JPS62157536A - Signal detection method for spectrophotometer - Google Patents

Signal detection method for spectrophotometer

Info

Publication number
JPS62157536A
JPS62157536A JP29849085A JP29849085A JPS62157536A JP S62157536 A JPS62157536 A JP S62157536A JP 29849085 A JP29849085 A JP 29849085A JP 29849085 A JP29849085 A JP 29849085A JP S62157536 A JPS62157536 A JP S62157536A
Authority
JP
Japan
Prior art keywords
signal
sample
dark
light
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29849085A
Other languages
Japanese (ja)
Inventor
Shinichiro Watanabe
渡辺 伸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP29849085A priority Critical patent/JPS62157536A/en
Publication of JPS62157536A publication Critical patent/JPS62157536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To achieve a higher property of following hourly changes in the absorbance of a sample, by setting the fetching of signals to a signal processing circuit so that the fetching frequency of sample signals will be higher than those of reference signals and dark signals. CONSTITUTION:A while light from a light source 1 is applied to a beam splitter 3 through a spectroscope 2. One luminous flux separated is transmitted through a sample or made to pass through a storage sample chamber 4A to be incident into a detector 5A while the other luminous flux is made to pass through a reference chamber to be incident into a detector 5B. Signals from the detectors 5A and 5B are fetched alternately into a signal processing circuit 7 through a changeover switch circuit 6. The circuit 6 is controlled in the switching by a synchronous signal P from a sample signal multifrequency fetching synchronous signal generation circuit 10. The signal P activates the circuit 6 to operate to fetch a sample signal S-reference signal R-sample signal S-dark signal D in the order during one cycle. This achieves a higher property of following hourly changes in the absorbance of a sample.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は各種試料の光透過率もしくはr?、収率を測
定するための分光光度計に関し、特に液体クロマトグラ
フィーにおける分光光度計の如く、波長走査を行なわず
、参照信号およびダーク信号の変動が試料信号の変化に
対して緩やかな分光光度計における信号検出方法に関す
るものである。
[Detailed Description of the Invention] Industrial Application Field This invention is applicable to the light transmittance or r? of various samples. , concerning spectrophotometers for measuring yield, particularly spectrophotometers that do not perform wavelength scanning, such as spectrophotometers in liquid chromatography, and whose reference signal and dark signal vary slowly relative to changes in the sample signal. The present invention relates to a signal detection method.

従来の技術 従来の分光光度計としては、例えば第6図に示すような
ものが知られている。第6図において、光源1から出た
白色光を分光器2によって分光して所定波長域の単色光
とし、これをビームスプリッタ−3等によって2つの光
束に分離し、一方の光束(試料光束)は試料が通過もし
くは試料が貯留された試料室4Aを透過させて光電子増
倍管などの検出器5Aに入射させ、他方の光束(参照光
束)は試料を入れない状態の試料室とほぼ同等の吸収率
を持つ参照至4Bを透過させて光電子増倍管などの検出
器5Bに入射させる。試料側検出器5Aの検出信号すな
わち試料の透過光強度をあられす試料信号Sと、参照側
検出器5Bの検出信号すなわち参照信号Rと、検出器に
光の入射が全くない状態の検出器の出力信号に相当する
零補正用のダーク信号D(光学的にダーク信号とみなさ
れるときの該ダーク信号または接地レベルの信号を用い
る)とを切替スイッチ回路6によって第7図に示すよう
に交互に切替えて信号処理回路7に与える。この信号処
理回路7においては、スイッチ回路6により交互に切替
えられて加えられたS1R,Dの信号をADコンバータ
8によりデジタル化するとともに、演算処理回路9にお
いて試料信号Sおよび参照信号Rからダーク信号りを差
し引き、かつその差し引かれた信号(S−D)、(R−
D)の比、すなわち(S−D>/ (R−D>の1直を
求める。このようにして求められた比の値は、ダーク信
号りの差し引きにより信号系路のドリフトやノイズの影
響が除去されしかも光源のふらつきによる影響も除去さ
れた試料透過率(吸光度の逆数)を表わりことになる。
2. Description of the Related Art As a conventional spectrophotometer, one shown in FIG. 6, for example, is known. In Fig. 6, white light emitted from a light source 1 is separated into monochromatic light in a predetermined wavelength range by a spectroscope 2, which is separated into two light beams by a beam splitter 3, etc., and one light beam (sample light beam) is separated into two light beams. The beam passes through the sample chamber 4A where the sample passes or is stored and enters the detector 5A such as a photomultiplier tube, and the other beam (reference beam) is almost the same as that of the sample chamber without the sample. The reference beam 4B having an absorption rate is transmitted and made incident on a detector 5B such as a photomultiplier tube. The detection signal of the sample-side detector 5A, that is, the sample signal S that measures the transmitted light intensity of the sample, the detection signal of the reference-side detector 5B, that is, the reference signal R, and the detection signal of the detector in a state where no light is incident on the detector. A dark signal D for zero correction corresponding to the output signal (using the dark signal or a ground level signal when optically considered as a dark signal) is alternately switched by the changeover switch circuit 6 as shown in FIG. The signal is switched and applied to the signal processing circuit 7. In this signal processing circuit 7, the signals S1R and D, which are alternately switched and added by the switch circuit 6, are digitized by the AD converter 8, and the arithmetic processing circuit 9 converts the sample signal S and the reference signal R into a dark signal. and the subtracted signal (S-D), (R-
D), that is, (S-D>/(R-D>). The value of the ratio obtained in this way is calculated by subtracting the dark signal, and the effect of drift and noise in the signal path is calculated. It represents the sample transmittance (the reciprocal of the absorbance) which has been removed and the influence of light source fluctuation has also been removed.

ここで従来の一般の分光光度計においては、切替スイッ
チ回路6により信号処理回路7に取込まれる試料信号S
、参照信号R、ダーク信号りは第7図に示されるように
1サイクル中で1個ずつ、すなわら等頻度とされている
のが通常でおる。
Here, in the conventional general spectrophotometer, the sample signal S is taken into the signal processing circuit 7 by the changeover switch circuit 6.
, the reference signal R, and the dark signal are normally set at equal frequency, one each in one cycle, as shown in FIG.

発明が解決すべき問題点 前)ホのような分光光度計は従来から高速液体クロマト
グラフィーにも広く用いられているが、高速液体クロマ
トグラフィーにおいては、同−波長域の光に対する吸光
度の経時変化をクロマトグラフとして求めることが必要
でおり、波長走査は行なわれない。このような高速クロ
マトグラフィーにおいて高精度のクロマトグラフ分析を
行なうためには、時間の経過に伴なう試料の吸光度変化
に対する追従性を高めることが必要であり、そのために
は信号処理回路に対する試料信号の取入れ間隔を可及的
に短くすることが必要である。しかしながら従来の分光
光度計においては第7図に示したように試料信号S、参
照信号Rおよびダーク信号りが等頻度で取込まれていた
から、信号の追従性はその等頻度取込みによって制約さ
れていたのが実情でおる。
Problems to be Solved by the Invention Previous) Spectrophotometers such as E have been widely used in high-performance liquid chromatography, but in high-performance liquid chromatography, changes in absorbance over time for light in the same wavelength range are important. It is necessary to obtain it chromatographically, and wavelength scanning is not performed. In order to perform highly accurate chromatographic analysis in such high-speed chromatography, it is necessary to improve the ability to follow changes in sample absorbance over time. It is necessary to shorten the intake interval as much as possible. However, in conventional spectrophotometers, as shown in Figure 7, the sample signal S, reference signal R, and dark signal were captured at equal frequencies, so signal followability was limited by the equal frequency of capture. That is the reality.

この発明は以上のような事情を背景としてなされたもの
で、高速液体クロマドグレフイーの分光光度計の如く、
波長走査を行なわない分光光度計において、試料の経時
的な吸光度変化に対する追従性を高めて、高精度の分析
を行ない得るようにした分光光度計の信号検出方法を提
供するものでおる。
This invention was made against the background of the above-mentioned circumstances, and, like the high-performance liquid chromatographic spectrophotometer,
The present invention provides a signal detection method for a spectrophotometer that does not perform wavelength scanning, which improves the ability to follow changes in the absorbance of a sample over time, and enables highly accurate analysis.

問題点を解決するための手段 前述のように高速液体クロマトグラフィーの分光光度計
においては、波長走査は行なわず、一定の波長域で検出
を行なう。この場合、波長走査を行なう場合と比較して
参照信号の変動は格段に緩かとなる。また光源のふらつ
きによる参照信号の変動や、電気信号系路における温度
変化によるドリフトに起因するダーク信号の変動も少な
い。したがってこの場合は、試料の吸光度変化による試
料信号の変化と比較しても、参照信号およびダーク信号
の変動が格段に緩やかでおると言うことができる。この
ことは、高速液体クロマトグラフィーの分光光度計では
参照信号およびダーク信号の信号処理回路への取入れ頻
度を少なくしても分析精度への影響が少ないことを意味
する。そこでこの発明では、試料信号の取入れ頻度を参
照信号およびダーク信号の取入れ頻度より相対的に大き
くすることによって、試料の吸光度変化に対する検出デ
ータの追従性を高めるようにしたのでおる。
Means for Solving the Problems As mentioned above, in high performance liquid chromatography spectrophotometers, wavelength scanning is not performed, but detection is performed in a fixed wavelength range. In this case, fluctuations in the reference signal are much gentler than in the case of wavelength scanning. Also, there are less fluctuations in the reference signal due to fluctuations in the light source and fluctuations in the dark signal due to drift due to temperature changes in the electrical signal path. Therefore, in this case, it can be said that the fluctuations in the reference signal and dark signal are much gentler than the changes in the sample signal due to changes in the absorbance of the sample. This means that in a high-performance liquid chromatography spectrophotometer, even if the frequency of introducing the reference signal and dark signal into the signal processing circuit is reduced, there is little effect on analysis accuracy. Therefore, in the present invention, the frequency at which the sample signal is taken in is made relatively higher than the frequency at which the reference signal and the dark signal are taken in, thereby increasing the ability of the detection data to follow changes in the absorbance of the sample.

具体的には、この発明は、試料至を透過した光の強度に
対応する試料信号と、参照至を透過した光の強度に対応
する参照信号と、光の入射がない状態に相当するダーク
信号とを交互に信号処理口。
Specifically, this invention provides a sample signal corresponding to the intensity of light transmitted through the sample, a reference signal corresponding to the intensity of light transmitted through the reference, and a dark signal corresponding to a state where no light is incident. and the signal processing port alternately.

路に取入れ、その信号処理回路において試料信号からダ
ーク信号を差引いた信号強度と参照信号からダーク信号
を差引いた信号強度との比を求めるようにした分光光度
計において、前記信号処理回路に対する各信号の取入れ
を、一定時間内における試料信号の取入れ頻度が参照信
号の取入れ頻度およびダーク信号の取入れ頻度より多く
なるように設定したことを¥Ti!とするものである。
In a spectrophotometer, the signal processing circuit calculates the ratio between the signal intensity obtained by subtracting the dark signal from the sample signal and the signal intensity obtained by subtracting the dark signal from the reference signal. ¥Ti! is set so that the frequency of sample signal intake within a certain period of time is higher than the frequency of reference signal intake and the frequency of dark signal intake. That is.

作   用 この発明の信号検出方法においては、信号処理回路に対
する試料信号の取入れ頻度を、参照信号の取入れ頻度お
よびダーク信号の取入れ頻度よりも高くしている。した
がって試料信号の取入れ頻度と参照信号取入れ頻度とダ
ーク信号取入れ頻度とが相等しい場合(等頻度取入れ)
と比較すれば、各信号の切替え間隔が一定でも試料信号
の取入れ間隔は短かくなり、そのため試料の経時的吸光
度変化に対する追従性は良好となる。
Function: In the signal detection method of the present invention, the sample signal is introduced into the signal processing circuit at a higher frequency than the reference signal and the dark signal. Therefore, if the sample signal intake frequency, reference signal intake frequency, and dark signal intake frequency are equal (equal frequency intake)
Compared to this, even if the switching interval of each signal is constant, the sampling interval of the sample signal is shortened, and therefore the ability to follow the change in absorbance of the sample over time becomes better.

一方、参照信号およびダーク信号の取入れ頻度は相対的
に少なくなり、このことは各信号の切替え間隔が一定で
おれば参照信号および暗光信号の取入れ間隔が長くなる
ことを意味するが、既に述べたように高速液体クロマト
グラフィーでは波長走査を行なわれないため参照信号の
変動は緩やかでおり、また暗光信号の変動も少ないから
、これらの取入れ間隔が長くなっても最終的なデータの
精度はほと/υど低下しないのでおる。
On the other hand, the frequency of acquisition of the reference signal and dark signal becomes relatively low, which means that if the switching interval of each signal is constant, the interval of acquisition of the reference signal and dark signal becomes longer. As mentioned above, in high performance liquid chromatography, wavelength scanning is not performed, so the fluctuations in the reference signal are gradual, and the fluctuations in the dark light signal are also small, so even if the acquisition interval is long, the accuracy of the final data is It doesn't really decrease.

実施例 第1図にこの発明の方法を同時並列に試料信号Sおよび
参照信号Rを取込むようにした分光光度計に適用する一
例を示す。第1図において第6図に示される従来技術の
要素と同一の要素については同一の符号を付し、その説
明は省略する。
Embodiment FIG. 1 shows an example in which the method of the present invention is applied to a spectrophotometer that captures a sample signal S and a reference signal R simultaneously in parallel. In FIG. 1, the same elements as those of the prior art shown in FIG. 6 are designated by the same reference numerals, and their explanation will be omitted.

第1図において、各検出器5A、5Bからの信号を信号
処理回路7に交互に取込むための切替スイッチ回路6は
、試料信号多頻度取入れ同明信号発生回路10からの同
期信号Pによって切替えが制御される。この同期信号P
は、切替スイッチ回路6を、試料信号S−参照信号R−
試料信褥s−ダーク信号り、5−R−3−D、5−R−
3−Dの順に取込むように動作させるような信号となっ
ている。このようにして信号処理回路7に取込まれる信
号形態を模式的に第2図に示す。
In FIG. 1, a changeover switch circuit 6 for alternately inputting signals from each detector 5A and 5B to a signal processing circuit 7 is switched by a synchronization signal P from a sample signal frequent input signal generation circuit 10. is controlled. This synchronization signal P
, the changeover switch circuit 6 is connected to the sample signal S-reference signal R-
Sample reliability s-dark signal, 5-R-3-D, 5-R-
The signal is such that the data is operated to be captured in the order of 3-D. FIG. 2 schematically shows the form of the signal taken into the signal processing circuit 7 in this manner.

第2図から理解できるように、参照信号Rとダーク信号
りが各1個取り入れられるサイクルを1周期下とすれば
、その1周期丁の間に試料信号Sは2回取入れられるこ
とになる。したがって第7図に示すような等頻度取込み
の場合と比較して、試料信号Sの取込み頻度は、各信号
切替えの間隔が同じでめれば、1,5倍となり、したが
って試料信号Sの取込み間隔は、2/3に短縮される。
As can be understood from FIG. 2, if the cycle in which one each of the reference signal R and the dark signal R is taken in is one period below, the sample signal S will be taken in twice during that one period. Therefore, compared to the case of equal frequency acquisition as shown in FIG. The spacing is reduced by 2/3.

なお参照信号Rおよびダーク信号りについては、その取
込み間隔が長くなるが、回路内の時定数を従来よりも大
きくしておくことによりダーク信号りのS/N比を改善
してから、試料信号Sとの差引演算や比率演算を行なう
ことができ、このように参照信号Rおよびダーク信号り
の時定数を大きくしても、既に述べたようにそれらの変
動は極めて緩やかであるため、特に支障はない。
Note that the acquisition interval for the reference signal R and the dark signal will be longer, but by making the time constant in the circuit larger than before, the S/N ratio of the dark signal is improved, and then the sample signal is Even if the time constants of the reference signal R and the dark signal are increased in this way, their fluctuations are extremely gradual, so this is not a particular problem. There isn't.

第3図および第4図にはこの発明を試料信号Sおよび参
照信号Rとダーク信号Dを逐次検出する分光光度計に適
用する例を示す。
3 and 4 show an example in which the present invention is applied to a spectrophotometer that sequentially detects a sample signal S, a reference signal R, and a dark signal D.

第3図において、試料至4Aを透過した試料光はミラー
11を経てセクター12を透過し、検出器5に入射され
、また参照至5Bを透過した参照光はミラー13を経て
前記セクター12により反射され、同じ検出器5に入射
される。ここで前記セクター12は、第4図に示すよう
に円盤を90’間隔で区分し、第1の試料光透過部12
Aと、参照光反射部12Bと、第2の試料光透過部12
Cと、試料光を透過ざ1!肇かつ参照光に対しても実質
的に反射させない無反射部12Dとをその順に形成した
ものである。
In FIG. 3, the sample light that has passed through the sample 4A passes through the mirror 11, passes through the sector 12, and enters the detector 5, and the reference light that has passed through the reference 5B passes through the mirror 13 and is reflected by the sector 12. and incident on the same detector 5. Here, the sectors 12 divide the disk at 90' intervals as shown in FIG.
A, the reference light reflecting section 12B, and the second sample light transmitting section 12
C and transmit the sample light 1! A non-reflective portion 12D that substantially does not reflect even reference light is formed in this order.

このようなセクター12をその軸Oを中心としてモータ
等の回転駆動源14により回転させることにより検出器
5にはセクター12の1回転で試料光と、参照光と、試
料光と、周囲の影響による明光(ダーク光)とがその順
に入射されることになる。したがって検出器5からは直
接第2図に示すような5−R−3−Dの信号が出力され
ることになる。
By rotating such a sector 12 around its axis O by a rotation drive source 14 such as a motor, the detector 5 receives sample light, reference light, sample light, and the influence of the surroundings in one rotation of the sector 12. bright light (dark light) is incident in that order. Therefore, the detector 5 directly outputs a 5-R-3-D signal as shown in FIG.

この場合には、検出器5の出力自体が試料信号多頻度と
した順次信号となるから、第1図の場合のような切替ス
イッチ回路6は省くことが可能となる。
In this case, since the output of the detector 5 itself becomes a sequential signal with a high frequency of sample signals, the changeover switch circuit 6 as in the case of FIG. 1 can be omitted.

なお、第1図に示すように切替スイッチ回路6を用いて
信号を信号処理回路7に取込む場合、参照信号Rの期間
あるいはダーク信号りの期間中に、例えば温度モニター
信号等の他の情報を取込んでも良い。ダーク信号りの期
間中に他の信号Pを取囲む場合の信号処理回路7に対す
る取込みを第5図に示す。
Note that when the changeover switch circuit 6 is used to input a signal into the signal processing circuit 7 as shown in FIG. You may also incorporate FIG. 5 shows the acquisition to the signal processing circuit 7 when other signals P are surrounded during the dark signal period.

なお信号処理回路7の実際の閏成は、第1図の例に限ら
ないことはもちろんであり、また演算処理回路つとして
は、パーソナルコンピュータを利用しても良いことはも
ちろんでおる。
The actual construction of the signal processing circuit 7 is of course not limited to the example shown in FIG. 1, and it goes without saying that a personal computer may be used as the arithmetic processing circuit.

なおまた、フ第1−ダイオードアレイのような多素子検
出器を用いて多波長同時検出を行なうような多波長分光
光度計の場合にも同様の処理を行ない得ることはもちろ
んである。
It goes without saying that similar processing can be performed in the case of a multi-wavelength spectrophotometer that simultaneously detects multiple wavelengths using a multi-element detector such as a diode array.

発明の効果 以上の説明で明らかなようにこの発明の信号検出方法に
よれば、高速液体クロマトグラフィーの分光光度計の如
く、参照信号およびダーク信号の変動が緩やかな場合に
おいて、試料信号の取入れ間隔を短くして、試料の経時
的吸光度変化に対する追従性を高め、これによって分析
精度を従来よりも向上させることかできる。
Effects of the Invention As is clear from the above explanation, according to the signal detection method of the present invention, when the reference signal and the dark signal fluctuate slowly, such as in a high-performance liquid chromatography spectrophotometer, the sample signal acquisition interval can be reduced. By shortening the length of time, it is possible to improve the ability to follow the change in absorbance of the sample over time, thereby improving the analytical accuracy compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は−この発明の方法の実施に使用される0分光光
度計の一例を示すブロック図、第2図はこの発明の方法
において信号処理回路に取入れられる信号波形の一例を
示す線図、第3図はこの発明の   一方法の実施に使
用される分光光度計の他の例を示すブロック図、第4図
は第3図の分光光1宴削におけるセクターを示す平面図
、第5図はこの発明の方法において信号処理回路に取入
れられる信号波形の他の例を示す線図、第6図は従来の
分光光度計の一例を示すブロン゛り図、第7図は従来の
分光光度計における信号波形の一例を示す線図である。 R・・・参照信号、 S・・・試料信号、 D・・・ダ
ーク信号、 4A・・・試料至、 4B・・・参照至、
 5.5A、5B・・・検出器、 6・・・切替スイッ
チ回路、7・・・信号処理回路、 12・・・セクター
1 is a block diagram showing an example of a spectrophotometer used in carrying out the method of the present invention; FIG. 2 is a diagram showing an example of a signal waveform introduced into a signal processing circuit in the method of the present invention; FIG. 3 is a block diagram showing another example of a spectrophotometer used to carry out one method of the present invention, FIG. 4 is a plan view showing sectors in the spectral beam 1 of FIG. 3, and FIG. 5 6 is a diagram showing another example of the signal waveform incorporated into the signal processing circuit in the method of the present invention, FIG. 6 is a bronze diagram showing an example of a conventional spectrophotometer, and FIG. 7 is a diagram showing a conventional spectrophotometer. FIG. 2 is a diagram showing an example of a signal waveform in FIG. R... Reference signal, S... Sample signal, D... Dark signal, 4A... To sample, 4B... To reference,
5.5A, 5B...detector, 6...changeover switch circuit, 7...signal processing circuit, 12...sector.

Claims (2)

【特許請求の範囲】[Claims] (1)試料室を透過した光の強度に対応する試料信号と
、参照室を透過した光の強度に対応する参照信号と、光
の入射がない状態に相当するダーク信号とを交互に信号
処理回路に取入れ、その信号処理回路において試料信号
からダーク信号を差引いた信号強度と参照信号からダー
ク信号を差引いた信号強度との比を求めるようにした分
光光度計において、 前記信号処理回路に対する各信号の取入れを、一定時間
内における試料信号の取入れ頻度が参照信号の取入れ頻
度およびダーク信号の取入れ頻度より多くなるように設
定したことを特徴とする分光光度計における信号検出方
法。
(1) Signal processing alternately with a sample signal corresponding to the intensity of light transmitted through the sample chamber, a reference signal corresponding to the intensity of light transmitted through the reference chamber, and a dark signal corresponding to the state where no light is incident. In a spectrophotometer, the signal processing circuit calculates the ratio between the signal intensity obtained by subtracting the dark signal from the sample signal and the signal intensity obtained by subtracting the dark signal from the reference signal. A method for detecting a signal in a spectrophotometer, characterized in that the frequency of sample signal is set to be higher than the frequency of reference signal and dark signal within a certain period of time.
(2)信号処理回路に参照信号およびダーク信号が各1
回取入れられる1サイクルの周期中に、試料信号が2回
取入れられることを特徴とする特許請求の範囲第1項記
載の分光光度計における信号検出方法。
(2) One reference signal and one dark signal in the signal processing circuit
2. The signal detection method in a spectrophotometer according to claim 1, wherein the sample signal is taken in twice during one cycle in which the sample signal is taken in twice.
JP29849085A 1985-12-30 1985-12-30 Signal detection method for spectrophotometer Pending JPS62157536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29849085A JPS62157536A (en) 1985-12-30 1985-12-30 Signal detection method for spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29849085A JPS62157536A (en) 1985-12-30 1985-12-30 Signal detection method for spectrophotometer

Publications (1)

Publication Number Publication Date
JPS62157536A true JPS62157536A (en) 1987-07-13

Family

ID=17860379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29849085A Pending JPS62157536A (en) 1985-12-30 1985-12-30 Signal detection method for spectrophotometer

Country Status (1)

Country Link
JP (1) JPS62157536A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003090A (en) * 2011-06-21 2013-01-07 Shimadzu Corp Spectrophotometer
WO2015122237A1 (en) * 2014-02-12 2015-08-20 住友電気工業株式会社 Spectroscopic analysis device and spectroscopic analysis method
JP7049721B1 (en) * 2021-10-21 2022-04-07 アクア化学株式会社 Oil content measuring device and oil content measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126581A (en) * 1978-03-24 1979-10-01 Hitachi Ltd Two luminous flux spectrophotometer
JPS54159282A (en) * 1978-06-07 1979-12-15 Hitachi Ltd Analog signal sampling system of spectrophotometer
JPS59145933A (en) * 1982-09-27 1984-08-21 Japan Spectroscopic Co Double luminous flux spectrophotometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126581A (en) * 1978-03-24 1979-10-01 Hitachi Ltd Two luminous flux spectrophotometer
JPS54159282A (en) * 1978-06-07 1979-12-15 Hitachi Ltd Analog signal sampling system of spectrophotometer
JPS59145933A (en) * 1982-09-27 1984-08-21 Japan Spectroscopic Co Double luminous flux spectrophotometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003090A (en) * 2011-06-21 2013-01-07 Shimadzu Corp Spectrophotometer
WO2015122237A1 (en) * 2014-02-12 2015-08-20 住友電気工業株式会社 Spectroscopic analysis device and spectroscopic analysis method
JP7049721B1 (en) * 2021-10-21 2022-04-07 アクア化学株式会社 Oil content measuring device and oil content measuring method

Similar Documents

Publication Publication Date Title
US5011295A (en) Method and apparatus to simultaneously measure emissivities and thermodynamic temperatures of remote objects
US5748308A (en) Programmable standard for use in an apparatus and process for the noninvasive measurement of optically absorbing compounds
JP4312294B2 (en) Isotopomer absorption spectroscopy analyzer and method
JP2002543380A (en) Apparatus and method for measuring attenuation of electromagnetic wave intensity in multipath spectroscopy
CN110082068B (en) Fiber grating wavelength demodulation system and method with wavelength correction function
US3924950A (en) Atomic absorption spectroscopy with background correction
JP5358890B2 (en) Interference spectrophotometer
US5185645A (en) Measurement method for the determination of low levels of optical absorption
US5977546A (en) Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements
JPS62157536A (en) Signal detection method for spectrophotometer
US4999010A (en) Dual beam optical nulling interferometric spectrometer
CN212031304U (en) Novel Raman spectrometer based on optical field coupling device
Höhl et al. Efficient procedure for the measurement of preresonant excitation profiles in UV Raman spectroscopy
JPH11173982A (en) Method and apparatus for measuring concentration of protein in serum
JP5206322B2 (en) Spectrophotometer
WO2011114096A2 (en) Multiple pathlength gas cell
US4787746A (en) Refractometric detector for liquid phase chromatograph
KR100406838B1 (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JPS62157537A (en) Signal processing method for spectrometer
JPH11101739A (en) Ellipsometry apparatus
US20230296438A1 (en) Absorbance spectroscopy analyzer and method of use
JPH0634439A (en) High-resolution spectroscope
JPS6385414A (en) Multibeam photometry instrument
US20220011228A1 (en) Method and apparatus for surface plasmon resonance imaging
TW202127010A (en) Shift detection method of absorption spectrum by the light intensity differential signals of the rising and falling edges of the absorption spectrum