JPS62156946A - Manufacture of multilayer ceramic porous body - Google Patents

Manufacture of multilayer ceramic porous body

Info

Publication number
JPS62156946A
JPS62156946A JP29356585A JP29356585A JPS62156946A JP S62156946 A JPS62156946 A JP S62156946A JP 29356585 A JP29356585 A JP 29356585A JP 29356585 A JP29356585 A JP 29356585A JP S62156946 A JPS62156946 A JP S62156946A
Authority
JP
Japan
Prior art keywords
support layer
particles
porous body
layer
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29356585A
Other languages
Japanese (ja)
Inventor
哲 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP29356585A priority Critical patent/JPS62156946A/en
Publication of JPS62156946A publication Critical patent/JPS62156946A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフィルター、隔膜に利用される多層セラミック
多孔体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a multilayer ceramic porous body used for filters and diaphragms.

〔従来の技術〕[Conventional technology]

従来、フィルター、隔膜に利用されるセラミック多孔体
としては支持体層とフィルタ一層からなる多層のものが
ある。かかる多孔体の製造方法としては支持体層を鋳込
み法または押出法で成形し焼成したのち、その表面に支
持体層で用いたよりも微細なセラミック粒子のスラリー
を鋳込み法で付着させたりまたは塗布させたりして堆積
層を形成し乾燥し、得られた支持体層と堆積層とからな
るセラミック成形体を焼成するものであった。
Conventionally, as ceramic porous bodies used for filters and diaphragms, there are multi-layered ones consisting of a support layer and a filter layer. A method for manufacturing such a porous body is to form a support layer by a casting method or an extrusion method, and then firing it, and then attaching or coating a slurry of ceramic particles finer than those used in the support layer to the surface of the support layer by a casting method. A deposited layer was formed by drying the deposited layer, dried, and a ceramic molded body consisting of the obtained support layer and deposited layer was fired.

しかし堆積層を形成するに当り、鋳込み法や塗布する方
法は、用いるセラミック粒子のスラリーの濃度を濃くせ
ざるを得ないため該粒子が一次粒子ではなく凝集した形
で支持体層表面に付着するので粒子間にできる孔の径、
すなわちフィルターとした場合の目開きの大きさく以下
透過孔径と称する)が大きくなり、かつ透過孔径分布の
幅も広くなるという欠点があった。
However, when forming a deposited layer, the casting method or coating method has to increase the concentration of the slurry of ceramic particles used, which causes the particles to adhere to the surface of the support layer in the form of aggregates rather than primary particles. Therefore, the diameter of the pores formed between particles,
That is, when used as a filter, the opening size (hereinafter referred to as the permeation pore diameter) becomes large, and the width of the permeation pore size distribution also becomes wide.

また堆積層形成の際、空気を抱き込みやすく、該空気が
焼成時に膨張してポツピングを起こしてフィルタ一層表
面にピンホールを生ずるという欠点を有していた。
Furthermore, when forming the deposited layer, air is easily trapped, and the air expands during firing, causing popping and pinholes on the surface of the filter.

堆積層の厚さを増すことでこれらの欠点を解決しようと
しても、その効果は充分でないのみならず、厚さが増す
とフィルタ一層とした場合のr過抵抗が大きくなるとい
う問題がある。
Even if an attempt is made to solve these drawbacks by increasing the thickness of the deposited layer, the effect is not only insufficient, but there is also the problem that as the thickness increases, the r-overresistance increases when the filter is made of a single layer.

そこで本発明者は先の出願、発明の名称「複層式セラミ
ック多孔体の製造方法」において、透過孔径分布の幅が
狭く、孔径が均一で、かつピンホールの生じない方法を
提案(〜た。すなわち該発明の要旨はセラミック多孔体
を沢過体としてセラミック粒子の分散液をクロスフロー
濾過することにより、該多孔体表面にセラミック粒子の
薄い堆積層を形成させ、これを乾燥、焼成することを特
徴とする。5P4.、セラミック多孔体の製造方法にあ
る。
Therefore, in a previous application titled "Method for manufacturing multi-layered ceramic porous material", the present inventor proposed a method in which the width of the permeation pore size distribution is narrow, the pore size is uniform, and pinholes do not occur. That is, the gist of the invention is to form a thin deposited layer of ceramic particles on the surface of the porous body by cross-flow filtration of a dispersion of ceramic particles using a porous ceramic body as a filter, and to dry and fire this. 5P4. is a method for producing a ceramic porous body.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし本発明者が先に出願した発明は必ずしもすべて良
好なセラミック多孔体を得るとは限らない。すなわち支
持体層表面にクロスフロー濾過によってセラミック粒子
を堆積させる際、該粒子が支持体層の孔の内部に入り込
んで目詰りを起こしたと同じような状態を惹き起こし、
フィルターとして使用した場合透過抵抗が大きくなる(
透過係数が小さくなる)場合があるという欠点を有して
いた。
However, the inventions previously filed by the present inventors do not necessarily yield good ceramic porous bodies. That is, when depositing ceramic particles on the surface of the support layer by cross-flow filtration, the particles enter the inside of the pores of the support layer and cause clogging.
When used as a filter, the transmission resistance increases (
This has the disadvantage that the transmission coefficient may become small.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者はフィルタ一層(堆積層が焼成されたもの)の
孔径分布幅が狭く、均一な孔径を有し、かつ透過係数が
大きくピンホールの生じない多層セラミック多孔体の製
造方法につき鋭意研究した結果、支持体層の孔中にあら
かじめ有機質の微粒子を充填しておいたのち、セラミッ
ク粒子の分散液をクロスフロー1過して該粒子を付着さ
せて堆積層を形成し、焼成することにより目的とする多
層セラミソーク多孔体が得られることを見出し本発明に
到達した。
The present inventor has conducted intensive research into a method for manufacturing a multilayer ceramic porous body that has a narrow pore size distribution width, uniform pore size, and a large permeability coefficient that does not cause pinholes in the filter single layer (the deposited layer is fired). As a result, after filling the pores of the support layer with organic fine particles in advance, a dispersion of ceramic particles is passed through a cross flow to cause the particles to adhere to form a deposited layer, which is then fired to achieve the desired purpose. The present invention was achieved by discovering that a multilayer ceramic soak porous body having the following properties can be obtained.

すなわち本発明の要旨はセラミック多孔体の孔中に有機
質微粒子を充填したのち、該多孔体表面でセラミック粒
子の分散液をクロスフロー濾過し、該多孔体表面にセラ
ミック粒子の堆積層を形成させたのち、焼成することを
特徴とする多層セラミック多孔体の製造方法にある。
That is, the gist of the present invention is to fill the pores of a ceramic porous body with organic fine particles, and then cross-flow filter a dispersion of ceramic particles on the surface of the porous body to form a deposited layer of ceramic particles on the surface of the porous body. The present invention provides a method for producing a multilayer ceramic porous body, which is characterized in that it is then fired.

本発明でいうクロスフロー濾過とは、1過原液を加圧下
でr材表面に流し、1液はr材裏面より、r材と平行に
流れる原液に対して、直角方向向に流れる濾過をいう。
Cross-flow filtration as used in the present invention refers to filtration in which a 1-filtrate stock solution is flowed under pressure onto the surface of the R material, and the 1st solution flows from the back surface of the R material in a direction perpendicular to the stock solution flowing parallel to the R material. .

本発明に用いる支持体層のセラミック多孔体は、その材
質はアルミナ、チタニア、ムライトその他特に限定され
るものではなく、寸だその製法も鋳込み法、押出成形法
等いずれの方法でもよい。
The material of the porous ceramic body of the support layer used in the present invention is not particularly limited, such as alumina, titania, mullite, etc., and its dimensions may be manufactured by any method such as casting or extrusion.

支持体層の孔中に充填する有機質微粒子の材質は特に限
定されるものではなく焼成の際焼失するものであればよ
く、粒度は支持体層の孔中に入り込んで孔中に留捷るも
のであれはよく、例えは市販のラテックス球が使用でき
る。
The material of the organic fine particles to be filled into the pores of the support layer is not particularly limited, as long as it is burnt out during firing, and the particle size is such that it can enter the pores of the support layer and remain in the pores. For example, a commercially available latex ball can be used.

堆積層形成に使用するセラミック粒子としては支持体層
を形成してから焼成した際、あるいはその冷却時に支持
体層と堆積層との間に熱膨張率が異なってキレン等が入
らない材質を選ぶことが好捷しい。従って両者が同じ材
質である方がよい。その粒度はフィルタ一層としての透
過孔径をいくらにするかによるが、目安として所望の透
過孔径の2倍の大きさのものを選べばよい。捷だ支持体
層の孔径とあ捷りかけ離れて小さい粒度のものを用いる
とフィルタ一層が強度的に弱くなるおそれがあるが、そ
れは決定的な制約とはならない。
For the ceramic particles used to form the deposited layer, choose a material that has a different coefficient of thermal expansion between the support layer and the deposited layer and does not allow the entry of chemicals when firing after forming the support layer or when cooling the support layer. That's a good thing. Therefore, it is better that both are made of the same material. The particle size depends on the diameter of the permeation pores in one layer of the filter, but as a rough guide, it is sufficient to choose a particle size twice the desired permeation pore diameter. If particles with a small particle size far different from the pore size of the shrunk support layer are used, there is a risk that the strength of the filter layer will be weakened, but this is not a decisive constraint.

分散媒としては水、アルコール等が用いられる。セラミ
ック粒子の分散液は粒子の凝集を生じなければその濃度
は限定されないが、通常10重量係以下、好ましくは1
重量係以下である。
Water, alcohol, etc. are used as the dispersion medium. The concentration of the ceramic particle dispersion is not limited as long as the particles do not aggregate, but it is usually 10% by weight or less, preferably 1% by weight or less.
It is below the weight limit.

次に本発明の製造方法を説明する。Next, the manufacturing method of the present invention will be explained.

支持体層を先に製造しておくが、これは前記した如くセ
ラミック粒子に水を加えスラリーとしたものをせつこう
型に流し込み、一定時間放置してせつこう型内面にセラ
ミック成形体を形成し乾燥して成形物を得る所謂鋳込み
法で成形したものを焼成してもよいし、セラミック粒子
に水を加えて粘土状にしたものを押出し成形し乾燥、焼
成して得てもよい。
The support layer is manufactured first, as described above, by adding water to ceramic particles to form a slurry, pouring it into a plaster mold, and leaving it to stand for a certain period of time to form a ceramic molded body on the inner surface of the plaster mold. A molded product may be obtained by drying and firing a molded product by a so-called casting method, or a clay-like product made by adding water to ceramic particles may be extruded, dried, and fired.

支持体層の形状としては円筒状でも、板状でも、ハニカ
ム状でも、捷だその他の形状でもよい。
The shape of the support layer may be cylindrical, plate-like, honeycomb-like, round, or other shapes.

次に支持体層の孔中に有機質微粒子を充填するが、その
方法としては有機質微粒子分散液を支持体層で加圧1過
まだは吸引r過すればよいが、目詰りを起こさす、次の
セラミンク粒子が堆積できるように1過可能な軽度の充
填であることが望ましい。支持体層の孔中に入り込んだ
以外の有機質微粒子は洗滌等により除去する。
Next, organic fine particles are filled into the pores of the support layer, and the method for this is to pressurize the organic fine particle dispersion through the support layer for one hour or suction, but this may cause clogging. It is desirable to have a light filling that can be carried out for one hour to allow for the deposition of ceramic particles. Organic fine particles other than those that have entered the pores of the support layer are removed by washing or the like.

次に堆積層を形成させるには、目的とする透過孔径が均
一で、かつ透過係数が犬きくピンホールのないフィルタ
一層を得るために鋳込み法ではなく、クロスフロー沢過
による方法でなければならない。すなわちこの方法は、
有機質微粒子の充填された支持体層の内壁に、例えば固
液濃度0.05〜0.5重量係の平均粒径0.5μm程
度のアルミナ微粒子分散液を1過圧2〜3Kgf/Ca
、流速0.5〜1.5 m/secで約10〜40分流
して支持体層内面に約lO〜50μmの均一な厚さの堆
積層を形成させるという方法である。
Next, in order to form a deposited layer, in order to obtain a filter layer with a uniform permeation pore size and a high permeability coefficient without pinholes, a cross-flow method must be used instead of a casting method. . In other words, this method is
For example, a dispersion of fine alumina particles with an average particle size of about 0.5 μm and a solid-liquid concentration of 0.05 to 0.5 weight ratio is applied to the inner wall of the support layer filled with organic fine particles at an overpressure of 2 to 3 Kgf/Ca.
In this method, a deposited layer having a uniform thickness of about 10 to 50 μm is formed on the inner surface of the support layer by flowing at a flow rate of 0.5 to 1.5 m/sec for about 10 to 40 minutes.

上記の方法で得られた支持体層と堆積層の一体成形物を
乾燥したのち、焼成し焼結させれば支持体層の孔中に存
在していた有機質微粒子は焼失(〜で支持体層の孔は空
洞となり、多層セラミック多孔体が得られる。
After drying the integral molded product of the support layer and deposited layer obtained by the above method, by firing and sintering, the organic fine particles existing in the pores of the support layer are burned out ( The pores become cavities, and a multilayer ceramic porous body is obtained.

〔実施例〕〔Example〕

実施例 鋳込み法で製造した外径19+am、内径16mm、長
さ115閣、最大透過孔径12μm、平均透過孔径7μ
m、透過係数4.0mvS−atm−cdの円筒形のア
ルミナ製支持体層ρ内壁に濃度0.1重量係に調整した
球状アクリル微粒子分散液(粒径0.4〜0.6μm、
綜研化学製、商品名Pt4E−1,000を使用)を1
 Kgf/caの圧力をかけながら流速1m/secで
約15分間クロスフロー濾過し支持体層の孔中に球状ア
クリル微粒子を充填させたのち、支持体層内面に付着し
た余分の該微粒子を洗滌し、球状アクリル微粒子が充填
された支持体層を得た。
Example Manufactured by casting method: outer diameter 19+am, inner diameter 16mm, length 115mm, maximum penetration pore diameter 12μm, average penetration pore diameter 7μ
A spherical acrylic fine particle dispersion (particle size 0.4 to 0.6 μm, particle size 0.4 to 0.6 μm, adjusted to a concentration of 0.1 by weight) was placed on the inner wall of a cylindrical alumina support layer ρ with a permeability coefficient of 4.0 mvS-atm-cd.
(manufactured by Soken Chemical, trade name: Pt4E-1,000)
After applying cross-flow filtration at a flow rate of 1 m/sec for about 15 minutes while applying a pressure of Kgf/ca to fill the pores of the support layer with spherical acrylic fine particles, excess fine particles adhering to the inner surface of the support layer were washed away. A support layer filled with spherical acrylic fine particles was obtained.

次に平均粒径0.5μmのアルミナ粒子(昭和軽金属■
製部品名1608G−1)を遠心分離によって0.7μ
m以上の粒子を除去したものに蒸留水を加えて固液濃度
0.1重量係の分散液とし、この分散液を上記で得られ
た球状アクリル微粒子の充填された支持体層内壁に圧力
2 、5 Kyf/caをかけながら流速1iで約30
分間クロスフロー濾過し、該支持体層内壁面にアルミナ
粒子を付着させ堆積層を形成させ、支持体層と堆積層か
らなる成形体を得た。得られた成形体を乾燥したのち、
1300℃で焼成し多層セラミック多孔体を得た。
Next, alumina particles with an average particle size of 0.5 μm (Showa Light Metal ■
Product name 1608G-1) was centrifuged to 0.7μ
Distilled water is added to the product from which particles of m or more are removed to make a dispersion with a solid-liquid concentration of 0.1% by weight, and this dispersion is applied to the inner wall of the support layer filled with the spherical acrylic fine particles obtained above under a pressure of 2 , about 30 at a flow rate of 1i while applying 5 Kyf/ca.
Cross-flow filtration was performed for 1 minute, and alumina particles were attached to the inner wall surface of the support layer to form a deposited layer, thereby obtaining a molded body consisting of the support layer and the deposited layer. After drying the obtained molded body,
A multilayer ceramic porous body was obtained by firing at 1300°C.

得られた多孔体の物性を調べたところ第1表の結果が得
られた。
When the physical properties of the obtained porous body were investigated, the results shown in Table 1 were obtained.

比較例1 実施例で用いたと同じアルミナ製支持体層とアルミナ粒
子を用いて、該支持体層の孔中に球状アクリル微粒子を
充填することなく、鋳込み法により直接堆積層を形成さ
せた。すなわち、固液濃度5重量係のアルミナ粒子のス
ラリーを調整し、これを下端を塞いだ上記支持体層中に
流し込み、内側に堆積層を形成し、乾燥した。
Comparative Example 1 Using the same alumina support layer and alumina particles as used in Examples, a deposited layer was directly formed by casting without filling the pores of the support layer with spherical acrylic fine particles. That is, a slurry of alumina particles having a solid-liquid concentration of 5 parts by weight was prepared, poured into the support layer whose lower end was closed, a deposited layer was formed inside, and dried.

この操作を3回くり返して、厚みを増した後、1300
℃で焼成した。
After repeating this operation 3 times to increase the thickness, 1300
Calcined at ℃.

得られた多孔体の物性を調べたところ第1表の結果が得
られた。
When the physical properties of the obtained porous body were investigated, the results shown in Table 1 were obtained.

比較例2 実施例で用いたと同じアルミナ製支持体層とアルミナ粒
子を用いて、該支持体層の孔中に球状アクリル微粒子を
充填することなく、クロスフロー沢過により直接堆積層
を形成させた。すなわち、固液濃度0.1重量係に調整
したアルミナ粒子の分散液を支持体層の内壁に流してr
過圧2 Kgf/cr! 、流速1 m/secで約3
0分間クロスフロー濾過して、支持体層内壁に堆積層を
形成させた。
Comparative Example 2 Using the same alumina support layer and alumina particles as used in Example, a deposited layer was directly formed by cross-flow filtration without filling the pores of the support layer with spherical acrylic fine particles. . That is, a dispersion of alumina particles adjusted to a solid-liquid concentration of 0.1% by weight is poured onto the inner wall of the support layer.
Overpressure 2 Kgf/cr! , about 3 at a flow rate of 1 m/sec
Cross-flow filtration was performed for 0 minutes to form a deposited layer on the inner wall of the support layer.

得られた成形体を実施例と同じように処理して多層セラ
ミック多孔体を得た。結果を第1表に示した。
The obtained molded body was treated in the same manner as in the example to obtain a multilayer ceramic porous body. The results are shown in Table 1.

(以  下  余  白  ) 〔発明の効果〕 本発明の方法はフィルター、隔膜に使用される多層セラ
ミック多孔体を製造するにあたり、支持体層の孔中に、
フィルタ一層を形成する前に有機質微粒子を充填してお
くので該孔中にフィルタ一層形成に用いるセラミック粒
子が入り込むことがなく支持体層自体の透過性をそこな
うことがない。
(Margins below) [Effects of the Invention] The method of the present invention, when producing a multilayered ceramic porous body used for filters and diaphragms, has the following advantages:
Since the organic particles are filled before forming the filter layer, the ceramic particles used for forming the filter layer do not enter the pores, and the permeability of the support layer itself is not impaired.

捷だ堆積層を形成する際、堆積層形成に用いるセラミッ
ク粒子分散液の濃度を極めて薄くし、捷だ鋳込み法の如
く該分散液を静止させないでクロスフロー1過て行うた
めセラミック粒子が支持体層表面に敷き並べたように均
一な厚さに付着して行くので厚さも薄くでき、従って透
過係数も大きなものが得られる。さらに余分な空気を抱
き込むこともないので成形体の焼成中にポツピングを起
こしてフィルタ一層表面にピンホールを生じることもな
い。
When forming a rolled deposited layer, the concentration of the ceramic particle dispersion used for forming the deposited layer is made extremely thin, and the dispersion is not allowed to stand still as in the rolled casting method, but the dispersion is passed through a cross flow, so the ceramic particles are used as a support. Since it adheres to the surface of the layer with a uniform thickness as if it were spread out, the thickness can be made thinner, and a large transmission coefficient can therefore be obtained. Furthermore, since excess air is not trapped, there is no possibility of popping during firing of the molded body and formation of pinholes on the surface of the filter layer.

Claims (1)

【特許請求の範囲】[Claims] セラミック多孔体の孔中に有機質微粒子を充填したのち
、該多孔体表面でセラミック粒子の分散液をクロスフロ
ーろ過し、該多孔体表面にセラミック粒子の堆積層を形
成させたのち、焼成することを特徴とする多層セラミッ
ク多孔体の製造方法
After filling the pores of a ceramic porous body with organic fine particles, a dispersion of ceramic particles is cross-flow filtered on the surface of the porous body, a deposited layer of ceramic particles is formed on the surface of the porous body, and then firing is performed. Characteristic manufacturing method of multilayer ceramic porous body
JP29356585A 1985-12-28 1985-12-28 Manufacture of multilayer ceramic porous body Pending JPS62156946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29356585A JPS62156946A (en) 1985-12-28 1985-12-28 Manufacture of multilayer ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29356585A JPS62156946A (en) 1985-12-28 1985-12-28 Manufacture of multilayer ceramic porous body

Publications (1)

Publication Number Publication Date
JPS62156946A true JPS62156946A (en) 1987-07-11

Family

ID=17796390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29356585A Pending JPS62156946A (en) 1985-12-28 1985-12-28 Manufacture of multilayer ceramic porous body

Country Status (1)

Country Link
JP (1) JPS62156946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009350A1 (en) * 1989-02-10 1990-08-23 Nippon Shokubai Kagaku Kogyo Co., Ltd. Zirconia sol, preparation thereof, slurry for use in the production of porous ceramic, and porous ceramic produced from said slurry
US5275759A (en) * 1989-02-10 1994-01-04 Nippon Shokubai Kagaku Kogyo Co., Ltd. Zirconia sol, method for production thereof, porous ceramic-producing slurry, and porous ceramic product obtained by use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009350A1 (en) * 1989-02-10 1990-08-23 Nippon Shokubai Kagaku Kogyo Co., Ltd. Zirconia sol, preparation thereof, slurry for use in the production of porous ceramic, and porous ceramic produced from said slurry
US5275759A (en) * 1989-02-10 1994-01-04 Nippon Shokubai Kagaku Kogyo Co., Ltd. Zirconia sol, method for production thereof, porous ceramic-producing slurry, and porous ceramic product obtained by use thereof

Similar Documents

Publication Publication Date Title
US4968467A (en) Hot gas filter
CA1196873A (en) Filtration structure of ceramic material
JP6892821B2 (en) Inorganic membrane filter and its method
JP2007526819A (en) Porous ceramic body and method for producing the same
KR20010041043A (en) Method for producing an openly porous sintered metal film
WO2009001970A1 (en) Separation membrane complex, and method for production of separation membrane complex
JP6667614B2 (en) Porous support, method for manufacturing porous support, separation membrane structure, and method for manufacturing separation membrane structure
US4980062A (en) Inorganic membrane
JPWO2013145320A1 (en) Honeycomb filter and method for manufacturing honeycomb filter
JP3698906B2 (en) Multi-layer honeycomb filter and manufacturing method thereof
US20210107838A1 (en) Inorganic membrane filtration articles and methods thereof
JPS62156946A (en) Manufacture of multilayer ceramic porous body
JP5232368B2 (en) Honeycomb structure for slurry coating
JP3127509B2 (en) Ceramic porous body
WO2015151699A1 (en) Monolithic separation membrane structure
JP3400829B2 (en) Monolith type ceramic filter
JP2005118771A (en) Cylindrical ceramic porous body, method for manufacturing the same, and ceramic filter using the same
JPH0243928A (en) Inorganic porous membrane
JP3346991B2 (en) Metal filter and method for manufacturing the same
JPH01274815A (en) Production of ceramics filter
JP3784314B2 (en) Ceramic filter for dust collection and manufacturing method thereof
JP2002143655A (en) Ceramic filter and producing method of ceramic filter
JP2003220319A (en) Separation membrane module and manufacturing method thereof
JPS62149434A (en) Manufacture of double layer type ceramic porous body
JP4155650B2 (en) Manufacturing method of ceramic filter