JPS62156822A - Insulating thin film, and formation and forming device thereof - Google Patents

Insulating thin film, and formation and forming device thereof

Info

Publication number
JPS62156822A
JPS62156822A JP29940285A JP29940285A JPS62156822A JP S62156822 A JPS62156822 A JP S62156822A JP 29940285 A JP29940285 A JP 29940285A JP 29940285 A JP29940285 A JP 29940285A JP S62156822 A JPS62156822 A JP S62156822A
Authority
JP
Japan
Prior art keywords
thin film
insulating thin
boron
silicon
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29940285A
Other languages
Japanese (ja)
Inventor
Masahiko Maeda
前田 正彦
Takahiro Makino
牧野 孝裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29940285A priority Critical patent/JPS62156822A/en
Publication of JPS62156822A publication Critical patent/JPS62156822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form a new insulating thin film with excellent step difference coating property and low dielectric constant by a method wherein applicable gas is mainly composed of silicon, boron and nitrogen containing at least Si-N coupling and B-N coupling. CONSTITUTION:A molecular gas containing silicon atoms e.g. SiH4, another molecular gas containing boron atoms e.g. B2H6, the other molecular gas containing nitrogen atoms e.g. NH3 are mixed with one another to be led in a capacity coupling type plasma CVD device so that the space between an upper electrode 1 and a lower electrode 2 may be impressed with high frequency power to form an insulating thin film on a substrate 3 arranged in the device. In case of forming the insulating thin film, the degree of vacuum in the device is specified to be e.g. 1.3Torr and then the substrate 3 is heated up to e.g. 350 deg.C to be impressed with high frequency power (a) of 13.56MHz and 1.04W/cm<2>. For leading a reactive gas (b) in a reaction chamber, B2H6 is mixed with SiH4 and NH3 nearby the reaction chamber while laying down the piping system of B2H6 only at least nearby the reaction chamber independent of the piping systems of SiH4 and NH3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、段差被覆特性が良好でかつ低誘電率な絶縁薄
膜とその形成方法及び形成装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulating thin film having good step coverage characteristics and a low dielectric constant, and a method and apparatus for forming the same.

〔従来の技術〕[Conventional technology]

超高速半導体集積回路では配線材料に低抵抗なアルミニ
ウムを用いる多層配線技術が必要不可欠である。
Multilayer wiring technology that uses low-resistance aluminum as the wiring material is essential for ultra-high-speed semiconductor integrated circuits.

このため、絶縁薄膜のアルミニウム上への形成は450
℃以下で行なわれる必要がある。
For this reason, the formation of an insulating thin film on aluminum is
It must be carried out at temperatures below ℃.

従来かかる絶縁薄膜としては、化学的気相成長法(以下
CVD法という)によるCVDシリコン酸化膜やリンを
ドープしたシリコン酸化膜(以下PSG膜という)或は
プラズマCVD法により形成されたシリコン窒化膜(以
下PCVD窒化膜という)が用いられてきた。
Conventionally, such insulating thin films include a CVD silicon oxide film formed by chemical vapor deposition method (hereinafter referred to as CVD method), a silicon oxide film doped with phosphorus (hereinafter referred to as PSG film), or a silicon nitride film formed by plasma CVD method. (hereinafter referred to as PCVD nitride film) has been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの膜は以下に述べるような欠点を有して
いる。
However, these films have drawbacks as described below.

シリコン酸化膜は、比誘電率は約4と低いものの、段差
の被覆性が良好でなく、さらに膜の引っ張り応力が大き
く、厚膜化が困難である。
Although the silicon oxide film has a low relative dielectric constant of about 4, it does not have good coverage of steps, and furthermore, the tensile stress of the film is large, making it difficult to increase the film thickness.

PSG膜は、堆積後、リンフローを行なうことにより、
段差部での被覆特性が大幅に改善できるものの、そのた
めには、約1000℃程度の高温を必要とし、アルミニ
ウムを用いる工程では使用できない。
After the PSG film is deposited, by performing phosphor flow,
Although the coating characteristics at the stepped portion can be significantly improved, a high temperature of about 1000° C. is required for this purpose, and it cannot be used in a process using aluminum.

PCVD窒化膜は、低温形成が可能で、耐湿性、耐アル
カリイオン性に優れ、段差の被覆特性も良好であり、ま
た圧縮応力を有するため、厚膜化が可能である等優れた
絶縁薄膜であが、比誘電率が約7と高いのが欠点である
PCVD nitride film is an excellent insulating thin film that can be formed at low temperatures, has excellent moisture resistance and alkali ion resistance, has good step coverage characteristics, and has compressive stress, so it can be made thicker. However, its disadvantage is that it has a high dielectric constant of about 7.

このように、CVDシリコン酸化膜、PSG及びPCV
D窒化膜はそれぞれ長所、短所を有する。
In this way, CVD silicon oxide film, PSG and PCV
Each D nitride film has its advantages and disadvantages.

従って、低温形成が可能で、かつPCVD窒化膜に見ら
れるような段差被覆性が良好で、かつCVDシリコン酸
化膜と同等か或はそれ以下の誘電率を有する絶縁N膜の
開発が望まれている。
Therefore, it is desired to develop an insulating N film that can be formed at a low temperature, has good step coverage as seen in PCVD nitride films, and has a dielectric constant equal to or lower than that of CVD silicon oxide films. There is.

そこで、本発明の目的は、段差被覆性が良好で、かつ低
誘電率な新たな絶縁薄膜とその形成方法及び形成装置を
提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a new insulating thin film with good step coverage and low dielectric constant, and a method and apparatus for forming the same.

(問題点を解決するための手段〕 本発明は、シリコン(St)、ボロン(B)及び窒素(
N)を主成分とし、少なくともSi−N結合及びB−N
結合を含むことを特徴とするシリコン・ボロン・窒素系
絶縁薄膜を提供する。
(Means for Solving the Problems) The present invention provides silicon (St), boron (B) and nitrogen (
N) as a main component, at least Si-N bonds and B-N
Provided is a silicon/boron/nitrogen based insulating thin film characterized by containing a bond.

また、本発明においては、シリコン原子を含む分子、ボ
ロン原子を含む分子、及び窒素原子を含む分子をガス状
で反応室に導入した後、該混合ガスを高周波放電により
中性ラジカル或はイオンに活性化し、基板上にシリコン
(Si> 、ボロン(B)及び窒素(N)を主成分とし
、少なくともSi−N結合及びB−N結合を含む上記シ
リコン・ボロン・窒素系絶縁薄膜を形成する方法を提供
する。
Furthermore, in the present invention, after introducing molecules containing silicon atoms, molecules containing boron atoms, and molecules containing nitrogen atoms into the reaction chamber in gaseous form, the mixed gas is converted into neutral radicals or ions by high-frequency discharge. A method of activating and forming on a substrate the above-mentioned silicon-boron-nitrogen-based insulating thin film mainly composed of silicon (Si>, boron (B) and nitrogen (N)) and containing at least Si-N bonds and B-N bonds. I will provide a.

さらに、本発明においては、プラズマ反応室と、シリコ
ン原子を含む分子と窒素原子を含む分子をガス状で前記
プラズマ反応室に導く第1の配管系と、該第1の配管系
と分離されたボロン原子を含む分子をガス状で前記プラ
ズマ室に導く第2の配管系と、プラズマ発生のための高
周波電極及び高周波電源と、前記プラズマ反応室を排気
するための排気系及び試料加熱用の加熱系を備えること
を特徴とする上記シリコン(Si) 、ボロン(B)及
び窒素(N)を主成分とし、少なくともSi−N結合及
びB−N結合を含むシリコン・ボロン・窒素系絶縁薄膜
の形成装置を提供する。
Furthermore, in the present invention, a plasma reaction chamber, a first piping system that guides molecules containing silicon atoms and molecules containing nitrogen atoms in gaseous form to the plasma reaction chamber, and a first piping system that is separated from the first piping system. a second piping system that guides molecules containing boron atoms to the plasma chamber in gaseous form; a high-frequency electrode and a high-frequency power source for plasma generation; an exhaust system for exhausting the plasma reaction chamber; and a heating system for heating the sample. Formation of a silicon-boron-nitrogen-based insulating thin film comprising silicon (Si), boron (B) and nitrogen (N) as main components and containing at least Si-N bonds and B-N bonds. Provide equipment.

〔作用〕[Effect]

本発明の絶縁膜は、従来の眉間絶縁膜とはその成分が異
なる。即ち、従来の絶縁薄膜はシリコンと酸素、シリコ
ンと酸素とリン、或はシリコンと窒素を主成分としてい
るのに対して、本発明の絶縁薄膜は、シリコンとボロン
と窒素の3元素を主成分としている点に大きな差がある
The insulating film of the present invention has different components from the conventional glabellar insulating film. That is, while conventional insulating thin films mainly contain silicon and oxygen, silicon, oxygen, and phosphorus, or silicon and nitrogen, the insulating thin film of the present invention mainly contains three elements: silicon, boron, and nitrogen. There is a big difference in what they say.

又、上述のシリコン、ボロン、窒素系絶縁薄膜を形成す
る方法は、シリコンを含む分子のガス、ボロンを含む分
子のガス及び窒素を含む分子のガスの混合ガスを高周波
放電により中性ラジカル或はイオンに活性化することに
特徴があり、その原料ガスの組合せが従来の技術と異な
る。
In addition, the method for forming the silicon, boron, and nitrogen-based insulating thin film described above involves converting a mixed gas of a silicon-containing molecular gas, a boron-containing molecular gas, and a nitrogen-containing molecular gas into neutral radicals or It is characterized by activation into ions, and the combination of raw material gases is different from conventional technologies.

そして、本発明によれば、従来の眉間絶縁膜に比べて、
段差被覆特性が良好である。
According to the present invention, compared to the conventional glabellar insulating film,
Good step coverage characteristics.

又、本発明の絶縁薄膜の製造装置においては、3種のガ
スを同じ場所で混合すると、そこで白い粉状の物質が形
成され、薄膜の形成が阻害されるることを防止し、良好
な絶縁薄膜を形成することを可能とする。
In addition, in the insulating thin film manufacturing apparatus of the present invention, when three types of gases are mixed in the same place, a white powdery substance is formed there, preventing the thin film formation from being inhibited, and producing a good insulating thin film. It is possible to form

〔実施例〕〔Example〕

シリコン原子を含む分子のガスとして、例えば(Sil
+4) +ボロン原子を含む分子のガスとして、例えば
(B2H15)、及び窒素原子を含む分子のガスとして
、例えば〔NH3〕を混合して、第1図に示すような容
量結合型のプラズマCVD窒化膜 波電力を印加し、装置内に配置された基f!3上に絶縁
薄膜を形成する。絶縁薄膜形成時は、装置内の真空度は
、例えば1.3Torrとし、基板を例えば350°C
に加熱し、13.56MHzの高周波電力を例えば1.
01 /印2印加した。
As a molecular gas containing silicon atoms, for example, (Sil
+4) Capacitively coupled plasma CVD nitriding as shown in Fig. 1 is performed by mixing a molecular gas containing boron atoms, for example (B2H15), and a molecular gas containing nitrogen atoms, for example [NH3]. Apply membrane wave power to the group f! placed in the device. An insulating thin film is formed on 3. When forming an insulating thin film, the degree of vacuum in the apparatus is set to, for example, 1.3 Torr, and the substrate is heated to, for example, 350°C.
For example, 1.
01 / mark 2 was applied.

ここで、反応ガスを反応室に導入するにあたっては、(
B2H6)は反応室直近で(SiH+)及び〔NH3〕
と混合するようにした。
Here, when introducing the reaction gas into the reaction chamber, (
B2H6) is (SiH+) and [NH3] in the immediate vicinity of the reaction chamber.
I tried to mix it with.

これは、(SiH4)と(B2H6)と(NH3〕の3
種のガスを同じ場所で混合すると、そこで白い粉状の物
質が形成され、それによって配管がつまり、ガスが流れ
なくなり薄膜の形成ができなくなるためである。
This is the 3 of (SiH4), (B2H6) and (NH3)
This is because if the seed gases are mixed in the same place, a white powdery substance is formed there, which clogs the pipes and prevents the gas from flowing and forming a thin film.

したがって、CB2  He)の配管系のみ(SiH4
)及び(NI+3)の配管系とは独立に少なくとも反応
量直近までもってくることが、絶縁薄膜を再現性良く形
成するために必要である。
Therefore, only the piping system of (CB2 He) (SiH4
) and (NI+3) independently of the piping system, it is necessary to reach at least the vicinity of the reaction amount in order to form an insulating thin film with good reproducibility.

次に、この時形成される絶縁薄膜について以下に説明す
る。
Next, the insulating thin film formed at this time will be explained below.

成長条件として、(SiH4)流量300 sccm、
(B2)+8)流量300sccm及び〔NH3〕流量
50secm、反応時の圧力1.3Torr 、基板温
度350℃、及び高周波電力密度1.04W / cm
2で形成した絶縁薄膜の赤外吸収スペクトルを第2図に
示す。これから絶縁薄膜中には、少なくともSi−N結
合及びB−N結合が存在することが分る。又、水素に起
因する吸収も観測され、絶縁薄膜中には水素が含有され
ていることが分る。
Growth conditions include (SiH4) flow rate of 300 sccm,
(B2)+8) Flow rate 300 sccm and [NH3] flow rate 50 sec, pressure during reaction 1.3 Torr, substrate temperature 350°C, and high frequency power density 1.04 W/cm
FIG. 2 shows the infrared absorption spectrum of the insulating thin film formed in step 2. It can be seen from this that at least Si--N bonds and B--N bonds exist in the insulating thin film. In addition, absorption due to hydrogen was also observed, indicating that hydrogen is contained in the insulating thin film.

〔NH3〕流量を一定量とし、(SiH4)と(B2H
E1)の全流量を一定とした時の(B2H6) / (
Si114 + B2  He)に対する絶縁薄膜の比
誘電率の関係を第3図に示す。横軸は絶縁薄膜中のボロ
ン濃度に対応すると考えて良い。第3図は、(82He
)流量、即ち絶縁N膜中のボロン濃度が増加するにつれ
て、比誘電率は(BzHs〕を反応ガスに加えない場合
、即ち、プラズマCVD窒化膜での値に対して大幅に低
くなり、又、その値はCVDシリコン酸化膜での値と同
等か、或は、より低くなることを示している。さらに、
第3図の各条件で形成した絶縁薄膜の絶縁耐圧の値は全
て3XIQ6V/cm以上であり、絶縁性は良好である
。第3図中、(B2  H6) / (Si t+ 4
+ 132  +16)が0,5の条件で形成した膜の
段差被覆性を第4図に示す。CVDシリコン酸化膜やP
2O膜で見られるようなオーバーハングな形状は観察さ
れず、PCVD窒化膜と同等な段差形状に忠実な被覆特
性が得られていることが分る。最後に、第3図中の各条
件での絶縁薄膜をSi基板上或はアルミニウム基板上に
1.5μm形成しても、剥離やクランクの発生は見られ
ず、いずれもPCVD窒化膜と同様、厚膜化が可能であ
ること、及び付着力についても問題ないことを確認した
[NH3] with a constant flow rate, (SiH4) and (B2H
When the total flow rate of E1) is constant (B2H6) / (
FIG. 3 shows the relationship between the dielectric constant of the insulating thin film and Si114 + B2 He. The horizontal axis can be considered to correspond to the boron concentration in the insulating thin film. Figure 3 shows (82He
) As the flow rate increases, i.e., the boron concentration in the insulating N film, the dielectric constant becomes significantly lower than the value when (BzHs) is not added to the reaction gas, i.e., in the plasma CVD nitride film, and It is shown that the value is equal to or lower than that of CVD silicon oxide film.Furthermore,
The dielectric breakdown voltage values of the insulating thin films formed under the conditions shown in FIG. 3 are all 3XIQ6V/cm or more, and the insulation properties are good. In Figure 3, (B2 H6) / (Si t+ 4
FIG. 4 shows the step coverage of the film formed under the condition that +132 +16) is 0.5. CVD silicon oxide film or P
It can be seen that the overhanging shape seen with the 2O film was not observed, and that coating characteristics faithful to the step shape equivalent to those of the PCVD nitride film were obtained. Finally, even when the insulating thin film under each condition in Fig. 3 was formed to a thickness of 1.5 μm on a Si substrate or an aluminum substrate, no peeling or cranking was observed, and in both cases, similar to the PCVD nitride film, It was confirmed that it was possible to make the film thicker and that there were no problems with adhesion.

次に、第3図の各条件で形成した絶縁薄膜の組成に関す
る知見を説明する。本実施例の絶縁薄膜は、基本的には
3元の化合物であり、それが各条件で変化しているので
、下記の2つの式で組成を定義することにする。
Next, knowledge regarding the composition of the insulating thin film formed under each condition shown in FIG. 3 will be explained. The insulating thin film of this example is basically a ternary compound, which changes depending on the conditions, so the composition will be defined by the following two formulas.

(B) X =           (11式%式%() Y =            (2)式(St) +
 CB) 先ず、参考として、第3図において、左側の軸上の組成
はr X = O、Y = 1.33Jであり、右側の
軸上にくるべき膜の組成(第3図ではプロットしていな
い二BNに相当する)はrx=t、Y=1」である。
(B) X = (11 formula % formula % () Y = (2) formula (St) +
CB) First, for reference, in Figure 3, the composition on the left axis is rX = O, Y = 1.33J, and the composition of the film on the right axis (not plotted in Figure 3) (corresponding to two BNs that do not have one) is ``rx=t, Y=1''.

つまり、第3図の横軸の条件を変化させた場合得られる
絶縁薄膜の組成は次の範囲となる。
That is, when the conditions on the horizontal axis in FIG. 3 are changed, the composition of the insulating thin film obtained falls within the following range.

「 0≦X<1、 1.33≧Y〉1」次に、本発明の
実施例の第3図のプロット点の左側の■と指示する絶i
t薄膜の組成、及び■と指示する絶縁薄膜の組成は次の
ごとくである。
"0≦X<1, 1.33≧Y>1" Next, the absolute i indicated as
The composition of the thin film t and the composition of the insulating thin film indicated by ① are as follows.

■の絶縁薄膜の組成 (B) X =        = 0.35 (Si) + CB) (N) Y =        = 1.15 (Si) + CB) ■の絶縁薄膜の組成 CB) X=        =0.9 (Si) + (B) (N) Y =        = 1.01 (St) + CB) 本発明には■〜■の範囲が含まれるが限定的なものでは
ない。例えば、(B21(6]流量を■より増大した右
側軸近傍まで有効であり、また、第3図の[NH3)の
一定流量50secmも可変である。
Composition of the insulating thin film in ■ (B) X = = 0.35 (Si) + CB) (N) Y = = 1.15 (Si) + CB) Composition of the insulating thin film in ■ CB) X = = 0.9 (Si) + (B) (N) Y = = 1.01 (St) + CB) The present invention includes the range from ■ to ■, but is not limited. For example, it is effective up to the vicinity of the right axis where the (B21(6) flow rate is increased from ■), and the constant flow rate of 50 seconds for [NH3] in FIG. 3 is also variable.

また、以上述べた製法において、原料ガスとして、他の
ものを用いることもできる。例えば、シリコン原子を含
む分子のガスとして(SiH+)のカワリに、多重シラ
ンやハロゲン化シラン、ハロゲン化シリコン、又、ボロ
ン原子を含む分子のガスとして(82He)のかわりに
ハロゲン化ボロンを、窒素原子を含む分子のガスとして
〔NH3〕のかわりに〔N2〕や(NF3)を用いた場
合やそれらの混合ガスを用いても形成できる。
Moreover, in the production method described above, other gases can also be used as the raw material gas. For example, instead of (SiH+) as a molecular gas containing silicon atoms, use multiple silane, halogenated silane, or silicon halide, or use boron halide (nitrogen) instead of (82He) as a molecular gas containing boron atoms. It can also be formed by using [N2] or (NF3) instead of [NH3] as a molecular gas containing atoms, or by using a mixed gas thereof.

さらに、他の低温形成装置、例えば、周波数に13.5
6MHz以外の周波数を用いる容量結合型装置或は誘導
結合型装置、或はマイクロ波を用いるプラズマCVD装
置、ECRプラズマCVD装置によっても同等の絶縁薄
膜が形成できることは明らかである。
Furthermore, other cryogenic forming equipment, e.g.
It is clear that an equivalent insulating thin film can be formed using a capacitively coupled device or an inductively coupled device that uses a frequency other than 6 MHz, or a plasma CVD device that uses microwaves, or an ECR plasma CVD device.

なお、本発明の絶縁薄膜の加工は、〔F〕 (フン素)
を含む化合物のガスのプラズマ放電を用いる方法によっ
て容易に行なえる。例えば、5%の酸素を含む(CF4
)ガスのプラズマを用いれば、約2000人/minの
エツチングレートでエツチングできる。このように、本
絶縁薄膜はドライエツチングによる微細加工にも適して
いることがわかる。
Note that the processing of the insulating thin film of the present invention is performed using [F] (fluorine).
This can be easily carried out by a method using plasma discharge of a gas containing a compound. For example, it contains 5% oxygen (CF4
) If gas plasma is used, etching can be performed at an etching rate of about 2000 people/min. Thus, it can be seen that the present insulating thin film is also suitable for microfabrication by dry etching.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る絶縁薄膜を眉間絶縁
として用いれば、従来の眉間絶縁膜に比べて、段差被覆
特性が良好であるため、ショート又は断線による歩留り
低下をもたらすことなく、同時に、比誘電率が低いため
、配線間及び配線層間の寄生容量を小さくすることがで
き、従って、素子の歩留り、信頼性向上を図ると共に、
高速化を図ることが可能となる。
As explained above, when the insulating thin film according to the present invention is used as glabellar insulation, it has better step coverage characteristics than conventional glabellar insulating films, so there is no reduction in yield due to short circuits or disconnections, and at the same time, Due to its low dielectric constant, it is possible to reduce the parasitic capacitance between interconnects and between interconnect layers, thereby improving device yield and reliability.
It becomes possible to increase the speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は容量結合プラズマ型CVD装置、第2図は絶縁
薄膜の赤外吸収スペクトルを示す図、第3図は(SiH
4)及び(BzHe)の流量比を変化させて形成した絶
縁薄膜の比誘電率の値を示す図、第4図は段差被覆特性
を示す断面組成を示す顕微鏡写真である。 1・・・・上部電極 2・・・・下部電極 3・・・・基板 本発明の実施例に用いる容量結合型プラズマ(vog置
第 1 図 )皮 数 (c+rr’ ) 本発明の実施例の絶縁薄膜の赤タト吸収スペクトル82
 HG/ (Si )14す82)1すSiH4おaび
日2H[lの流量比と形成絶縁薄膜の比g59率の関係
を示す図 第 3 図 図面の浄書(内容に変更ない 実施例の断面と示す説明図 第4図 手続補正書(方式) %式% 2、発明の名称 絶縁薄膜とその形成方法及び形成装置 3、補正をする者 事件との関係  特許出願人 住 所  東京都千代田区内幸町1丁目1番6号名 称
  (422)日本電信電話株式会社代表者  真 藤
  恒 4、代理人 発 送 日  昭和61年 3月25日6、補正により
増加する発明の数 なし1、明細書第9頁第20行の「
5を性を第4図に示す。 」を次のとおり補正する。 「属性を第4図に示している。これは、Si基板4上に
形成された段差を有する5のSi02膜上に上記条件に
より本発明に係る膜6を形成し、その被覆断面を顕微鏡
写真にとった状態を図示したものであり、段差部の側面
にもほぼ均一に膜が形成されている。」 2、明細書第14頁第12行〜13行の「第4図−顕微
鏡写真である。」を、「第4図は実施例の段差被覆特性
を示すための断面図である。」と補正する。 3、図面の第4図を添付の図面のとおり補正する。 以上
Figure 1 shows the capacitively coupled plasma CVD device, Figure 2 shows the infrared absorption spectrum of the insulating thin film, and Figure 3 shows the (SiH
4) A diagram showing the relative dielectric constant values of insulating thin films formed by changing the flow rate ratio of (BzHe). FIG. 4 is a micrograph showing a cross-sectional composition showing step coverage characteristics. 1... Upper electrode 2... Lower electrode 3... Substrate Capacitively coupled plasma used in the embodiment of the present invention (vog setting Fig. 1) skin number (c+rr') of the embodiment of the present invention Red Tato absorption spectrum of insulating thin film 82
Figure 3 shows the relationship between the flow rate ratio of HG/(Si)14S82)1SiH4A and 2H[l and the ratio g59 of the formed insulating thin film. Explanatory diagram showing Figure 4 Procedural amendment (method) % formula % 2. Name of the invention Insulating thin film and its forming method and forming device 3. Relationship with the case of the person making the amendment Patent applicant address Uchisaiwai-cho, Chiyoda-ku, Tokyo 1-1-6 Name (422) Nippon Telegraph and Telephone Corporation Representative Tsune Shinto 4, Sent by agent Date March 25, 1986 6, Number of inventions increased by amendment None 1, Specification No. On page 9, line 20, “
5 is shown in Figure 4. ' shall be amended as follows. "Attributes are shown in FIG. 4. The film 6 according to the present invention is formed under the above conditions on the Si02 film 5 having steps formed on the Si substrate 4, and the cross section of the coating is shown in a microscopic photograph. The film is almost uniformly formed on the side surfaces of the stepped portion." 2. "Fig. 4 - Microscopic photograph on page 14 of the specification, lines 12 to 13. "There is." is corrected to "FIG. 4 is a cross-sectional view for showing the step covering characteristics of the embodiment." 3. Figure 4 of the drawings is amended as shown in the attached drawing. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)シリコン(Si)、ボロン(B)及び窒素(N)
を主成分とし、少なくともSi−N結合及びB−N結合
を含むことを特徴とするシリコン・ボロン・窒素系絶縁
薄膜。
(1) Silicon (Si), boron (B) and nitrogen (N)
What is claimed is: 1. A silicon-boron-nitrogen insulating thin film, characterized in that it contains at least Si--N bonds and B--N bonds.
(2)シリコン原子を含む分子、ボロン原子を含む分子
、及び窒素原子を含む分子をガス状で反応室に導入した
後、該混合ガスを高周波放電により中性ラジカル或はイ
オンに活性化し、基板上にシリコン(Si)、ボロン(
B)及び窒素(N)を主成分とし、少なくともSi−N
結合及びB−N結合を含むシリコン・ボロン・窒素系絶
縁薄膜を形成することを特徴とする絶縁薄膜の形成方法
(2) After introducing molecules containing silicon atoms, molecules containing boron atoms, and molecules containing nitrogen atoms into the reaction chamber in gaseous form, the mixed gas is activated into neutral radicals or ions by high-frequency discharge, and the substrate Silicon (Si) and boron (
B) and nitrogen (N) as main components, and at least Si-N
A method for forming an insulating thin film, the method comprising forming a silicon-boron-nitrogen-based insulating thin film containing bonds and B--N bonds.
(3)特許請求の範囲第2項記載の絶縁薄膜の形成方法
において、上記混合ガスを〔SiH_4〕、〔BH_6
〕、及び〔NH_3〕とし、〔B_2H_6〕の〔Si
H_4+B_2H_6〕に対する比率を16%以上とす
ることを特徴とするシリコン(Si)、ボロン(B)及
び窒素(N)を主成分とし、少なくともSi−N結合及
びB−N結合を含むことを特徴とするシリコン・ボロン
・窒素系絶縁薄膜の形成方法。
(3) In the method for forming an insulating thin film according to claim 2, the mixed gas is [SiH_4], [BH_6].
], and [NH_3], and [Si of [B_2H_6]
The main components are silicon (Si), boron (B) and nitrogen (N), and contain at least Si-N bonds and B-N bonds. A method for forming silicon, boron, and nitrogen-based insulating thin films.
(4)プラズマ反応室と、シリコン原子を含む分子と窒
素原子を含む分子をガス状で前記プラズマ反応室に導く
第1の配管系と、該第1の配管系と分離されたボロン原
子を含む分子をガス状で前記プラズマ室に導く第2の配
管系と、プラズマ発生のための高周波電極及び高周波電
源と、前記プラズマ反応室を排気するための排気系及び
試料加熱用の加熱系を備えることを特徴とするシリコン
(Si)、ボロン(B)及び窒素(N)を主成分とし、
少なくともSi−N結合及びB−N結合を含むシリコン
・ボロン・窒素系絶縁薄膜の形成装置。
(4) A plasma reaction chamber, a first piping system that guides molecules containing silicon atoms and nitrogen atoms in gaseous form to the plasma reaction chamber, and a boron atom that is separated from the first piping system. A second piping system for guiding molecules in gaseous form to the plasma chamber, a high-frequency electrode and a high-frequency power source for plasma generation, an exhaust system for exhausting the plasma reaction chamber, and a heating system for heating the sample. The main components are silicon (Si), boron (B) and nitrogen (N), which are characterized by
An apparatus for forming a silicon-boron-nitrogen insulating thin film containing at least Si-N bonds and B-N bonds.
JP29940285A 1985-12-27 1985-12-27 Insulating thin film, and formation and forming device thereof Pending JPS62156822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29940285A JPS62156822A (en) 1985-12-27 1985-12-27 Insulating thin film, and formation and forming device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29940285A JPS62156822A (en) 1985-12-27 1985-12-27 Insulating thin film, and formation and forming device thereof

Publications (1)

Publication Number Publication Date
JPS62156822A true JPS62156822A (en) 1987-07-11

Family

ID=17872092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29940285A Pending JPS62156822A (en) 1985-12-27 1985-12-27 Insulating thin film, and formation and forming device thereof

Country Status (1)

Country Link
JP (1) JPS62156822A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313943A (en) * 1988-06-13 1989-12-19 Nippon Telegr & Teleph Corp <Ntt> Insulating thin film and formation thereof
JPH02281627A (en) * 1989-04-21 1990-11-19 Nec Corp Manufacture of semiconductor device
EP0427982A2 (en) * 1989-10-26 1991-05-22 Shin-Etsu Chemical Co., Ltd. Magneto-optical recording medium
JPH03159124A (en) * 1989-11-16 1991-07-09 Nec Corp Manufacture of semiconductor device
JPH04165623A (en) * 1990-10-30 1992-06-11 Nec Corp Method of forming silicon boron nitride film
US5771594A (en) * 1995-08-05 1998-06-30 Johannes Heidenhain Gmbh Angular encoder
EP1017108A2 (en) * 1998-12-25 2000-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
US6288448B1 (en) * 1999-05-14 2001-09-11 Advanced Micro Devices, Inc. Semiconductor interconnect barrier of boron silicon nitride and manufacturing method therefor
US6826839B2 (en) 2001-01-23 2004-12-07 Dr. Johannes Heidenhain Gmbh Angle measuring system
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP2006287195A (en) * 2005-03-11 2006-10-19 Tokyo Electron Ltd Deposition method, deposition device, and storage medium
US9034718B2 (en) 2011-08-11 2015-05-19 Tokyo Electron Limited Film forming method for forming boron-added silicon nitride film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471577A (en) * 1977-11-18 1979-06-08 Toshiba Corp Production of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471577A (en) * 1977-11-18 1979-06-08 Toshiba Corp Production of semiconductor device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313943A (en) * 1988-06-13 1989-12-19 Nippon Telegr & Teleph Corp <Ntt> Insulating thin film and formation thereof
JPH02281627A (en) * 1989-04-21 1990-11-19 Nec Corp Manufacture of semiconductor device
EP0427982A2 (en) * 1989-10-26 1991-05-22 Shin-Etsu Chemical Co., Ltd. Magneto-optical recording medium
JPH03159124A (en) * 1989-11-16 1991-07-09 Nec Corp Manufacture of semiconductor device
JPH04165623A (en) * 1990-10-30 1992-06-11 Nec Corp Method of forming silicon boron nitride film
US5771594A (en) * 1995-08-05 1998-06-30 Johannes Heidenhain Gmbh Angular encoder
EP1017108A2 (en) * 1998-12-25 2000-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
EP1017108A3 (en) * 1998-12-25 2001-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7491655B2 (en) 1999-01-14 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6288448B1 (en) * 1999-05-14 2001-09-11 Advanced Micro Devices, Inc. Semiconductor interconnect barrier of boron silicon nitride and manufacturing method therefor
US6465341B1 (en) * 1999-05-14 2002-10-15 Advanced Micro Devices, Inc. Manufacturing method for semiconductor interconnect barrier of boron silicon nitride
US6826839B2 (en) 2001-01-23 2004-12-07 Dr. Johannes Heidenhain Gmbh Angle measuring system
JP2006287195A (en) * 2005-03-11 2006-10-19 Tokyo Electron Ltd Deposition method, deposition device, and storage medium
US8343594B2 (en) 2005-03-11 2013-01-01 Tokyo Electron Limited Film formation method and apparatus for semiconductor process
US9034718B2 (en) 2011-08-11 2015-05-19 Tokyo Electron Limited Film forming method for forming boron-added silicon nitride film

Similar Documents

Publication Publication Date Title
US6762435B2 (en) Semiconductor device with boron containing carbon doped silicon oxide layer
JP4090740B2 (en) Integrated circuit manufacturing method and integrated circuit
US6313035B1 (en) Chemical vapor deposition using organometallic precursors
KR100283007B1 (en) Low-k fluorinated amorphous carbon dielectric and method of making the same
KR0135486B1 (en) Methdo of fabricating semiconductor device
EP0704885B1 (en) Method of depositing fluorosilictae glass
KR20190010736A (en) Deposition of flowable silicon-containing films
TW200403726A (en) Low temperature dielectric deposition using aminosilane and ozone
TW200422424A (en) Low temperature deposition of silicon oxides and oxynitrides
JPH03173130A (en) Adhesion of high quality silicon dioxide by means of plasma reinforced chemical vapor adhesion method
KR19990088593A (en) Method for producing hydrogenated silicon oxycarbide films having low dielectric constant
EP0522799A2 (en) Dielectric deposition
JPS62156822A (en) Insulating thin film, and formation and forming device thereof
US20020163028A1 (en) Methods of forming gap fill and layers formed thereby
JP2505309B2 (en) Method for forming borophosphosilicate glass composite layer on semiconductor wafer
JPH06236853A (en) Growth of nitride thin film
Semmache et al. Silicon nitride and oxynitride deposition by RT-LPCVD
JPH11162875A (en) Manufacture of semiconductor device
JPH08167601A (en) Method of manufacturing semiconductor device
KR970005943B1 (en) Semiconductor device and method of manufacturing the same
JP3332063B2 (en) Method for forming SiNx / PSG laminated structure
JP3789501B2 (en) Method for manufacturing insulating film structure used in semiconductor device
JP2003017689A (en) Semiconductor device, manufacturing method therefor and manufacturing device therefor
JP2001223209A (en) Method of manufacturing insulating, semiconducting, and conducting thin films
JPH07254590A (en) Manufacture of semiconductor device