用
の電解液にも、本発明のフルオロアルキル基を有する1
、3−ジオキソランは有効であった。
In addition to secondary batteries, materials that occlude and release dilithium during charging and discharging, such as negative lithium, polyacetylene, polyparaphenylene, fusible alloys, and aluminum, are also used, such as TiS2, MnO2, and polyacetylene. , polypyrrole, polyparaphenylene, etc., can also be used as an electrolyte for secondary batteries.
, 3-dioxolane was effective.

また電解液の溶質としてLiC404やLiBF4  
以外にL工ASF6 、 LiPF6、などのリチウム
塩、過塩素酸テトラエチルアンモニウムなどの四級アン
モニウム塩を用いた場合でも、本発明のフルオロアルキ
ル基を有する1、3−ジオキソランを用いた方が良好な
性能が得られた。
In addition, LiC404 and LiBF4 are used as solutes in the electrolyte.
In addition, even when using lithium salts such as L-ASF6 and LiPF6, and quaternary ammonium salts such as tetraethylammonium perchlorate, it is better to use the 1,3-dioxolane having a fluoroalkyl group of the present invention. performance was achieved.

本発明のフルオロアルキル基を1,3−ジオキソランを
一成分とした混合溶媒を用いを際には、他の成分として
、前述のプロピレンカーボネート以外K、エチレンカー
ボネート、γ−プチロラクトン、ジメトキシエタン、ジ
オキソラン、1,3−ジオキソラン、テトラヒドロフラ
ン、2−メチルテトラヒドロフランなどを法用すること
ができる。
When using a mixed solvent containing 1,3-dioxolane as one component of the fluoroalkyl group of the present invention, other components other than the above-mentioned propylene carbonate include K, ethylene carbonate, γ-butyrolactone, dimethoxyethane, dioxolane, 1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, etc. can be used.

発明の効果 以上のように、本発明によれば有機電解液−次電池では
放電電圧が向上し、二次電池では充放電効率が向上する
Effects of the Invention As described above, according to the present invention, the discharge voltage of an organic electrolyte secondary battery is improved, and the charging/discharging efficiency of a secondary battery is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の電池の縦断面略図、第2図及
び第3図、第4図は放電特性の比較を示す図である。 1・・・・・・正甑、2・・・・負(至)、3・・・・
・・セパレータ、4・・・・・・電解液。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 竹7’l’l (hp) 曽     解堕“″°     綜 解田(祐妃よ)
FIG. 1 is a schematic vertical cross-sectional view of a battery according to an example of the present invention, and FIGS. 2, 3, and 4 are diagrams showing a comparison of discharge characteristics. 1... Positive, 2... Negative (to), 3...
... Separator, 4... Electrolyte. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Zuchiku 7'l'l (hp) Zeng Kaifall ""° Sokaida (Yukiyo)

Claims (1)

【特許請求の範囲】[Claims] 2、4、5の位置の少くとも1つにフルオロアルキル基
を有する1、3−ジオキソラン単独か、またはこれを成
分とする混合溶媒と、前記溶媒に溶解した少なくとも1
種の溶質からなる電解液を備えた有機電解液電池。
1,3-dioxolane having a fluoroalkyl group at at least one of the 2, 4, and 5 positions, or a mixed solvent containing 1,3-dioxolane as a component, and at least one dioxolane dissolved in the solvent.
An organic electrolyte battery with an electrolyte consisting of a species of solute.
JP60154599A 1985-07-12 1985-07-12 Organic electrolyte battery Expired - Fee Related JPH0610995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154599A JPH0610995B2 (en) 1985-07-12 1985-07-12 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154599A JPH0610995B2 (en) 1985-07-12 1985-07-12 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6215771A true JPS6215771A (en) 1987-01-24
JPH0610995B2 JPH0610995B2 (en) 1994-02-09

Family

ID=15587705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154599A Expired - Fee Related JPH0610995B2 (en) 1985-07-12 1985-07-12 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0610995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123255A1 (en) * 2020-12-11 2022-06-16 Mexichem Fluor S.A. De C.V. Composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255021B1 (en) 1997-08-04 2001-07-03 Sanyo Electric Co., Ltd. Lithium battery including storage stabilized dioxolane-containing electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123255A1 (en) * 2020-12-11 2022-06-16 Mexichem Fluor S.A. De C.V. Composition

Also Published As

Publication number Publication date
JPH0610995B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
KR100473433B1 (en) Non-aqueous electrolyte and non-aqueous electrolytic cell and electrolytic condenser comprising the same
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
KR102050837B1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
CN106207263B (en) Electrolyte solution and battery
JP4517440B2 (en) Lithium ion solid electrolyte secondary battery
JP2003197253A (en) Nonaqueous electrolyte secondary battery
CN106207261B (en) Electrolyte and battery
JP2001052737A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2002319405A (en) Lithium secondary battery
EP3317912B1 (en) Compound used as additive in an electrolyte for an ion-flow battery
JP3029271B2 (en) Non-aqueous secondary battery
JP4686968B2 (en) Non-aqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JPS6215771A (en) Organic electrolyte cell
JP2000077096A (en) Nonaqueous electrolyte battery
JP2002100403A (en) Nonaqueous electrolyte and nonaqueous electrochemical device containing the same
JP2001143749A (en) Electrochemical element including non-aqueous electrolyte
JP2017224428A (en) Battery electrolyte solution and battery
JPS5812991B2 (en) battery
JPH0782839B2 (en) Secondary battery negative electrode
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JPS61163567A (en) Organo-electrolytic solution electric cell
JP2886331B2 (en) Lithium secondary battery
JPS62108474A (en) Organic electrolyte cell
WO2014097618A1 (en) Nonaqueous solvent for electricity storage devices, nonaqueous electrolyte solution, electricity storage device using nonaqueous electrolyte solution, and lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees