JPH0459326B2 - - Google Patents

Info

Publication number
JPH0459326B2
JPH0459326B2 JP58029109A JP2910983A JPH0459326B2 JP H0459326 B2 JPH0459326 B2 JP H0459326B2 JP 58029109 A JP58029109 A JP 58029109A JP 2910983 A JP2910983 A JP 2910983A JP H0459326 B2 JPH0459326 B2 JP H0459326B2
Authority
JP
Japan
Prior art keywords
resin
weight
parts
chelate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58029109A
Other languages
Japanese (ja)
Other versions
JPS59155406A (en
Inventor
Arinobu Kataoka
Kimiaki Matsuda
Masahiro Aoi
Kunitake Chino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58029109A priority Critical patent/JPS59155406A/en
Publication of JPS59155406A publication Critical patent/JPS59155406A/en
Publication of JPH0459326B2 publication Critical patent/JPH0459326B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はキレート樹脂の製造方法に関するもの
である。さらに詳細には、ニトリル基を有する樹
脂から単位重量当りの金属イオンの吸着性に優れ
たキレート樹脂の製造方法に関する。 キレート樹脂は金属イオン含有液から選択的に
ある金属イオンを除去するので、工業用水の精
製、排水処理に極めて有用な樹脂である。従来、
スチレン−ジビニルベンゼン共重合体をクロルメ
チル化し、次いでイミノジ酢酸を反応せしめたキ
レート樹脂{日化協月報25〔1〕、24頁(1972)}、
スチレン−ジビニルベンゼン共重合体をクロルメ
チル化及びアミノ化し、次いでアルキル燐酸化剤
を反応させたアミノ燐酸基型キレート樹脂(フラ
ンス国特許第2279453号)が知られている。これ
らのキレート樹脂は優れた吸着性能を有するが、
キレート樹脂の製造過程でクロルメチル化反応率
が低いために単位モノマー当りのキレート官能基
の導入割合が40〜50%と低く、結果として大量の
キレート樹脂を使用しなければならないという不
都合を有している。このような不都合を改善する
ために、クロルメチル化反応をスチレン−ジビニ
ルベンゼン共重合体の膨潤剤の存在下に実施する
ことによつてクロルメチル化反応率を高める方法
が提案されているが、それでも単位モノマー当り
のキレート官能基の導入割合は50〜80%と必ずし
も十分満足されたものではない。 また、上記キレート樹脂はその製造に当り、ク
ロルメチルエーテルの如き有害な反応試剤を用い
る必要があるという不都合をも有している。 かかる事情に鑑み、本発明者らはキレート樹脂
の製造過程でクロルメチルエチルエーテルの如き
有害な反応試剤を用いることなく、また単位モノ
マー当りのキレート官能基の導入割合が高いキレ
ート樹脂を製造すべく鋭意研究した結果、本発明
を確立するに至つた。 すなわち、本発明は、(A)ニトリル基を有する樹
脂に(B)第1級又は第2級のアミノ基を有するアミ
ノ化合物を反応させ、次いで(C)キレート形成化剤
を反応させる、または(A)ニトリル基を有する樹脂
に(D)前記第1級又は第2級のアミノ基を有するア
ミノ化合物と前記キレート形成化剤との反応生成
物を反応させることを特徴とするキレート樹脂の
製造方法である。 本発明の方法に使用される(A)ニトリル基を有す
る樹脂としては、例えば ()アクリロニトリル、a−クロルアクリ
ロニトリル、シアン化ビニリデン、メタアクリ
ロニトリル、フマルジニトリル、クロトンニト
リル、2−シアノエチルアクリレート、2−シ
アノエチルメタアクリレート等のシアン化ビニ
ル系単量体の重合体、若しくは()シアン化
ビニル系単量体およびこれらと共重合が可能な
他のエチレン系不飽和単量体、例えばジビニル
ベンゼン、ジエチレングリコールジメタアクリ
レート、エチレングリコールジメタクリレー
ト、ポリエチレングリコールジメタアクリレー
ト、酢酸ビニル等との共重合体、 ()クロルメチル基、スルホニルクロリド
基、カルボニルクロリド基、イソシアナート
基、エポキシ基、アルデヒド基、塩素、臭素、
ヨウ素等のハロゲン原子等アミン反応性基を有
したフエノール樹脂、ポリエチレン、ポリプロ
ピレンまたは()ポリ塩化ビニル等の重合体
に、()アミノアセトニトリル、アミノマロ
ンニトリル、ジアミノマレオニトリル、ジシア
ンジアミド、イミノジアセトニトリル、1−ア
ミノ−2−シアノエタン、4−アミノベンゾニ
トリル、1−アミノ−3−シアノプロパン等の
アミノ基、イミノ基を有したニトリル化合物を
反応させた樹脂等が用いられがこれらに限定さ
れるものではない。特に好ましくは、アクリル
ニトリル、メタアクリロニトリル、またはシア
ン化ビニリデンの重合体、若しくはこれらシア
ン化ビニル単量体とジビニルベンゼン、ジエチ
レングリコールジメタアクリレート、エチレン
グリコールジメタアクリレート、ポリエチレン
グリコールジメタアクリレート、酢酸ビニル等
との共重合体が用いられる。また(A)ニトリル基
を有する樹脂は、水不溶性であれば特にその重
合度は、制限されないが、一般には重合度約
500以上の物が用いられる。またニトリル基を
有する樹脂の形状は、紛状、繊維状、ハニカム
状、粒状、球状、液状等いずれの形状のもので
も使用可能であり、使用目的によつて、適宜形
状の選定を行えば良いが、一般には、球状、粉
状樹脂が取扱上の面より、好ましく用いられ
る。 本発明における(B)アミノ化合物としては、例え
ばアンモニア、モノメチルアミン、モノエチルア
ミン、エチレンジアミン、トリメチレンジアミ
ン、テトラメチレンジアミン、ペンタメチレンジ
アミン、ヘキサメチレンジアミン、オクタメチレ
ンジアミン、ノナメチレンジアミン、ジエチレン
トリアミン、トリエチレンテトラミン、テトラエ
チレンペンタミン、ヒドラジン、グアニジン等の
脂肪族アミン;トルイレンジアミン、フエニレン
ジアミン等の芳香族アミン;ジアミノシクロブタ
ン、ジアミノシクロペンタン、ジアミノシクロヘ
キサン、ジアミノシクロヘプタン、ジアミノシク
ロオクタン等の脂環式アミン;ジアミノフラン、
ジアミノチオフエン、ジアミノピラン、ジアミノ
チオピラン、ジアミノピリジン等の含酸素、窒
素、イオンのアミン類等があげられる。特にアン
モニア、エチレンジアミン、ジエチレントリアミ
ン、トリエチレンテトラミン、テトラエチレンペ
ンタミン、ペンタエチレヘンキサミン、ヘキサメ
チレンジアミン、グアニジン、フエニレンジアミ
ン、ヒドラジンが好ましく用いられる。 本発明において用いられる(C)キレート形成化剤
は、第1級または第2級のアミノ基を有する化合
物と反応してキレート基を形成するものであれば
如何なるものでも用いることができる。このよう
なキレート形成化剤としては、モノクロル酢酸、
モノブロム、酢酸、モノクロルプロピオン酸等の
ハロゲン化アルキルカルボン酸、エピクロルヒド
リン、エピブロムヒドリン、ヘキサメチレンジイ
ソシアネート、トリレンジイソシアネート、ホス
ゲン又はチオホスゲン等の2個のアミン反応性基
を有する多官能化合物とイミノジ酢酸、イミノジ
プロピオン酸等アミノカルボン酸との混合物等ア
ルキルカルボン酸化剤;クロルメチル燐酸、クロ
ルエチル燐酸等のハロゲン化アルキル燐酸、前記
2個のアミン反応性基を有する多官能化合物とア
ミノメチル燐酸、アミノエチル燐酸等アミンアル
キル燐酸との混合物、ホルマリン、トリオキシメ
チレン等アルキル化剤と三塩化燐、亜燐酸、次亜
燐酸、亜燐酸エチル等の燐化合物との混合物等ア
ルキル燐酸化剤;前記2個のアミン反応性基を有
する多官能化合物とジエチレントリアミノジチオ
カルバミン酸、エチレンジアミノジチオカルバミ
ン酸、ジチオカルバミン酸等アミノチオカルボン
酸との混合物等チオカルボン酸化剤;二硫化炭
素:前記2個のアミン反応性基を有する多官能化
合物と4−アミノベンズアミドオキシム、4−ジ
エチレントリアミノベンズアミドオキシム等アミ
ドオキシム化合物との混合物等アミドオキシム化
剤;5−ブロム−8−ヒドロキシキノリン、5−
クロルメチル−8−ヒドロキシキノリン等又はこ
れらのアルキル、アルケニル、アルキニル誘導体
及びこれら化合物の無機塩;2−アミノ−4−ブ
ロムフエノール、3−アミノ−4−ヨードフエノ
ール、2−アミノ−4−クロルメチルフエノー
ル、2−アミノ−4−ヒドロキシベンゼンスルホ
ニルクロリド、2−アミノ−4−ヒドロキシ安息
香酸クロリド、1−アミノ−4−ブロム−2−ナ
フトール、2−アミノ−4−ブロムチオフエノー
ル、4−アミノ−3−ヒドロキシベンゼンスルホ
ニルクロリド等アミノフエノール類;5−ブロム
−2,2′−ジヒドロキシ−N,N′−エタンジイリ
デンジアニリン、5−ブロム−2,2′−ジメルカ
プト−N,N′−エタンジイリデンジアニリン、
5−クロルメチル−2,2′−ジヒドロキシ−N,
N′−エタンジイリデンジアニリン、5−クロル
メチル−2,2′−ジメルカプト−N,N′−エタン
ジイリデンジアニリン、5−ブロム−2,2′−ジ
ヒドロキシ−N,N′−(o,m又はp−キシレン
ジイリデン)ジアニリン等のシツフベース類;3
−アセチルプロピオン酸エチル、アセチレンジカ
ルボン酸エチル、アセト酢酸エチル、ピルビン酸
エチル、コハク酸ジエチル等エステル類及びこれ
らエステル類相当の酸クロリド類;前記2個のア
ミン反応性基を有する多官能化合物とジエチレン
トリアミン、トリエチレンテトラミン、テトラエ
チレンペンタミン、ヘキサメチレンヘプタミン、
アミノピリジン、ジアミノチオピラン、グルタミ
ン酸、アスパラギン酸、5−アミノ−8−オキシ
キノリン、5−ジエチルトリアミノ−8−オキシ
キノリン、5−トリエチルテトラアミノ−8−オ
キシキノリン、アミノエタンアルドオキシム、ア
ミノメタンベンズヒドロキサム等アミノ化合物又
はこれらの誘導体との混合物等が挙げられる。 本発明では、前記(A)、(B)、(C)は、次のように反
応させる。 () (A)ニトリル基を有する樹脂に(B)アミノ化合
物を反応させ、次いで(C)キレート形成化剤を反
応させる、または () (A)ニトリル基を有する樹脂に、(D)(B)アミノ
化合物と(C)キレート形成化剤との反応生成物を
反応させる。 以下、反応について詳述する。 (A)ニトリル基を有する樹脂と(B)アミノ化合物を
反応は無溶媒下あるいは水、N,N−ジメチルホ
ルムアミド、ホルムアミド、ジメチルスルホキイ
シド、トルエン、キシレン、エチルアルコール等
溶媒の存在下に約50℃以上、好ましくは70〜150
℃で行なう。反応温度が50℃より低い反応速度が
遅くなり長時間の反応を要するので好ましくな
い。反応は好ましくは上記の温度にて約0.1〜7
時間行なえばよく、その範囲内の最適時間は反応
温度、反応液濃度、使用する溶媒、アミノ化合物
の種類等によつて決められる。しかしさらに長い
反応時間を用いることもできる。反応は一般に常
圧で行なうが、加圧下でも可能である。 (A)ニトリル基を有する樹脂に対する(B)アミノ化
合物を反応割合は樹脂中のニトリル基1当量に対
して1/20モル量以上用いればよいが、必要以上の
アミノ化合物を用いることは反応後の回収処理が
伴ない処理操作が繁雑となるため好ましくは樹脂
中のニトリル基1当量に対して1/10〜6モルの範
囲が用いられる。(A)樹脂に対して用いられる(B)ア
ミノ化合物が上記より少なくなるとアミノ基の置
換が少なくなり、得られる反応生成キレート樹脂
の金属捕集能が低下するので望ましくない。 (A)ニトリル基を有する樹脂に(B)アミノ化合物を
反応せしめて得られたアミノ化樹脂は次いでその
まま、または溶媒および未反応のアミノ化合物を
分離除去した後、または必要に応じ洗浄、乾燥し
た後(C)キレート形成化剤と反応させる。アミノ化
樹脂と(C)キレート形成化剤との反応は、公知の方
法により実施できる。反応条件は用いるキレート
形成化剤の種類により異なるが、通常次のような
条件下に実施される。クロルメチル燐酸、クロル
エチル燐酸等のアルキル燐酸化剤、モノクロル酢
酸、モノクロルプロピオン酸、モノブロム酢酸等
のアルキルカルボン酸化剤、二酸化炭素等のチオ
カルボン酸化剤8−ヒドロキシキノリン誘導体、
アミノフエノール誘導体、シツフベース類、ケト
エステル類等をキレート形成化剤として用いる場
合には、無触媒下又はピリジン、N,N−ジメチ
ルアニリン、水酸化ナトリウム、水酸化カリウ
ム、炭酸ナトリウム、炭酸水素ナトリウム、ナト
リウムメトキシド等の塩基性触媒の存在下、ニト
リル基を含有する樹脂中のニトリル基1当量当り
キレート形成化剤を1/10モル以上、好ましくは1
〜5モル用い反応させればよい。反応は一般に
水、メチルアルコール、エチルアルコール、プロ
ピルアルコール、N,N′−ジメチルホルムアミ
ド、N,N−ジメチルスルホオキシド、1,2−
ジクロルエタン、1,1,2−トリクロルエタ
ン、ピリジン等の溶媒の存在下に実施される。反
応温度は一般に室温〜150℃で、また反応時間は
一般に0.1〜24時間行なわせればよい。 また、キレート形成化剤として、ホルムアルデ
ヒド、トリオキシメチレン等のアルキル化剤と三
塩化燐、亜燐酸、次亜燐酸、亜燐酸メチル、亜燐
酸エチル等の燐化合物を用いる場合には、触媒と
して塩酸、硫酸等の酸性触媒が用いられる以外
は、反応モル比、溶媒の使用、反応温度、反応時
間等について上記とほぼ同様な範囲を採用すれば
よい。 また、前記(A)ニトリル基を有する樹脂と反応さ
せるために用いられる(D)反応生成物は、(B)第1級
又は第2級のアミノ基を有するアミノ化合物と(C)
キレート形成化剤とをアミノ基を有するアミノ化
合物1当量に対してキレート形成化剤を1/10〜1
モル用いて反応させればよい。溶媒の使用、反応
温度、反応時間等については、上記アミノ化合物
と(C)キレート形成化剤との反応とほぼ同様な範囲
を採用すればよい。(D)アミノ化合物とキレート形
成化剤との反応生成物は、次いで(A)ニトリル基を
有する樹脂と反応を行う。反応条件は(D)アミノ化
合物と(C)キレート形成化剤との反応生成物の種類
により異なるが、通常前記(A)ニトリル基を有する
樹脂と(B)アミノ化合物の反応の場合と反応モル
比、溶媒の使用、反応温度、反応時間等について
ほぼ同様な範囲を採用すればよい。 以上のように製造したキレート樹脂はそのまま
あるいは洗浄、乾燥を行つた後、適宜の用途に利
用できるが、必要に応じて該キレート樹脂をさら
に塩基または酸で処理して使用することもでき
る。 本発明方法によつて製造したキレート樹脂は官
能基により金属イオンの吸着性は異なるが、水
銀、カドミウム、鉛、クロム、亜鉛、銅、金、
銀、白金、ウラン等の重金属イオン、塩化ナトリ
ウム、塩化カリウム等塩化アルカリ水溶液中のカ
ルシウム、マグネシウム、バリウム、鉄等の金属
イオンを含む水溶液からこれらの金属イオンを除
去し、回収するのに極めて有効である。また海水
からウラン等の有価金属の回収にも好適に使用で
きる。本発明方法によつて製造されたキレート樹
脂は重金属の捕集用以外に、例えば分析用、有機
物の分離精製用、触媒用、耐薬品性樹脂の製造用
原料等として利用することもできる。 以上、詳述したような本発明のキレート樹脂の
製造方法は、公知のキレート樹脂の製造法に比較
して単位モノマー当りのキレート官能基数が大き
いため樹脂当りの金属イオン吸着量が多く出来る
という効果を発揮する。さらに(A)ニトリル基を有
する樹脂と(B)アミノ化合物又は(D)反応生成物との
反応によりニトリル基の炭素原子を中心に、キレ
ート形成化剤を有した基とイミノ基又はカルボニ
ル基が生成し、この両基が相剰的にキレート形成
化剤として作用するためか、公知の製造法により
製造した単位モノマー当りのキレート官能基数が
ほぼ同量のキレート樹脂と比較し金属イオン吸着
量が多く、また高塩濃度水溶液下での金属吸着平
衡濃度を著しく低下させることができ、しかも製
造が簡単でかつ康価に製造できるという利点があ
る。 以下に本発明方法を実施例によつてさらに詳細
に説明するが、本発明はその要旨を越えない限
り、以下の実施例によつて制限されるものではな
い。 実施例 1 架橋度4モル%のアクリロニトリル−ジビニル
ベンゼン共重合樹脂60重量部に120重量部のエチ
レンジアミンと40重量部の水を加え、110〜132℃
で4時間反応を行つた。反応生成物を過、水洗
したところ233重量部(未乾燥)のアミノ化樹脂
が得られた。次いで、得られたアミノ化樹脂98重
量部に、アルキル燐酸化剤として亜燐酸66重量部
と36重量%濃度塩酸137重量部と95重量%濃度パ
ラホルムアルデヒド25重量部の混合液を加え、95
〜100℃で6時間反応を行つた。樹脂分を水洗、
過したところ159重量部(未乾燥)の単位モノ
マー当り89モル%のアミノメチレン燐酸基を有す
るキレート樹脂が得られた。 実施例 2 架橋度4モル%のシアン化ビニリデン−テトラ
エチレングリコールジメタアクリレート共重合樹
脂94重量部にジエチレントリアミン310重量部と
水1200重量部と二硫化炭素228重量部を加え、80
℃で6時間反応を行つた。反応生成物を過、水
洗したところ546重量部(未乾燥)のジチオカル
バミン酸基を有する樹脂が得られた。 実施例 3 架橋度8モル%のアクリロニトリル−ジビニル
ベンゼン共重合樹脂68重量部にトリエチレンテト
ラミン300重量部と水75重量部を加え、110〜120
℃で2時間反応を行つた。反応生成物を過、水
洗したところ276重量部(未乾燥)のアミノ化樹
脂が得られた。次いで得られたアミノ化樹脂28重
量部にモノクロル酢酸28重量部と炭酸ナトリウム
32重量部と水100重量部を加え70〜100℃で2時間
反応を行つた。樹脂分を水洗、過したところ93
重量部(未乾燥)のアミノ酢酸基を有するキレー
ト樹脂が得られた。 実施例 4 70℃に保持されたヘキサメチレンジイソシアナ
ート136重量部とトルエン1000重量部と混合液に、
実施例1で使用したのと同一のアミノ化樹脂58重
量部(乾燥)を加え、40〜80℃で4時間反応を行
つた後、過した。過して得た樹脂全量に10重
量%濃度のアミノエチレン燐酸ナトリウム水溶液
1690重量部を加え70〜100℃で6時間反応を行つ
た。樹脂分を水洗、過したところ、386重量部
(未乾燥)のアミノエチレン燐酸基を有するキレ
ート樹脂が得られた。 実施例 5 架橋度6モル%のメタアクリロニトリル−ジビ
ニルベンゼン共重合樹脂62重量部に80重量%濃度
のペンタエチレンヘキサミン水溶液580重量部を
加え、110〜140℃で2時間反応を行つた後過し
たところ、279重量部(未乾燥)のアミノ化樹脂
が得られた。次いで得られたアミノ化樹脂28重量
部(未乾燥)にキレート形成化剤の二硫化炭素15
重量部と溶媒の水100重量部を加え43〜46℃で3
時間反応を行つた。反応生成物を過、水洗した
ところ、ジチオカルバミン酸基を有する樹脂が44
重量部(未乾燥)得られた。 実施例 6〜10 実施例1で使用したのと同一のアミノ化樹脂93
重量部(未乾燥)に実施例5と同様な方法で第1
表に示すようなキレート形成化剤と反応条件で反
応を行なつたところ、第1表に示すようなキレー
ト樹脂が得られた。 実施例 11〜15 架橋度8モル%のシアン化ビニリデン−ジビニ
ルベンゼン共重合樹脂900重量部に60重量%濃度
のエチレンジアミン水溶液2000重量部を加え、
100〜114℃で6時間反応を行つた後過したとこ
ろ、2760重量部(未乾燥)のアミノ化樹脂が得ら
れた。 次いで得られたアミノ化樹脂276重量部(未乾
燥)を実施例1と同様な方法で第2表に示すよう
な反応条件で反応を行つたところ、第2表に示す
ようなキレート樹脂が得られた。
The present invention relates to a method for producing a chelate resin. More specifically, the present invention relates to a method for producing a chelate resin having excellent metal ion adsorption properties per unit weight from a resin having a nitrile group. Since chelate resins selectively remove certain metal ions from metal ion-containing liquids, they are extremely useful resins for industrial water purification and wastewater treatment. Conventionally,
Chelate resin made by chloromethylating a styrene-divinylbenzene copolymer and then reacting it with iminodiacetic acid {JCIA Monthly Report 25 [1], p. 24 (1972)},
An aminophosphoric acid group type chelate resin (French Patent No. 2279453) is known, in which a styrene-divinylbenzene copolymer is chloromethylated and aminated, and then reacted with an alkyl phosphorylating agent. Although these chelate resins have excellent adsorption performance,
Due to the low chloromethylation reaction rate in the chelate resin manufacturing process, the ratio of chelate functional groups introduced per unit monomer is as low as 40-50%, resulting in the inconvenience of having to use a large amount of chelate resin. There is. In order to improve these inconveniences, a method has been proposed in which the chloromethylation reaction is carried out in the presence of a swelling agent of styrene-divinylbenzene copolymer to increase the chloromethylation reaction rate. The introduction ratio of chelate functional groups per monomer is 50 to 80%, which is not necessarily fully satisfied. Furthermore, the above-mentioned chelate resin has the disadvantage that it is necessary to use a harmful reaction agent such as chloromethyl ether in its production. In view of these circumstances, the present inventors aimed to produce a chelate resin that does not use harmful reaction reagents such as chloromethyl ethyl ether in the production process of the chelate resin and has a high introduction rate of chelate functional groups per unit monomer. As a result of intensive research, the present invention was established. That is, the present invention involves (A) reacting a resin having a nitrile group with (B) an amino compound having a primary or secondary amino group, and then (C) reacting a chelate forming agent, or ( A method for producing a chelate resin, which comprises reacting a resin having a nitrile group with (D) a reaction product of the amino compound having a primary or secondary amino group and the chelate forming agent. It is. Examples of (A) resins having a nitrile group used in the method of the present invention include () acrylonitrile, a-chloroacrylonitrile, vinylidene cyanide, methacrylonitrile, fumardinitrile, crotonitrile, 2-cyanoethyl acrylate, 2- Polymers of vinyl cyanide monomers such as cyanoethyl methacrylate, or vinyl cyanide monomers and other ethylenically unsaturated monomers that can be copolymerized with these, such as divinylbenzene and diethylene glycoldi. Copolymers with methacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, vinyl acetate, etc., () chloromethyl group, sulfonyl chloride group, carbonyl chloride group, isocyanate group, epoxy group, aldehyde group, chlorine, bromine,
Polymers such as phenolic resins, polyethylene, polypropylene or () polyvinyl chloride having amine-reactive groups such as halogen atoms such as iodine, () aminoacetonitrile, aminomalonitrile, diaminomaleonitrile, dicyandiamide, iminodiacetonitrile, Resins made by reacting nitrile compounds with amino groups or imino groups such as 1-amino-2-cyanoethane, 4-aminobenzonitrile, 1-amino-3-cyanopropane, etc. are used, but are limited to these. isn't it. Particularly preferred are acrylonitrile, methacrylonitrile, or vinylidene cyanide polymers, or these vinyl cyanide monomers and divinylbenzene, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, vinyl acetate, etc. A copolymer with is used. The degree of polymerization of (A) the resin having a nitrile group is not particularly limited as long as it is water-insoluble, but generally the degree of polymerization is approximately
More than 500 items are used. Furthermore, the shape of the resin having a nitrile group can be any shape such as powder, fiber, honeycomb, granule, spherical, liquid, etc., and the shape can be selected as appropriate depending on the purpose of use. However, in general, spherical and powdered resins are preferably used from the viewpoint of handling. Examples of the amino compound (B) in the present invention include ammonia, monomethylamine, monoethylamine, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, nonamethylenediamine, diethylenetriamine, triethylene Aliphatic amines such as tetramine, tetraethylenepentamine, hydrazine, and guanidine; Aromatic amines such as toluylene diamine and phenylene diamine; Alicyclic amines such as diaminocyclobutane, diaminocyclopentane, diaminocyclohexane, diaminocycloheptane, and diaminocyclooctane Formula amine; diaminofuran,
Examples include oxygen-containing, nitrogen, and ionic amines such as diaminothiophene, diaminopyran, diaminothiopyran, and diaminopyridine. In particular, ammonia, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehenxamine, hexamethylenediamine, guanidine, phenylenediamine, and hydrazine are preferably used. As the chelate forming agent (C) used in the present invention, any agent can be used as long as it reacts with a compound having a primary or secondary amino group to form a chelate group. Such chelating agents include monochloroacetic acid,
halogenated alkyl carboxylic acids such as monobromo, acetic acid, and monochloropropionic acid, polyfunctional compounds having two amine-reactive groups such as epichlorohydrin, epibromohydrin, hexamethylene diisocyanate, tolylene diisocyanate, phosgene or thiophosgene, and iminodiacetic acid. , alkyl carboxylic oxidizing agents such as mixtures with aminocarboxylic acids such as iminodipropionic acid; halogenated alkyl phosphoric acids such as chloromethyl phosphoric acid and chloroethyl phosphoric acid; polyfunctional compounds having the above two amine-reactive groups and aminomethyl phosphoric acid, aminoethyl phosphoric acid; Mixtures of amines such as phosphoric acid with alkyl phosphoric acids; mixtures of alkylating agents such as formalin and trioxymethylene with phosphorus compounds such as phosphorus trichloride, phosphorous acid, hypophosphorous acid, and ethyl phosphite; alkyl phosphorylating agents such as mixtures of the above two A thiocarboxylic oxidizing agent such as a mixture of a polyfunctional compound having an amine-reactive group and an aminothiocarboxylic acid such as diethylenetriaminodithiocarbamic acid, ethylenediaminodithiocarbamic acid, or dithiocarbamic acid; Carbon disulfide: a polyfunctional compound having the above two amine-reactive groups Amidoximating agents such as mixtures of compounds and amidoxime compounds such as 4-aminobenzamidoxime and 4-diethylenetriaminobenzamidoxime; 5-bromo-8-hydroxyquinoline, 5-
Chloromethyl-8-hydroxyquinoline, etc. or their alkyl, alkenyl, alkynyl derivatives and inorganic salts of these compounds; 2-amino-4-bromophenol, 3-amino-4-iodophenol, 2-amino-4-chloromethylphenol , 2-amino-4-hydroxybenzenesulfonyl chloride, 2-amino-4-hydroxybenzoic acid chloride, 1-amino-4-bromo-2-naphthol, 2-amino-4-bromthiophenol, 4-amino-3 -Aminophenols such as hydroxybenzenesulfonyl chloride; 5-bromo-2,2'-dihydroxy-N,N'-ethanediylidene dianiline, 5-bromo-2,2'-dimercapto-N,N'-ethanedianiline iridendianiline,
5-chloromethyl-2,2'-dihydroxy-N,
N'-ethanediylidene dianiline, 5-chloromethyl-2,2'-dimercapto-N,N'-ethanediylidene dianiline, 5-bromo-2,2'-dihydroxy-N,N'-(o, Schiff bases such as m- or p-xylene diylidene) dianiline; 3
- Esters such as ethyl acetylpropionate, ethyl acetylenedicarboxylate, ethyl acetoacetate, ethyl pyruvate, diethyl succinate, etc., and acid chlorides equivalent to these esters; polyfunctional compounds having the above two amine-reactive groups and diethylenetriamine , triethylenetetramine, tetraethylenepentamine, hexamethyleneheptamine,
Aminopyridine, diaminothiopyran, glutamic acid, aspartic acid, 5-amino-8-oxyquinoline, 5-diethyltriamino-8-oxyquinoline, 5-triethyltetraamino-8-oxyquinoline, aminoethanealdoxime, aminomethane Examples include amino compounds such as benzhydroxam or mixtures with derivatives thereof. In the present invention, the above (A), (B), and (C) are reacted as follows. () (A) a resin having nitrile groups is reacted with (B) an amino compound, and then (C) a chelating agent is reacted; or () (A) a resin having nitrile groups is reacted with (D) (B ) Reacting the reaction product of the amino compound and (C) the chelating agent. The reaction will be explained in detail below. (A) A resin having a nitrile group and (B) an amino compound are reacted without a solvent or in the presence of a solvent such as water, N,N-dimethylformamide, formamide, dimethyl sulfoxide, toluene, xylene, or ethyl alcohol. 50℃ or higher, preferably 70-150
Perform at ℃. A reaction temperature lower than 50° C. is not preferred because the reaction rate becomes slow and a long reaction time is required. The reaction is preferably carried out at a temperature of about 0.1 to 7
The optimum time within this range is determined depending on the reaction temperature, the concentration of the reaction solution, the solvent used, the type of amino compound, etc. However, longer reaction times can also be used. The reaction is generally carried out at normal pressure, but it is also possible to carry out the reaction under increased pressure. The reaction ratio of (B) amino compound to (A) nitrile group-containing resin may be 1/20 molar or more per equivalent of nitrile group in the resin, but using more amino compound than necessary is prohibited after the reaction. Since the treatment operation becomes complicated due to the recovery treatment of If the amount of the (B) amino compound used for the (A) resin is less than the above, substitution of amino groups will be reduced, which is undesirable because the resulting reaction-produced chelate resin will have a lower metal-trapping ability. The aminated resin obtained by reacting the (A) nitrile group-containing resin with the (B) amino compound is then used as it is, after separating and removing the solvent and unreacted amino compound, or after washing and drying as necessary. After (C) reacting with a chelating agent. The reaction between the aminated resin and the chelate forming agent (C) can be carried out by a known method. Although reaction conditions vary depending on the type of chelate forming agent used, the reaction is usually carried out under the following conditions. Alkyl phosphorylating agents such as chloromethyl phosphoric acid and chloroethyl phosphoric acid, alkyl carboxylic oxidizing agents such as monochloroacetic acid, monochloropropionic acid, and monobromoacetic acid, thiocarboxylic oxidizing agents such as carbon dioxide, 8-hydroxyquinoline derivatives,
When aminophenol derivatives, Schiff bases, ketoesters, etc. are used as chelate forming agents, they can be used without catalyst or with pyridine, N,N-dimethylaniline, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium In the presence of a basic catalyst such as methoxide, at least 1/10 mole of chelating agent, preferably 1 mole or more, per equivalent of nitrile group in the resin containing nitrile groups.
The reaction may be carried out using ~5 mol. The reaction generally involves water, methyl alcohol, ethyl alcohol, propyl alcohol, N,N'-dimethylformamide, N,N-dimethylsulfoxide, 1,2-
It is carried out in the presence of a solvent such as dichloroethane, 1,1,2-trichloroethane, or pyridine. The reaction temperature is generally room temperature to 150°C, and the reaction time is generally 0.1 to 24 hours. In addition, when using an alkylating agent such as formaldehyde or trioxymethylene and a phosphorus compound such as phosphorous trichloride, phosphorous acid, hypophosphorous acid, methyl phosphite, or ethyl phosphite as a chelate forming agent, hydrochloric acid as a catalyst may be used. , except that an acidic catalyst such as sulfuric acid is used, the reaction molar ratio, use of solvent, reaction temperature, reaction time, etc. may be within substantially the same ranges as above. In addition, the (D) reaction product used to react with the resin (A) having a nitrile group is an amino compound having (B) a primary or secondary amino group and (C) an amino compound having a primary or secondary amino group.
The chelate-forming agent is added to 1/10 to 1 equivalent of the amino compound having an amino group.
The reaction may be carried out using moles. Regarding the use of a solvent, reaction temperature, reaction time, etc., it is sufficient to adopt substantially the same range as for the reaction between the above amino compound and (C) chelate forming agent. (D) The reaction product of the amino compound and the chelate forming agent is then reacted with (A) the resin having a nitrile group. The reaction conditions vary depending on the type of reaction product between (D) the amino compound and (C) the chelate-forming agent, but usually the reaction conditions are the same as in the case of the reaction between (A) the resin having a nitrile group and (B) the amino compound. Approximately similar ranges may be adopted for the ratio, use of solvent, reaction temperature, reaction time, etc. The chelate resin produced as described above can be used for appropriate purposes as it is or after washing and drying, but if necessary, the chelate resin can be further treated with a base or acid before use. The chelate resin produced by the method of the present invention has different adsorption properties for metal ions depending on the functional group.
Extremely effective in removing and recovering metal ions such as heavy metal ions such as silver, platinum, and uranium, and metal ions such as calcium, magnesium, barium, and iron in aqueous solutions of alkaline chlorides such as sodium chloride and potassium chloride. It is. It can also be suitably used to recover valuable metals such as uranium from seawater. The chelate resin produced by the method of the present invention can be used in addition to collecting heavy metals, for example, for analysis, for separating and purifying organic substances, for catalysts, and as a raw material for producing chemical-resistant resins. As described in detail above, the method for producing a chelate resin of the present invention has the effect that the number of chelate functional groups per unit monomer is large compared to known methods for producing a chelate resin, so that a large amount of metal ions can be adsorbed per resin. demonstrate. Furthermore, by the reaction of (A) a resin having a nitrile group with (B) an amino compound or (D) a reaction product, a group having a chelating agent and an imino group or a carbonyl group are formed around the carbon atom of the nitrile group. Perhaps because these two groups mutually act as chelate-forming agents, the amount of metal ion adsorption is lower than that of chelate resins with approximately the same number of chelate functional groups per unit monomer produced by known production methods. It has the advantage that it can significantly reduce the metal adsorption equilibrium concentration in a high salt concentration aqueous solution, and that it can be manufactured easily and at a low cost. The method of the present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to the following Examples unless the gist of the invention is exceeded. Example 1 120 parts by weight of ethylenediamine and 40 parts by weight of water were added to 60 parts by weight of acrylonitrile-divinylbenzene copolymer resin with a degree of crosslinking of 4 mol%, and the mixture was heated at 110 to 132°C.
The reaction was carried out for 4 hours. When the reaction product was filtered and washed with water, 233 parts by weight (undried) of aminated resin was obtained. Next, a mixed solution of 66 parts by weight of phosphorous acid as an alkyl phosphorylating agent, 137 parts by weight of 36% hydrochloric acid, and 25 parts by weight of 95% paraformaldehyde was added to 98 parts by weight of the obtained aminated resin.
The reaction was carried out at ~100°C for 6 hours. Wash the resin with water,
As a result, a chelate resin having 89 mol % of aminomethylene phosphate groups based on 159 parts by weight (undried) of unit monomer was obtained. Example 2 310 parts by weight of diethylene triamine, 1200 parts by weight of water and 228 parts by weight of carbon disulfide were added to 94 parts by weight of vinylidene cyanide-tetraethylene glycol dimethacrylate copolymer resin with a degree of crosslinking of 4 mol%, and 80 parts by weight of carbon disulfide were added.
The reaction was carried out at ℃ for 6 hours. When the reaction product was filtered and washed with water, 546 parts by weight (undried) of a resin having dithiocarbamic acid groups was obtained. Example 3 300 parts by weight of triethylenetetramine and 75 parts by weight of water were added to 68 parts by weight of acrylonitrile-divinylbenzene copolymer resin with a degree of crosslinking of 8 mol%, and 110 to 120 parts by weight of water were added.
The reaction was carried out at ℃ for 2 hours. When the reaction product was filtered and washed with water, 276 parts by weight (undried) of aminated resin was obtained. Next, 28 parts by weight of monochloroacetic acid and sodium carbonate were added to 28 parts by weight of the obtained aminated resin.
32 parts by weight and 100 parts by weight of water were added and the reaction was carried out at 70 to 100°C for 2 hours. When the resin content was washed with water and filtered, 93
A chelate resin having parts by weight (undried) of aminoacetic acid groups was obtained. Example 4 A mixture of 136 parts by weight of hexamethylene diisocyanate and 1000 parts by weight of toluene held at 70°C was
58 parts by weight (dry) of the same aminated resin used in Example 1 was added, and the mixture was reacted at 40 to 80°C for 4 hours and then filtered. Add a 10% by weight aqueous aminoethylene phosphate aqueous solution to the total amount of the resin obtained by
1690 parts by weight was added and the reaction was carried out at 70 to 100°C for 6 hours. When the resin was washed with water and filtered, 386 parts by weight (undried) of a chelate resin having aminoethylene phosphate groups was obtained. Example 5 580 parts by weight of an 80% by weight aqueous pentaethylenehexamine solution was added to 62 parts by weight of methacrylonitrile-divinylbenzene copolymer resin with a degree of crosslinking of 6 mol%, and the mixture was reacted at 110 to 140°C for 2 hours and then filtered. As a result, 279 parts by weight (undried) of aminated resin was obtained. Next, 15 parts by weight of carbon disulfide as a chelate forming agent was added to 28 parts by weight (undried) of the aminated resin obtained.
3 parts by weight and 100 parts by weight of water as a solvent and heated at 43 to 46℃.
A time reaction was performed. When the reaction product was filtered and washed with water, 44% of the resin containing dithiocarbamic acid groups was found.
Part by weight (undried) was obtained. Examples 6-10 Same aminated resin 93 as used in Example 1
Part by weight (undried) was added to the first part in the same manner as in Example 5.
When the reaction was carried out with a chelate forming agent under the reaction conditions shown in Table 1, chelate resins shown in Table 1 were obtained. Examples 11 to 15 To 900 parts by weight of vinylidene cyanide-divinylbenzene copolymer resin with a degree of crosslinking of 8 mol%, 2000 parts by weight of an aqueous solution of ethylenediamine with a concentration of 60% by weight was added,
When the reaction was carried out at 100-114° C. for 6 hours and filtered, 2760 parts by weight (undried) of aminated resin was obtained. Next, 276 parts by weight (undried) of the obtained aminated resin was reacted in the same manner as in Example 1 under the reaction conditions shown in Table 2, and a chelate resin as shown in Table 2 was obtained. It was done.

【表】【table】

【表】 実施例 16 実施例1のアルキル燐酸化剤として亜燐酸40重
量部、36重量%濃度塩酸82重量部と95重量%濃度
のホルムアルデヒド15重量部用いた以外は、実施
例1と同様な方法で反応を行い、単位モノマー当
り、54モル%のアミノメチレン燐酸基を有するキ
レート樹脂が得られた。 応用例 1 実施例1、3、4、7、8、9、10、11で得ら
れたキレート樹脂、スチレン樹脂基体キレート樹
脂、フエノール樹脂基体キレート樹脂及び実施例
1で得られたアミノ化樹脂0.25重量部(乾燥樹脂
換算)を、100mg−Cd/のCdCl2と40g−Na/
のNaclを含有する PH4の水溶液50重量部に添加し、振盪しながら1
時間接触させた。その結果、処理後水溶液中の
Cd濃度は第2表のようであつた。
[Table] Example 16 The same procedure as in Example 1 was used except that 40 parts by weight of phosphorous acid, 82 parts by weight of 36% by weight hydrochloric acid and 15 parts by weight of formaldehyde at 95% by weight were used as the alkyl phosphorylating agent. A chelate resin having 54 mol % of aminomethylene phosphate groups per unit monomer was obtained. Application example 1 Chelate resin obtained in Examples 1, 3, 4, 7, 8, 9, 10, 11, styrene resin-based chelate resin, phenolic resin-based chelate resin, and aminated resin obtained in Example 1 0.25 The parts by weight (in terms of dry resin) are 100 mg-Cd/CdCl 2 and 40 g-Na/
was added to 50 parts by weight of an aqueous solution of PH4 containing NaCl, and 1
Contacted for an hour. As a result, in the aqueous solution after treatment,
The Cd concentration was as shown in Table 2.

【表】【table】

【表】 応用例 2 100mg/Cd/のCdCl2と11.79g−Na/の
NaClと500mg−Cd/のNaClOを含有するPH
5.51の水溶液100重量部に実施例1、3、4、7、
8、9、10、11、16のキレート樹脂、前記スチレ
ン樹脂基体キレート樹脂、前記フエノール樹脂基
体キレート樹脂と実施例1で得られたアミノ化樹
脂を各々乾燥樹脂換算で0.5重量部添加し、振盪
しながら1時間接触させた。その結果、処理後水
溶液中のCd濃度は第3表のようであつた。
[Table] Application example 2 100mg/Cd/CdCl 2 and 11.79g-Na/
PH containing NaCl and 500 mg-Cd/NaClO
Examples 1, 3, 4, 7, and 100 parts by weight of the aqueous solution of 5.51
Chelate resins Nos. 8, 9, 10, 11, and 16, the styrene resin-based chelate resin, the phenol resin-based chelate resin, and the aminated resin obtained in Example 1 were each added in an amount of 0.5 parts by weight in terms of dry resin, and the mixture was shaken. The contact was continued for 1 hour. As a result, the Cd concentrations in the aqueous solution after treatment were as shown in Table 3.

【表】 応用例 3 100mg−U/のNa4(UO)2(CO32と13.1g−
Na/のNaClを含有するPH8.2の水溶液100重量
部に実施例1、4、8、9、11、12、13のキレー
ト樹脂、前記フエノール樹脂基体キレート樹脂と
実施例4で得られたアミノ化樹脂を各々0.5重量
部添加し、振盪しながら1時間接触させた。その
結果、処理後水溶液中のU濃度は第4表のようで
あつた。
[Table] Application example 3 100mg-U/Na 4 (UO) 2 (CO 3 ) 2 and 13.1g-
The chelate resins of Examples 1, 4, 8, 9, 11, 12, and 13 were added to 100 parts by weight of an aqueous solution of pH 8.2 containing NaCl, the phenolic resin-based chelate resin, and the amino acid obtained in Example 4. 0.5 parts by weight of each resin was added, and the mixture was allowed to come into contact with the mixture for 1 hour while being shaken. As a result, the U concentrations in the aqueous solutions after treatment were as shown in Table 4.

【表】 応用例 4 100mg/Cu/のCuCl2を含有するPH3.0の水溶
液100重量部に実施例1、3、4、7、8、9、
10、11、14、15のキレート樹脂、フエノール樹脂
基体キレート樹脂と実施例1で得られたアミノ化
樹脂を各々乾燥樹脂換算0.5重量部添加し、振盪
しながら1時間接触させた。その結果、処理後水
溶液中のCu濃度は第5表のようであつた。
[Table] Application example 4 Examples 1, 3 , 4, 7, 8, 9,
Chelate resins Nos. 10, 11, 14, and 15, the phenolic resin-based chelate resin, and the aminated resin obtained in Example 1 were each added in an amount of 0.5 part by weight in terms of dry resin, and were brought into contact with each other for 1 hour while shaking. As a result, the Cu concentrations in the aqueous solutions after treatment were as shown in Table 5.

【表】【table】

【表】 応用例 5 13.20mg/濃度のHgと30g/濃度のNaCl
を含有するPH7.8の水溶液100重量部に実施例2、
5、6のキレート樹脂と市販のジチゾン型水銀吸
着樹脂、前記フエノール樹脂基体キレート樹脂と
実施例1で得られたアミノ化樹脂を各々乾燥重量
換算で0.5重量部添加し、振盪しながら1時間接
触させた。その結果処理後水溶液中のHg濃度は
第6表のようであつた。
[Table] Application example 5 13.20mg/concentration of Hg and 30g/concentration of NaCl
Example 2 to 100 parts by weight of an aqueous solution of PH7.8 containing
0.5 parts by weight of each of the chelate resins Nos. 5 and 6, a commercially available dithizone-type mercury adsorption resin, the phenol resin-based chelate resin, and the aminated resin obtained in Example 1 were added in terms of dry weight, and the mixture was contacted for 1 hour with shaking. I let it happen. As a result, the Hg concentration in the aqueous solution after treatment was as shown in Table 6.

【表】 応用例 6 63mg/濃度のCaと300g/濃度のNaClを
含有するPH9の水溶液50重量部に、実施例1、16
のキレート樹脂と前記スチレン樹脂基体キレート
樹脂を各々乾燥樹脂換算で0.5重量部添加し、振
盪しながら1時間接触させた。その結果、処理後
水溶液中のCa濃度は第7表のようであつた。
[Table] Application example 6 Examples 1 and 16 were added to 50 parts by weight of a pH 9 aqueous solution containing 63 mg/concentration of Ca and 300 g/concentration of NaCl.
The chelate resin and the styrene resin-based chelate resin were each added in an amount of 0.5 parts by weight in terms of dry resin, and were brought into contact with each other for 1 hour while being shaken. As a result, the Ca concentration in the aqueous solution after treatment was as shown in Table 7.

【表】 応用例6から本発明方法によつて製造されたキ
レート樹脂は単位モノマー当りの官能基の量がほ
ぼ同量のアミノメチレン燐酸基を有した公知のキ
レート樹脂よりも金属イオン吸着性が優れている
ことは明らかである。 実施例 17 架橋度4モル%のアクリロニトリル−ジビニル
ベンゼン共重合樹脂60重量部に、206重量部のジ
エチレントリアミンと40重量部の水を加え、110
〜120℃で4時間反応を行なつた。反応生成物を
過、水洗したところ177重量部のアミノ化樹脂
が得られた。次いで得られたアミノ化樹脂129重
量部に、キレート形成化剤として5−ブロム−8
−ヒドロキシキノリン臭酸塩252重量部と、ピリ
ジン131重量部とトルエン2857重量部を加え80〜
90℃で4時間反応を行なつた。樹脂分を過、水
洗、次いでエタノール洗浄したところ235重量部
の単位モノマー当り89モル%の8−ヒドロキシキ
ノリン基を有するキレート樹脂が得られた。 実施例 18 架橋度4モル%のシアン化ビニリデン−テトラ
エチレングリコールジメタアクリレート共重合樹
脂94重量部にジエチレントリアミン310重量部と
水1200重量部を加え110〜120℃で4時間反応を行
なつた。反応生成物を過、水洗したところ277
重量部のアミノ化樹脂が得られた。次いで、得ら
れたアミノ化樹脂129重量部にキレート形成化剤
として2−アミノ−4−ブロモフエノール臭酸塩
222重量部と、ピリジン131重量部とトルエン2857
重量部を加え80〜90℃で4時間反応を行なつた。
樹脂分を過、水洗、次いでエタノール洗浄した
ところ213重量部の単位モノマー当り93モル%の
o−アミノフエノール基を有するキレート樹脂が
得られた。 実施例 19 架橋度8モル%のアクリロニトリル−ジビニル
ベンゼン共重合樹脂63重量部にトリエチレンテト
ラミン300重量部と水75重量部を加え、110〜120
℃で2時間反応を行つた。反応生成物を過、水
洗したところ166重量部のアミノ化樹脂が得られ
た。次いで得られたアミノ化樹脂129重量部に、
キレート形成化剤としてグリオキザル−5−クロ
ルメチルビス(2−ヒドロキシアニル)187−重
量部と、ピリジン51重量部とトルエン2857重量部
を加え100〜110℃で4時間反応を行なつた。樹脂
分を過、水洗、次いでエタノール洗浄したとこ
ろ263重量部の単位モノマー当り87モル%のグリ
オキザル−ビス(2−ヒドロキシアニル)基を有
するキレート樹脂が得られた。 実施例 20 実施例17で使用したのと同一のアミノ化樹脂
129重量部に、キレート形成化剤としてアセト酢
酸エチル73重量部と、ナトリウムメトキシド13重
量部とメタノール281重量部を加え、60〜70℃で
4時間反応を行なつた。樹脂分を過、水洗、次
いでエタノール洗浄したところ163重量部の単位
モノマー当り94モル%のβ−ジケトン基を有する
キレート樹脂が得られた。 実施例 21〜30 実施例17で使用したのと同一のアミノ化樹脂
129重量部に実施例1と同様な方法で第8表に示
すようなキレート形成化剤と反応条件で反応を行
なつたところ、第8表に示すようなキレート樹脂
が得られた。
[Table] From Application Example 6, the chelate resin produced by the method of the present invention has a higher metal ion adsorption property than the known chelate resin having almost the same amount of aminomethylene phosphate groups per unit monomer. It is clear that it is superior. Example 17 206 parts by weight of diethylenetriamine and 40 parts by weight of water were added to 60 parts by weight of acrylonitrile-divinylbenzene copolymer resin with a degree of crosslinking of 4 mol%, and 110 parts by weight of diethylenetriamine and 40 parts by weight of water were added.
The reaction was carried out at ~120°C for 4 hours. When the reaction product was filtered and washed with water, 177 parts by weight of aminated resin was obtained. Next, 5-bromo-8 was added as a chelate forming agent to 129 parts by weight of the obtained aminated resin.
-Add 252 parts by weight of hydroxyquinoline hydrochloride, 131 parts by weight of pyridine and 2857 parts by weight of toluene to 80~
The reaction was carried out at 90°C for 4 hours. When the resin was filtered, washed with water, and then washed with ethanol, a chelate resin containing 89 mol % of 8-hydroxyquinoline groups per 235 parts by weight of unit monomer was obtained. Example 18 310 parts by weight of diethylenetriamine and 1200 parts by weight of water were added to 94 parts by weight of vinylidene cyanide-tetraethylene glycol dimethacrylate copolymer resin having a degree of crosslinking of 4 mol%, and a reaction was carried out at 110 to 120°C for 4 hours. When the reaction product was filtered and washed with water, 277
Parts by weight of aminated resin were obtained. Next, 2-amino-4-bromophenol hydrochloride was added to 129 parts by weight of the obtained aminated resin as a chelate forming agent.
222 parts by weight, 131 parts by weight of pyridine, and 2857 parts by weight of toluene.
Parts by weight were added and the reaction was carried out at 80 to 90°C for 4 hours.
When the resin was filtered, washed with water, and then washed with ethanol, a chelate resin containing 93 mol % of o-aminophenol groups per 213 parts by weight of unit monomer was obtained. Example 19 300 parts by weight of triethylenetetramine and 75 parts by weight of water were added to 63 parts by weight of acrylonitrile-divinylbenzene copolymer resin with a degree of crosslinking of 8 mol%, and 110 to 120 parts by weight were added.
The reaction was carried out at ℃ for 2 hours. When the reaction product was filtered and washed with water, 166 parts by weight of aminated resin was obtained. Then, to 129 parts by weight of the obtained aminated resin,
187 parts by weight of glyoxal-5-chloromethylbis(2-hydroxyanyl) as a chelate forming agent, 51 parts by weight of pyridine and 2857 parts by weight of toluene were added, and the reaction was carried out at 100-110°C for 4 hours. When the resin was filtered, washed with water, and then washed with ethanol, a chelate resin containing 87 mol % of glyoxal-bis(2-hydroxyanyl) groups based on 263 parts by weight of unit monomer was obtained. Example 20 Same aminated resin used in Example 17
To 129 parts by weight were added 73 parts by weight of ethyl acetoacetate as a chelate forming agent, 13 parts by weight of sodium methoxide, and 281 parts by weight of methanol, and the reaction was carried out at 60 to 70°C for 4 hours. When the resin was filtered, washed with water, and then washed with ethanol, a chelate resin containing 94 mol % of β-diketone groups per 163 parts by weight of unit monomer was obtained. Examples 21-30 Same aminated resin used in Example 17
When 129 parts by weight was reacted with a chelate forming agent as shown in Table 8 in the same manner as in Example 1 under the reaction conditions, chelate resins as shown in Table 8 were obtained.

【表】 〓


[Table] 〓


Claims (1)

【特許請求の範囲】 1 (A)ニトリル基を有する樹脂に、(B)第1級もし
くは第2級のアミノ基を有するアミノ化合物を反
応させ、次いで(C)第1級もしくは第2級のアミノ
基を有する化合物と反応してキレート基を形成す
るキレート形成化剤を反応させるか、または、(A)
ニトリル基を有する樹脂に、(D)前記第1級もしく
は第2級のアミノ基を有するアミノ化合物と前記
キレート形成化剤との反応生成物を反応させるこ
とを特徴とするキレート樹脂の製造方法。 2 (A)ニトリル基を有する樹脂が、アクリロニト
リル、メタアクリロニトリルもしくはシアン化ビ
ニリデンの単独重合体または共重合体である特許
請求の範囲第1項記載のキレート樹脂の製造方
法。 3 (C)キレート形成化剤が、アルキル燐酸化剤、
アルキルカルボン酸化剤、チオカルボン酸化剤、
アミドオキシム化剤、8−ヒドロキシキノリン誘
導体、アミノフエノール誘導体、シツフベース類
またはケトエステル類である特許請求の範囲第1
項または第2項記載のキレート樹脂の製造方法。 4 (B)第1級もしくは第2級のアミノ基を有する
アミノ化合物が、アンモニア、エチレンジアミ
ン、ジエチレントリアミン、トリエチレンテトラ
ミン、テトラエチレンペンタミン、ペンタエチレ
ンヘキサミン、ヘキサメチレンジアミン、グアニ
ジン、フエニレンジアミンまたはヒドラジンであ
る特許請求の範囲第1項、第2項または第3項記
載のキレート樹脂の製造方法。
[Claims] 1. (A) A resin having a nitrile group is reacted with (B) an amino compound having a primary or secondary amino group, and then (C) a resin having a primary or secondary amino group is reacted with the resin. (A) reacting with a chelating agent that reacts with a compound having an amino group to form a chelate group, or (A)
A method for producing a chelate resin, which comprises reacting a resin having a nitrile group with (D) a reaction product of the amino compound having a primary or secondary amino group and the chelate forming agent. 2. The method for producing a chelate resin according to claim 1, wherein (A) the resin having a nitrile group is a homopolymer or copolymer of acrylonitrile, methacrylonitrile, or vinylidene cyanide. 3 (C) the chelating agent is an alkyl phosphorylating agent,
Alkyl carbon oxidizing agent, thiocarboxylic oxidizing agent,
Claim 1, which is an amidoximating agent, an 8-hydroxyquinoline derivative, an aminophenol derivative, Schiff bases or ketoesters
A method for producing a chelate resin according to item 1 or 2. 4 (B) The amino compound having a primary or secondary amino group is ammonia, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexamethylenediamine, guanidine, phenylenediamine, or hydrazine. A method for producing a chelate resin according to claim 1, 2, or 3.
JP58029109A 1983-02-22 1983-02-22 Production of chelate resin Granted JPS59155406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58029109A JPS59155406A (en) 1983-02-22 1983-02-22 Production of chelate resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029109A JPS59155406A (en) 1983-02-22 1983-02-22 Production of chelate resin

Publications (2)

Publication Number Publication Date
JPS59155406A JPS59155406A (en) 1984-09-04
JPH0459326B2 true JPH0459326B2 (en) 1992-09-22

Family

ID=12267160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029109A Granted JPS59155406A (en) 1983-02-22 1983-02-22 Production of chelate resin

Country Status (1)

Country Link
JP (1) JPS59155406A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW494106B (en) * 1994-04-25 2002-07-11 Wako Pure Chem Ind Ltd An initiator used for the polymerization of acid or neutral water-soluble vinyl polymers
AU2003902237A0 (en) * 2003-05-09 2003-05-22 Clean Teq Pty Ltd A method for extraction of non-ferrous metals
AU2003902626A0 (en) * 2003-05-27 2003-06-12 Clean Teq Pty Ltd Anion exchange resins for recovery of anions and anionic complexes of metals from liquids and pulps
AU2004243674B2 (en) * 2003-05-27 2010-03-25 Clean Teq Pty Ltd Anion exchange resins for recovery of anions and anionic complexes containing metals from liquids and pulps
JP2009262078A (en) * 2008-04-25 2009-11-12 Kaneka Corp Method of manufacturing high-strength activated carrier
CN106749883A (en) * 2016-11-25 2017-05-31 郑泽 A kind of chelating resin and preparation method thereof
CN108014742B (en) * 2017-11-29 2021-01-05 北京科技大学 Method for selectively and deeply removing trace silver ions in tail liquid
JP7220894B2 (en) * 2018-11-29 2023-02-13 国立研究開発法人量子科学技術研究開発機構 Metal adsorbent having dithiocarbamic acid group, method for producing the same, and method for extracting metal
CN110040833B (en) * 2019-04-23 2021-09-03 襄阳先创环保科技有限公司 Preparation method of heavy metal ion trapping agent for electroplating wastewater
WO2024085249A1 (en) * 2022-10-21 2024-04-25 株式会社クラレ Resin composition, and molded product and film using resin composition

Also Published As

Publication number Publication date
JPS59155406A (en) 1984-09-04

Similar Documents

Publication Publication Date Title
US4039446A (en) Heavy metal-binding agent process
US4217421A (en) Anion exchange resins prepared from crosslinked polystyrenesulfonylchloride
JPH0459326B2 (en)
JPH0428724B2 (en)
US5200473A (en) Chelating resins and method for their use in the extraction of metal ions
US4277566A (en) Chelate resin prepared by aftertreatment of aminated resin with polyfunctional compound and amine
US6133392A (en) Insoluble polymers which can swell only slightly with modified amino groups, processes for their preparation, and their use
WO1998047926A2 (en) Ethyleneimine-containing resins, manufacture, and use for chemical separations
US5356937A (en) Resins and processes for preparing them
JP2987907B2 (en) Removal of dissolved oxygen
JP2608712B2 (en) Manufacturing method of chelating resin
JPS63251402A (en) Preparation of chelate resin
JP2876754B2 (en) Arsenic removal method
JPH0429682B2 (en)
JPH05255011A (en) Microorganism control agent
JPS63130799A (en) Method for refining plating bath
JPH06327984A (en) Anion-exchange resin
Chanda et al. Polybenzimidazole resin-based new chelating agents. Ferric ion selectivity of resins with immobilized oligoamines
JPS61201611A (en) Purification method for aqueous solution of phosphate
JPH0661465B2 (en) Method for producing metal collector
JPS5820964B2 (en) Chelate resin manufacturing method
JPS63125504A (en) Chelate resin
JP2508162B2 (en) Heavy metal recovery method
JPS6255523B2 (en)
US4732946A (en) Process for the preparation of chelation resins