JPS621571B2 - - Google Patents

Info

Publication number
JPS621571B2
JPS621571B2 JP5338682A JP5338682A JPS621571B2 JP S621571 B2 JPS621571 B2 JP S621571B2 JP 5338682 A JP5338682 A JP 5338682A JP 5338682 A JP5338682 A JP 5338682A JP S621571 B2 JPS621571 B2 JP S621571B2
Authority
JP
Japan
Prior art keywords
indium
resin
group
acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5338682A
Other languages
Japanese (ja)
Other versions
JPS58172256A (en
Inventor
Arinobu Kataoka
Kimiaki Matsuda
Kenji Ochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5338682A priority Critical patent/JPS58172256A/en
Publication of JPS58172256A publication Critical patent/JPS58172256A/en
Publication of JPS621571B2 publication Critical patent/JPS621571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、インジウムを含有する溶液からイン
ジウムを回収する方法に関するものである。さら
に詳しくは特殊なキレート樹脂を使用して、溶液
中のインジウムを吸着回収する方法に関するもの
である。 インジウムは地球上に広く存在するが天然に濃
縮された状態で存在しないため、何らかの方法で
多量成分を除去しつつ微量成分を含む液を循環さ
せることによつて濃縮させるか、非常に希薄な状
態から直接回収する方法が考えられている。 インジウムの工業的生産は、亜鉛製錬、鉛製練
の副産物の中に濃縮されるスラグから行なわれて
いる。インジウムの工業的生産方法としては、た
とえば鉛溶鉱炉スラグを、硫酸浸出し、インジウ
ム、鉛等を含有する残渣と、亜鉛、銅、カドミニ
ウム等成分を含有する溶液とに分けた後、上記残
渣をさらに硫酸浸出を行なつてインジウムを溶解
し鉛と分離し、上記インジウム含有溶液に、酸化
亜鉛と硫化ソーダを添加し、中和硫化を行ないイ
ンジウムを沈澱として分離し、該沈澱に水酸化ナ
トリウムを加え不純物を溶解除去し、残渣である
インジウムを再度硫酸浸出し、硫化水素処理を施
し不純物を沈澱除去した後、アルミニウム置換
し、電解によつて金属インジウムを得る方法が知
られている。 インジウムの最も有効な原料であるこれら鉱石
中には、多種類の元素を有しているためインジウ
ムを製造するための処理は上述のように複雑であ
りインジウムを低コストで回収することは容易で
はない。 また、インジウム含有溶液からインジウムを回
収する方法としてイミノジ酢酸型の官能基を有す
るキレート樹脂で吸着回収する方法は公知である
(Anal chem.Acta.アナリテイカ、ヒミカ、アク
タ、40(1968)479−485)。しかしながら、上記
イミノジ酢酸型の官能基を有するキレート樹脂を
用いる方法では使用試剤当りのインジウムの回収
量が工業的には十分なものでないとか、インジウ
ムの選択吸着性が必ずしも高くない、といつた欠
点があり、未だ工業的に満足されたものではな
い。 かかる事情に鑑み、本発明者らは上記不都合を
克服したインジウムの回収方法を見出すべく、鋭
意研究した結果、特定の官能基を有するキレート
樹脂が、インジウム含有溶液中のインジウムを高
選択的に吸着するということを見出し、本発明方
法を完成するに至つた。すなわち、本発明は分子
中にオキシム基、アミノアルキレン燐酸基、オキ
シン基、ジチオカルバミン酸基、及び前記官能基
の金属塩から選ばれた少なくとも一種の官能基を
有するキレート樹脂をインジウムを含有する溶液
と接触せしめることを特徴とする溶液中に含まれ
るインジウムの回収方法を提供するにある。 本発明において用いられるキレート樹脂は分子
中にオキシム基、アミノアルキレン燐酸基、オキ
シン基、ジチオカルバミン酸基または前記官能基
の金属塩を有するキレート樹脂であれば特に制限
されるものではない。 本発明の前記官能基の金属塩を有するキレート
樹脂とはオキシム基、アミノアルキレン燐酸基、
オキシン基またはジチオカルバミン酸基との金属
塩の間のキレート結合による金属塩であつてこれ
ら塩形成の金属塩の結合力が前記官能基とインジ
ウムとの結合力より弱い金属であれば特に制限さ
れるものではない。該金属塩の金属としては一般
にはナトリウム、カリウム、カルシウム、マグネ
シウム等のアルカリ金属、アルカリ土類金属が使
用される。 オキシム基を有するキレート樹脂としてはアル
デヒド基、ケトン基を有したスチレン−ジビニル
ベンゼン共重合体、フエノール樹脂、ポリエチレ
ン、ポリプロピレン等の重合体にヒドロキシルア
ミンを反応させた樹脂、クロルメチル基、スルホ
ニルクロリド基、カルボニルクロリド基、イソシ
アナート基、エポキシ基、アルデヒド基等アミン
反応性基を有したスチレン−ジビニルベンゼン共
重合体、フエノール樹脂、ポリエチレン、ポリプ
ロピレン、ポリ塩化ビニル等の重合体(以下、ア
ミン反応性基を有した樹脂と称す。)にアミノア
セトアルドキシム、イミノジアセトアルドキシ
ム、アミノベンズアルドキシム、アミノアルキル
ベンズアルドキシム、アミノベンズヒドロキサム
酸、アミノアルキルベンズヒドロキサム酸、等ア
ミノ基、イミノ基と少くとも分子中に1つのオキ
シム基を有した化合物、前記化合物の混合物を反
応させた樹脂、アルキルアミノベンズアルドキシ
ム、ホルミルベンズアルドキシム、ベンズアルド
キシム、ベンズヒドロキサム酸、アルキルアミノ
ベンズアルドキシム、アルキルアミノベンズヒド
ロキサム酸、アルキルアミノメタンベンズアルド
キシム、アルキルアミノメタンベンズヒドロキサ
ム酸、アルキルアミノエタンベンズアルドキシ
ム、アルキルアミノエタンベンズヒドロキサム
酸、ホルミルベンズアルドキシム、ホルミルベン
ズアセトアルドキシム、ベンズイソキサゾールア
セトアルドキシム、ベンズイソキサゾールアセト
ヒドロキサム酸オキシム、ベンズイソキサゾール
アセトヒドロキサム酸、フエニルスルフイニルア
セトアルドキシム、アルキルアミノフエニルスル
フイニルアセトアルドオキシム、アルキルアミノ
フエニルメチルスルフイニルアセトアルドキシ
ム、アルキルアミノフエニルエチルスルフイニル
アセトアルドキシム、アルキルアミノフエニルカ
ルボニルアセトアルドキシム、アルキルアミノメ
チルフエニルカルボニルアセトアルドキシム、ベ
ンジルジオキシム、ベンジルオキシム、ベンズイ
ミダゾイルチオアセトアルドキシム、等の少くと
も分子中に1つのオキシム基を有した化合物、前
記化合物の混合物又は前記化合物とアニリン、レ
ゾルシン、3−アミノピリジン、4−アミノピリ
ジン、4−アミノベンゼンスルホン酸、4−アミ
ノカルボン酸との混合物とホルマリン、エピクロ
ルヒドリン、エピブロムヒドリン等との縮合反応
樹脂、アクリロニトリル、α−クロルアクリロニ
トリル、シアン化ビニリデン、メタアクリロニト
リル等のシアン化ビニル系単量体の重合体若しく
はシアン化ビニル系単量体と共重合が可能な他の
エチレン系不飽和単量体との共重合体に、ヒドロ
キシルアミン又はヒドロキシルアミンの誘導体を
反応させアミドオキシム基を有せしめた樹脂;ア
クリロニトリル、α−クロルアクリロニトリル、
シアン化ビニリデン、メタアクリロニトリル等の
シアン化ビニル系単量体にヒドロキシルアミン又
はヒドロキシルアミン誘導体を反応させたシアン
化ビニル系誘導体を単独重合又は共重合可能な他
のエチレン系不飽和単量体と重合させた樹脂;ア
ミン反応性基を有した樹脂にアミノアセトニトリ
ル、アミノマロンニトリル、ジアミノマレオニト
リル、ジシアンジアミド、イミノジアセトニトリ
ル、1−アミノ−2−シアノエタン、4−アミノ
ベンゾニトリル、1−アミノ−3−シアノプロパ
ン等アミノ基、イミノ基を有したニトリル化合物
を反応させ次いで、ヒドロキシルアミン又はヒド
ロキシルアミン誘導体を反応させた樹脂;前記ア
ミノ基、イミノ基を有したニトリル化合物とヒド
ロキシルアミン又はヒドロキシルアミン誘導体と
の反応により得られる生成物を前記アミン反応性
基を有した樹脂に反応させた樹脂;スルホン酸
基、カルボン酸基、燐酸基、ジチオカルボン酸
基、アルキルアミノ基等を有したスチレン−ジビ
ニルベンゼン共重合体、フエノール樹脂等の樹脂
をハロゲン化処理したものに前記アミノ基、イミ
ノ基を有したニトリル化合物とヒドロキシルアミ
ン又はヒドロキシルアミン誘導体との反応により
得られる生成物を反応させた樹脂;ベンズアミド
キシム、ベンジルアミノ−N−メタンジアミドジ
オキシム、ベンジルアミノ−N−エタンジアミド
ジオキシム、(2−ベンゾイミダゾリルチオ)ア
セトンアミドキシム、(2−ベンゾイミダゾリル
チオ)エチルアミドキシム、(2−ベンゾイミダ
ゾリルチオ)プロピルアミドキシム、1・2−ベ
ンズイソキサゾール−3−アセトアミドキシム、
5−フルオロ−1・2−ベンズイソキサゾール−
3−アセトアミドキシム、フエニルスルフイニル
アセトアミドキシム、(3−クロルフエニルスル
フイニル)−アセトアミドキシム等の少くとも分
子中に1つのアミドキシム基を有した化合物、前
記化合物の混合物又は別記化合物とアニリン、レ
ゾルシン、3−アミノピリジン、4−アミノピリ
ジン、4−アミノベンゼンスルホン酸、4−アミ
ノカルボン酸との混合物とホルマリン、エピクロ
ルヒドリン、エピブロムヒドリン等との縮合反応
樹脂及びこれらの樹脂のNa、K、Ca、Mg等のア
ルカリ金属、アルカリ土類金属塩等が挙げられ
る。 アミノアルキレン燐酸基を有する樹脂としては
一般にはポリ塩化ビニル、ポリ塩化ビニリデン、
塩素化ポリエチレン、塩素化ポリプロピレン、ク
ロルメチル化したスチレン・ジビニルベンゼン共
重合体等にアミノ化合物を反応させたアミノ化樹
脂;アミン反応性基を有するアミノ樹脂と第1級
又は第2級のアミノ基を有するアミノ化合物を反
応させたアミノ化樹脂;又はアニリン樹脂グアニ
ジン樹脂、アミノ酸基等樹脂中に一級もしくは二
級のアミノ基を有するアミノ樹脂等のアミノ化樹
脂又はアミノ樹脂にアルキレン燐酸化剤を反応さ
せて得た樹脂及びこれら樹脂のNa、K、Ca、Mg
等のアルカリ金属、アルカリ土類金属塩等があげ
られる。 オキシン基を有するキレート樹脂としては、ビ
ニルオキシ重合体もしくはビニルオキシンと共重
合が可能な他のエチレン系不飽和単量体、例えば
スチレン、ジビニルベンゼン、アクリル酸エステ
ル、アクリロニトリル、酢酸ビニル、エチレング
リコールジメタクリレートとの共重合体;クロル
メチル基、スルホニルクロリド基、カルボニルク
ロリド基、イソシアナート基、エポキシ基、アル
デヒド基等アミン反応性基を有したスチレン−ジ
ビニルベンゼン共重合体、フエノール樹脂、ポリ
エチレン、ポリプロピレン、ポリ塩化ビニル等の
重合体(以下アミン反応性基を有した樹脂と称
す)に5−アミノ−8−ヒドロキシキノリン、5
−エチレンジアミノ−8−ヒドロキシキノリン、
5−ジエチレントリアミノ−8−ヒドロキシキノ
リン、5−トリエチルテトラアミノ−8−ヒドロ
キシキノリン、5−テトラエチルペンタアミノ−
8−ヒドロキシキノリン、5・7−ジアミノエチ
レンジアミノ−8−ヒドロキシキノリン、5・7
−ジ(エチレンジアミノ)−8−ヒドロキシキノ
リン、5・7−ジ(ジエチレントリアミノ)−8
−ヒドロキシキノリン、5・7−ジ(トリエチル
テトラアミノ)−8−ヒドロキシキノリン、5・
7−ジ(テトラエチルペンタアミノ)−8−ヒド
ロキシキノリン等のアミノ化オキシンを反応させ
た重合体;オキシンもしくはオキシン誘導体とホ
ルムアルデヒド等アルデヒド類との縮合重合体、
フエノール、レゾルシン、尿素、チオ尿素、メラ
ミン、グアニジン、アニリン等縮合重合可能な化
合物との縮合重合体;前記アミン反応性基を有し
た樹脂にアンモニア、エチレンジアミン、ジエチ
レントリアミン、トリエチレンテトラミン、テト
ラエチレンペンタミン、ペンタエチレンヘキサミ
ン、ヘキサメチレンジアミン、グアニジン等のア
ミノ化合物を反応させて得た樹脂中に1級もしく
は2級のアミノ基を有するアミノ化樹脂にクロル
メチル基、スルホニルクロリド基、カルボニルク
ロリド基、イソシアナート基、エポキシ基、アル
デヒド基、アミン反応性基を有したオキシン誘導
体を反応させた重合体等があげられる。 例えばジチオカルバミン酸基を有する樹脂とし
ては(A)ハロゲン原子を含有する樹脂と(B)前記樹脂
と反応し生成樹脂中に第1級または第2級アミノ
基を有せしめるアミノ化合物とを反応させてアミ
ノ化樹脂を生成せしめ、該アミノ樹脂を次いで二
硫化炭素と反応させることにより得られる反応生
成物、さらに該反応生成物を塩基処理した反応生
成物またはこれらの反応生成物の混合物を酸処理
することにより製造した樹脂およびこれら樹脂の
Na、K、Ca、Mg等のアルカリ金属、アルカリ土
類金属塩等があげられる。さらに詳しくはハロゲ
ン原子を含有する樹脂としてはポリ塩化ビニル、
ポリ塩化ビニリデン、ポリ臭化ビニル、ポリヨウ
化ビニル等のハロゲン含有樹脂、またはポリエチ
レン、ポリプロピレン等のハロゲン原子を含有し
ない樹脂をハロゲン化せしめハロゲン原子を導入
した樹脂等があげられる。特に好ましくはハロゲ
ン原子として塩素原子を含有する樹脂が用いられ
る。勿論(A)上記樹脂は、樹脂成分と共重合し得る
他の化合物、たとえばアクリロニトリル、酢酸ビ
ニル、アクリル酸、メタクリル酸およびメタクリ
ル酸メチル、アクリル酸メチル、アクリル酸エチ
ル、アクリル酸ブチル等との共重合体であつても
よい。 (A)ハロゲン原子を含有する樹脂と反応させる(B)
アミノ化合物としては、前記(A)樹脂と反応し生成
樹脂に第1級または第2級のアミノ基を有せしめ
るアミノ化合物であればいかなるものでも用いる
ことができ、このようなアミノ化合物としては、
たとえばアンモニア、モノメチルアミン、モノエ
チルアミン、エチレンジアミン、トリメチレンジ
アミン、テトラメチレンジアミン、ペンタメチレ
ンジアミン、ヘキサメチレンジアミン、オクタメ
チレンジアミン、ノナメチレンジアミン、ヒドラ
ジン、ジエチレントリアミン、トリエチレンテト
ラミン、テトラエチレンペンタミン、アニリン、
O−フエニレンジアミン、m−フエニレンジアミ
ン、p−フエニレンジアミン、p・p′−ジアミノ
ジフエニルメタン、2・4−ジアミノトルエン、
2・6−ジアミノトルエン等の脂肪族モノまたは
ポリアミン、芳香族モノまたはポリアミンおよび
これらの誘導体等があげられる。 しかして、本発明に限定するキレート樹脂が従
来公知のイミノジ酢酸型キレート樹脂に比較して
吸着容量で10倍またはそれ以上吸着するというこ
とは全く予期し難いことであつた。 本発明方法の実施に当り、上記キレート樹脂と
接触させるインジウム含有溶液としては通常PHが
8.5以下のインジウム含有水溶液が適用される
が、勿論他のインジウム含有溶液であつても適用
することができる。 特に、本発明方法の処理液としては亜鉛、鉛の
製錬スラツジ等の硫酸浸出液からのもの及び海水
が好適である。 本発明方法の実施に当り、上記キレート樹脂と
インジウムを含有する溶液との接触は、適宜条件
を選定して行えば良い。接触方法は特に制限され
るものではなく、例えばインジウムを含有する溶
液中へキレート樹脂を浸漬する方法、キレート樹
脂を充填した塔中へインジウム含有溶液を通す方
法等が一般に採用される。しかしながら、処理操
作の点からキレート樹脂を充填した塔中へインジ
ウム含有溶液を通す方法が好適に採用される。 本発明方法の実施に当り、キレート樹脂の使用
量は特に制限されるものではなく、処理対象とす
るインジウム含有溶液中のインジウム濃度、用い
るキレート樹脂の種類等によつても変わるが、こ
れは適宜予備実験を行なうことにより設定するこ
とができる。一般にキレート樹脂の使用量は、適
宜選択すればよい。 キレート樹脂とインジウム含有溶液の接触温度
は特に制限されるものではないが、通常0〜100
℃の温度で実施される。また接触時間も特に制限
されるものではなく、通常数秒以上の接触時間が
あれば十分である。 形状は粒状又は球状樹脂が好適に用いられる
が、また用途に応じ破粒状、繊維状、ハニカム
状、布状、液状等の樹脂も使用できる。 本発明方法によつてインジウムを吸着捕集した
ところのキレート樹脂は、次いで塩酸、硫酸、硝
酸、燐酸、硫化ソーダ、イミノジ酢酸、エチレン
ジアミン、四酢酸等により溶離回収するとか、加
熱分離することにより、キレート樹脂とインジウ
ムを分離するとかして、インジウムをキレート樹
脂から分離する。 以上のようにして分離回収されたインジウムは
次いで公知の方法、例えば硫酸塩となし電解する
ことによつてインジウム金属として回収すること
ができる。 以上詳述したような本発明方法によれば、公知
のイミノジ酢酸型キレート樹脂に比較してその吸
着能力が10倍ないしそれ以上であり、その工業的
価値は大なるものである。 以下に、本発明方法を実施例によつてさらに詳
細に説明するが、本発明はその要旨を越えない限
り、以下の実施例によつて限定されるものではな
い。 実施例 1 2−アミノメチルベンズアルドキシム167重量
部とレゾルシン22重量部とホルムアルデヒド55重
量部を反応させて得た=NOH基と−NH2基と−
OH基を有した樹脂(以下本重合体をキレート樹
脂Aと称す。)の10c.c.を、内径12m/mφのカラ
ムに充填し、塔頂よりインジウム102.2ppm含む
PH=1.0の硫酸水溶液100c.c.を2時間で通液し流出
液中のインジウムの分析を行つたところ、8.1mg
のインジウムが吸着した。 実施例 2〜7 キレート樹脂B; アミドキシム基を有する市販のキレート樹脂
〔デユオライトCS−346(ダイヤモンドシヤムロ
ツク社製)〕。 キレート樹脂C; ポリアクリロニトリルフアイバー53重量部と塩
酸ヒドロキシルアミン70重量部と10重量パーセン
ト濃度の水酸化ナトリウム水溶液400重量部との
反応により得られるビニルアミドキシム重合体。 キレート樹脂D; (CH33N−なるメチルアミノ基からなる強塩
基性イオン交換樹脂デユオライトA−101D(ダ
イヤモンドシヤムロツク社製)140重量部を塩素
により塩素化したアミン反応性基を含むアミン樹
脂に次いでジエチレントリアミン100重量部を反
応させて得たアミノ化樹脂に亜燐酸40重量部と36
重量%濃度の塩酸86重量部と35重量%濃度ホルマ
リンを2重量部を反応させ、次いで苛性ソーダ水
溶液でアルカリ処理を行つて得た68重量部(未乾
燥)のアミノアルキレン燐酸基を有するキレート
樹脂。 キレート樹脂E; 100メツシユ以下の粒径の塩化ビニリデン樹脂
粉末100重量部に200重量部のエチレンジアミンと
50重量部の水を加え、80〜120℃で3時間反応を
行なつた後、反応生成物を過、水洗、乾燥した
ところ、112重量部の黄褐色アミノ化塩化ビニリ
デン樹脂が得られた。 次いでこのアミノ化塩化ビニリデン樹脂56重量
部と100重量部の二硫化炭素を41〜44℃で2時間
反応させた後、過、水洗、乾燥し、80.5重量部
の黄褐色樹脂を得た。この樹脂を元素分析および
ジチオカルバミン酸基定量分析の結果、二硫化炭
素が29.5重量%入つていることがわかつた。本樹
脂をキレート樹脂Eと称す。 キレート樹脂F; キレート樹脂Eの20重量部と10重量%水酸化ナ
トリウム水溶液50重量部を35〜40℃で5分間加熱
処理し、次いで過、水洗、乾燐したところ、
21.8重量部の黄褐色の樹脂が得られた。本樹脂を
キレート樹脂Fと称す。 キレート樹脂G; 5−ビニル−8−ヒドロキシキノリン87モル%
とジビニルベンゼン13モル%の組成の共重合体。 以上のキレート樹脂を各々実施例1と同様にし
てインジウムの硫酸水溶液100c.c.を2時間で通液
しインジウムの分析をしたところ第1表に示すよ
うな結果が得られた。
The present invention relates to a method for recovering indium from a solution containing indium. More specifically, it relates to a method of adsorbing and recovering indium in a solution using a special chelate resin. Although indium is widely distributed on the earth, it does not exist in a naturally concentrated state, so it must be concentrated by some method that removes the major components and circulates a liquid containing trace components, or it must be concentrated in a very diluted state. A method is being considered for direct recovery from Industrial production of indium is from slag concentrated in the by-products of zinc and lead smelting. An industrial method for producing indium is, for example, by leaching lead blast furnace slag with sulfuric acid, separating it into a residue containing indium, lead, etc., and a solution containing components such as zinc, copper, cadmium, etc., and then further processing the above residue. Perform sulfuric acid leaching to dissolve indium and separate it from lead, add zinc oxide and sodium sulfide to the above indium-containing solution, perform neutralization and sulfidation to separate indium as a precipitate, and add sodium hydroxide to the precipitate. A method is known in which impurities are dissolved and removed, residual indium is again leached with sulfuric acid, treated with hydrogen sulfide to remove the impurities by precipitation, and then replaced with aluminum to obtain metallic indium by electrolysis. These ores, which are the most effective raw materials for indium, contain many different elements, so the process to produce indium is complicated as described above, and it is not easy to recover indium at low cost. do not have. Furthermore, as a method for recovering indium from an indium-containing solution, a method of adsorption and recovery using a chelate resin having an iminodiacetic acid type functional group is known (Anal chem. Acta. Analytica, Himika, Acta, 40 (1968) 479-485). ). However, the above method using a chelate resin having an iminodiacetic acid type functional group has drawbacks such as the amount of indium recovered per reagent used is not industrially sufficient and the selective adsorption of indium is not necessarily high. However, it has not yet been industrially satisfied. In view of these circumstances, the present inventors conducted extensive research to find a method for recovering indium that overcomes the above-mentioned disadvantages, and as a result, they found that a chelate resin having a specific functional group highly selectively adsorbs indium in an indium-containing solution. We have discovered that this is the case, and have completed the method of the present invention. That is, the present invention combines a chelate resin having at least one functional group selected from an oxime group, an aminoalkylene phosphate group, an oxine group, a dithiocarbamate group, and a metal salt of the functional group in its molecule with a solution containing indium. An object of the present invention is to provide a method for recovering indium contained in a solution, which is characterized by contacting the indium with the solution. The chelate resin used in the present invention is not particularly limited as long as it has an oxime group, an aminoalkylene phosphate group, an oxine group, a dithiocarbamate group, or a metal salt of the above functional group in the molecule. The chelate resin having a metal salt of the functional group of the present invention includes an oxime group, an aminoalkylene phosphate group,
This is particularly limited if the metal salt is formed by a chelate bond between the metal salt and an oxine group or a dithiocarbamate group, and the bonding force of the metal salt forming these salts is weaker than the bonding force between the functional group and indium. It's not a thing. As the metal of the metal salt, alkali metals and alkaline earth metals such as sodium, potassium, calcium, and magnesium are generally used. Chelate resins having oxime groups include aldehyde groups, styrene-divinylbenzene copolymers having ketone groups, phenol resins, resins obtained by reacting hydroxylamine with polymers such as polyethylene and polypropylene, chloromethyl groups, sulfonyl chloride groups, Polymers such as styrene-divinylbenzene copolymers, phenolic resins, polyethylene, polypropylene, polyvinyl chloride, etc. that have amine-reactive groups such as carbonyl chloride groups, isocyanate groups, epoxy groups, and aldehyde groups (hereinafter referred to as amine-reactive groups) (referred to as a resin having Compounds having one oxime group in the molecule, resins reacted with mixtures of the above compounds, alkylaminobenzaldoxime, formylbenzaldoxime, benzaldoxime, benzhydroxamic acid, alkylaminobenzaldoxime, alkylamino Benzhydroxamic acid, alkylaminomethane benzaldoxime, alkylaminomethane benzhydroxamic acid, alkylaminoethane benzaldoxime, alkylaminoethane benzhydroxamic acid, formylbenzaldoxime, formylbenzaacetaldoxime, benzisoxazole acetaldoxime , benzisoxazole acetohydroxamic acid oxime, benzisoxazole acetohydroxamic acid, phenylsulfinyl acetaldoxime, alkylaminophenyl sulfinyl acetaldoxime, alkylaminophenylmethylsulfinyl acetaldoxime, alkylamino At least in the molecule of phenylethylsulfinylacetaldoxime, alkylaminophenylcarbonylacetaldoxime, alkylaminomethylphenylcarbonylacetaldoxime, benzyldioxime, benzyloxime, benzimidazoylthioacetaldoxime, etc. a compound having one oxime group, a mixture of the above compounds, or a mixture of the above compound and aniline, resorcinol, 3-aminopyridine, 4-aminopyridine, 4-aminobenzenesulfonic acid, 4-aminocarboxylic acid and formalin; Condensation reaction resins with epichlorohydrin, epibromohydrin, etc., polymers of vinyl cyanide monomers such as acrylonitrile, α-chloroacrylonitrile, vinylidene cyanide, methacrylonitrile, etc., or copolymerization with vinyl cyanide monomers A resin containing an amidoxime group by reacting a copolymer with other possible ethylenically unsaturated monomers with hydroxylamine or a hydroxylamine derivative; acrylonitrile, α-chloroacrylonitrile,
Polymerization of vinyl cyanide derivatives made by reacting vinyl cyanide monomers such as vinylidene cyanide and methacrylonitrile with hydroxylamine or hydroxylamine derivatives and other ethylenically unsaturated monomers that can be homopolymerized or copolymerized. Resin with amine-reactive group; aminoacetonitrile, aminomalonitrile, diaminomaleonitrile, dicyandiamide, iminodiacetonitrile, 1-amino-2-cyanoethane, 4-aminobenzonitrile, 1-amino-3- A resin obtained by reacting a nitrile compound having an amino group or an imino group such as cyanopropane, and then reacting it with hydroxylamine or a hydroxylamine derivative; A resin obtained by reacting the product obtained by the reaction with a resin having an amine-reactive group; styrene-divinylbenzene having a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a dithiocarboxylic acid group, an alkylamino group, etc. A resin obtained by reacting a halogenated resin such as a polymer or a phenol resin with a product obtained by reacting the nitrile compound having an amino group or imino group with hydroxylamine or a hydroxylamine derivative; benzamidoxime, Benzylamino-N-methanediamide dioxime, benzylamino-N-ethanediamide dioxime, (2-benzimidazolylthio)acetone amidoxime, (2-benzimidazolylthio)ethyl amidoxime, (2-benzimidazolylthio)propylamidoxime, 1,2 -benzisoxazole-3-acetamidoxime,
5-Fluoro-1,2-benzisoxazole-
A compound having at least one amidoxime group in the molecule, such as 3-acetamidoxime, phenylsulfinyl acetamidoxime, (3-chlorophenylsulfinyl)-acetamidoxime, a mixture of the above compounds or a separately specified compound and aniline, Condensation reaction resins of mixtures of resorcinol, 3-aminopyridine, 4-aminopyridine, 4-aminobenzenesulfonic acid, and 4-aminocarboxylic acids with formalin, epichlorohydrin, epibromhydrin, etc., and Na, K of these resins. , alkali metals such as Ca, Mg, alkaline earth metal salts, and the like. Generally, resins having aminoalkylene phosphate groups include polyvinyl chloride, polyvinylidene chloride,
Aminated resin made by reacting an amino compound with chlorinated polyethylene, chlorinated polypropylene, chloromethylated styrene/divinylbenzene copolymer, etc.; an amino resin with an amine-reactive group and a primary or secondary amino group or an aminated resin such as an aniline resin, a guanidine resin, or an amino resin having a primary or secondary amino group in the resin, such as an amino acid group, or an alkylene phosphorylating agent. Na, K, Ca, Mg of these resins
Examples include alkali metal and alkaline earth metal salts such as . Chelate resins having oxine groups include vinyloxy polymers or other ethylenically unsaturated monomers copolymerizable with vinyloxine, such as styrene, divinylbenzene, acrylic esters, acrylonitrile, vinyl acetate, and ethylene glycol dimethacrylate. copolymers with; styrene-divinylbenzene copolymers with amine-reactive groups such as chloromethyl groups, sulfonyl chloride groups, carbonyl chloride groups, isocyanate groups, epoxy groups, aldehyde groups, phenolic resins, polyethylene, polypropylene, poly Polymers such as vinyl chloride (hereinafter referred to as resins with amine-reactive groups), 5-amino-8-hydroxyquinoline, 5
-ethylenediamino-8-hydroxyquinoline,
5-diethylenetriamino-8-hydroxyquinoline, 5-triethyltetraamino-8-hydroxyquinoline, 5-tetraethylpentaamino-
8-hydroxyquinoline, 5,7-diaminoethylenediamino-8-hydroxyquinoline, 5,7
-di(ethylenediamino)-8-hydroxyquinoline, 5,7-di(diethylenetriamino)-8
-Hydroxyquinoline, 5,7-di(triethyltetraamino)-8-hydroxyquinoline, 5.
A polymer obtained by reacting an aminated oxine such as 7-di(tetraethylpentaamino)-8-hydroxyquinoline; a condensation polymer of oxine or an oxine derivative and an aldehyde such as formaldehyde;
Condensation polymers with compounds capable of condensation polymerization such as phenol, resorcinol, urea, thiourea, melamine, guanidine, and aniline; ammonia, ethylenediamine, diethylenetriamine, triethylenetetramine, and tetraethylenepentamine in the resin having an amine-reactive group. , chloromethyl group, sulfonyl chloride group, carbonyl chloride group, isocyanate in the aminated resin having a primary or secondary amino group in the resin obtained by reacting amino compounds such as pentaethylenehexamine, hexamethylene diamine, guanidine, etc. Examples include polymers obtained by reacting oxine derivatives having a group, an epoxy group, an aldehyde group, or an amine-reactive group. For example, as a resin having a dithiocarbamate group, (A) a resin containing a halogen atom and (B) an amino compound that reacts with the resin and causes the resulting resin to have a primary or secondary amino group are reacted. A reaction product obtained by producing an aminated resin and then reacting the amino resin with carbon disulfide, a reaction product obtained by treating the reaction product with a base, or a mixture of these reaction products is treated with an acid. resins produced by
Examples include alkali metals such as Na, K, Ca, Mg, alkaline earth metal salts, and the like. More specifically, examples of resins containing halogen atoms include polyvinyl chloride,
Examples include halogen-containing resins such as polyvinylidene chloride, polyvinyl bromide, and polyvinyl iodide, and resins in which halogen atoms are introduced by halogenating resins that do not contain halogen atoms, such as polyethylene and polypropylene. Particularly preferably, a resin containing a chlorine atom as a halogen atom is used. Of course, (A) the above resin may be copolymerized with other compounds that can be copolymerized with the resin component, such as acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, and methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, etc. It may also be a polymer. (A) React with resin containing halogen atoms (B)
As the amino compound, any amino compound can be used as long as it reacts with the resin (A) and causes the resulting resin to have a primary or secondary amino group.
For example, ammonia, monomethylamine, monoethylamine, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, nonamethylenediamine, hydrazine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, aniline,
O-phenylenediamine, m-phenylenediamine, p-phenylenediamine, p・p′-diaminodiphenylmethane, 2・4-diaminotoluene,
Examples include aliphatic mono- or polyamines such as 2,6-diaminotoluene, aromatic mono- or polyamines, and derivatives thereof. However, it was completely unexpected that the chelate resin limited to the present invention would have an adsorption capacity of 10 times or more compared to the conventionally known iminodiacetic acid type chelate resin. When carrying out the method of the present invention, the pH of the indium-containing solution that is brought into contact with the chelate resin is usually
An aqueous solution containing indium of 8.5 or less is applied, but of course other indium-containing solutions can also be applied. Particularly suitable as the treatment liquid for the method of the present invention are those from sulfuric acid leachates such as zinc and lead smelting sludge, and seawater. In carrying out the method of the present invention, the contact between the chelate resin and the indium-containing solution may be carried out under appropriately selected conditions. The contact method is not particularly limited, and for example, a method of immersing a chelate resin in a solution containing indium, a method of passing an indium-containing solution through a column filled with a chelate resin, etc. are generally employed. However, from the viewpoint of processing operations, a method in which the indium-containing solution is passed through a column filled with a chelate resin is preferably employed. In carrying out the method of the present invention, the amount of chelate resin used is not particularly limited and varies depending on the indium concentration in the indium-containing solution to be treated, the type of chelate resin used, etc. It can be set by conducting preliminary experiments. Generally, the amount of chelate resin to be used may be selected as appropriate. The contact temperature between the chelate resin and the indium-containing solution is not particularly limited, but is usually between 0 and 100°C.
It is carried out at a temperature of °C. Further, the contact time is not particularly limited, and a contact time of several seconds or more is usually sufficient. Granular or spherical resins are preferably used, but resins in broken granule, fibrous, honeycomb, cloth, and liquid shapes can also be used depending on the purpose. The chelate resin from which indium has been adsorbed and collected by the method of the present invention is then eluted and recovered with hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, sodium sulfide, iminodiacetic acid, ethylenediamine, tetraacetic acid, etc., or separated by heating. Indium is separated from the chelate resin by separating the chelate resin and indium. The indium separated and recovered as described above can then be recovered as indium metal by a known method, for example, by electrolysis with sulfate. According to the method of the present invention as detailed above, the adsorption capacity is 10 times or more than that of known iminodiacetic acid type chelate resins, and its industrial value is great. EXAMPLES The method of the present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Example 1 =NOH group, -NH 2 group and - obtained by reacting 167 parts by weight of 2-aminomethylbenzaldoxime, 22 parts by weight of resorcin, and 55 parts by weight of formaldehyde
10 c.c. of a resin having an OH group (hereinafter this polymer is referred to as chelate resin A) was packed into a column with an inner diameter of 12 m/mφ, and the column contained 102.2 ppm of indium from the top of the column.
When 100 c.c. of sulfuric acid aqueous solution with pH=1.0 was passed through the solution for 2 hours and the indium in the effluent was analyzed, 8.1 mg was found.
of indium was adsorbed. Examples 2 to 7 Chelate resin B; Commercially available chelate resin having an amidoxime group [Duolite CS-346 (manufactured by Diamond Shamlok Co., Ltd.)]. Chelate Resin C: Vinyl amidoxime polymer obtained by reaction of 53 parts by weight of polyacrylonitrile fiber, 70 parts by weight of hydroxylamine hydrochloride, and 400 parts by weight of a 10 weight percent aqueous sodium hydroxide solution. Chelate resin D: Contains an amine-reactive group obtained by chlorinating 140 parts by weight of Duolite A-101D (manufactured by Diamond Shamlok Co., Ltd.), a strongly basic ion exchange resin consisting of a methylamino group (CH 3 ) 3 N-, with chlorine. Aminated resin obtained by reacting amine resin with 100 parts by weight of diethylenetriamine, 40 parts by weight of phosphorous acid and 36
A chelate resin containing 68 parts by weight (undried) of aminoalkylene phosphate groups obtained by reacting 86 parts by weight of hydrochloric acid at a concentration of 86 parts by weight with 2 parts by weight of formalin at a concentration of 35% by weight, followed by alkali treatment with an aqueous solution of caustic soda. Chelate resin E: 100 parts by weight of vinylidene chloride resin powder with a particle size of 100 mesh or less and 200 parts by weight of ethylenediamine.
After adding 50 parts by weight of water and carrying out the reaction at 80 to 120°C for 3 hours, the reaction product was filtered, washed with water, and dried to obtain 112 parts by weight of a yellow-brown aminated vinylidene chloride resin. Next, 56 parts by weight of this aminated vinylidene chloride resin and 100 parts by weight of carbon disulfide were reacted at 41 to 44°C for 2 hours, followed by filtering, washing with water, and drying to obtain 80.5 parts by weight of a yellowish brown resin. As a result of elemental analysis and quantitative analysis of dithiocarbamate groups, it was found that this resin contained 29.5% by weight of carbon disulfide. This resin is called chelate resin E. Chelate resin F: 20 parts by weight of chelate resin E and 50 parts by weight of a 10% by weight aqueous sodium hydroxide solution were heat-treated at 35 to 40°C for 5 minutes, then filtered, washed with water, and dried with phosphorus.
21.8 parts by weight of a yellow-brown resin was obtained. This resin is called chelate resin F. Chelate resin G; 5-vinyl-8-hydroxyquinoline 87 mol%
A copolymer with a composition of 13% by mole of divinylbenzene and divinylbenzene. When each of the above chelate resins was analyzed for indium by passing 100 c.c. of an aqueous solution of indium in sulfuric acid over 2 hours in the same manner as in Example 1, the results shown in Table 1 were obtained.

【表】【table】

【表】 実施例 8〜12 102.2ppmのインジウムを含有するPH=1.0の硫
酸水溶液50mlにA、B、D、E、Gの樹脂0.05g
をそれぞれ入れ室温で3時間撹拌接触処理を行な
つた後ロ過を行ないロ液中に残存するインジウム
濃度を分析し、インジウム吸着容量を求めた。そ
の結果を第2表に示した。
[Table] Examples 8 to 12 0.05 g of resins A, B, D, E, and G in 50 ml of sulfuric acid aqueous solution with PH = 1.0 containing 102.2 ppm indium
After stirring and contacting the mixture at room temperature for 3 hours, filtration was performed, and the concentration of indium remaining in the filtrate was analyzed to determine the indium adsorption capacity. The results are shown in Table 2.

【表】 比較例 1〜3 実施例8〜12において用いられたキレート樹脂
のかわりに市販のイオン交換樹脂スミカイオン
KA850、スミキレートCR−1(住友化学製)、イ
ミノジ酢酸型キレート樹脂デユオライトES466
(ダイヤモンドシヤムロツク製)を用い実施例7
〜10と同様にしてインジウムの吸着を行なつた。
結果を表3に示した。
[Table] Comparative Examples 1 to 3 Commercially available ion exchange resin Sumikaion was used instead of the chelate resin used in Examples 8 to 12.
KA850, Sumikylate CR-1 (manufactured by Sumitomo Chemical), iminodiacetic acid type chelate resin Duolite ES466
Example 7 using (manufactured by Diamond Shamrock)
Indium was adsorbed in the same manner as in ~10.
The results are shown in Table 3.

【表】 実施例1〜12、比較例1〜3で示したように本
願発明のキレート樹脂はインジウムを含有する水
溶液からインジウムを選択的に吸着除去する能力
が優れていることが明白である。
[Table] As shown in Examples 1 to 12 and Comparative Examples 1 to 3, it is clear that the chelate resin of the present invention has an excellent ability to selectively adsorb and remove indium from an aqueous solution containing indium.

Claims (1)

【特許請求の範囲】 1 オキシム基、アミノアルキレン燐酸基、オキ
シン基、ジチオカルバミン酸基及び前記官能基の
金属塩から選ばれた少なくとも一種の官能基を有
するキレート樹脂と、インジウムを含有する溶液
を接触させることを特徴とするインジウムの回収
方法。 2 インジウムを含有する溶液のPHが8.5以下の
水溶液であることを特徴とする特許請求の範囲第
1項記載のインジウムの回収方法。 3 インジウムを含有する溶液が海水または亜
鉛、鉛を製錬する際の副産物の硫酸浸出液である
ことを特徴とする特許請求の範囲第1項記載のイ
ンジウムの回収方法。
[Scope of Claims] 1. A chelate resin having at least one functional group selected from an oxime group, an aminoalkylene phosphate group, an oxine group, a dithiocarbamate group, and a metal salt of the functional group is brought into contact with a solution containing indium. A method for recovering indium, characterized by: 2. The method for recovering indium according to claim 1, wherein the indium-containing solution is an aqueous solution with a pH of 8.5 or less. 3. The method for recovering indium according to claim 1, wherein the indium-containing solution is seawater or a sulfuric acid leachate, which is a by-product of smelting zinc and lead.
JP5338682A 1982-03-30 1982-03-30 Recovery of indium Granted JPS58172256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5338682A JPS58172256A (en) 1982-03-30 1982-03-30 Recovery of indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5338682A JPS58172256A (en) 1982-03-30 1982-03-30 Recovery of indium

Publications (2)

Publication Number Publication Date
JPS58172256A JPS58172256A (en) 1983-10-11
JPS621571B2 true JPS621571B2 (en) 1987-01-14

Family

ID=12941382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5338682A Granted JPS58172256A (en) 1982-03-30 1982-03-30 Recovery of indium

Country Status (1)

Country Link
JP (1) JPS58172256A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270345A (en) * 1985-05-27 1986-11-29 Miyoshi Oil & Fat Co Ltd Method for concentrating indium and gallium in water
JP4773313B2 (en) * 2006-10-17 2011-09-14 鶴見曹達株式会社 Method for producing ferrous chloride liquid
JP4745936B2 (en) * 2006-10-17 2011-08-10 東亞合成株式会社 Method for producing ferrous chloride liquid
CN112646985B (en) * 2020-11-24 2022-02-18 厦门大学 Method for enriching and purifying metal indium in ITO film etching waste liquid

Also Published As

Publication number Publication date
JPS58172256A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
CA1194699A (en) Method for recovery of gallium
JPH0428724B2 (en)
EP0285055B1 (en) Process for recovery of gallium by chelate resin
EP0046025B1 (en) Selective extraction of gold
JP2579773B2 (en) Purification method of alkaline solution
JPS621571B2 (en)
SU1170959A3 (en) Method of extracting gallium from aluminate solutions
JPH0459326B2 (en)
JPS6142335A (en) Eluting method for metal adsorbed by chelating agent
JPS621325B2 (en)
JPS62176914A (en) Recovery of rare metal
JPS60260423A (en) Method for recovering germanium
JPS61261215A (en) Recovery of molyblenum
JP2508162B2 (en) Heavy metal recovery method
JPH0549729B2 (en)
JP2876754B2 (en) Arsenic removal method
JPH0661465B2 (en) Method for producing metal collector
JPS61201611A (en) Purification method for aqueous solution of phosphate
JPS61232222A (en) Recovery of rhenium
JPS5896831A (en) Recovering method for gallium
JPH0798661B2 (en) Metal recovery method
JPH0463014B2 (en)
JPS59169932A (en) Collection of gallium
JPH0548286B2 (en)
JPH0651744B2 (en) Method for producing chelate resin