JPS62155149A - Control device for output voltage from substation for electric railway - Google Patents

Control device for output voltage from substation for electric railway

Info

Publication number
JPS62155149A
JPS62155149A JP29600685A JP29600685A JPS62155149A JP S62155149 A JPS62155149 A JP S62155149A JP 29600685 A JP29600685 A JP 29600685A JP 29600685 A JP29600685 A JP 29600685A JP S62155149 A JPS62155149 A JP S62155149A
Authority
JP
Japan
Prior art keywords
substation
voltage
electric
output voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29600685A
Other languages
Japanese (ja)
Inventor
Hideaki Aeba
饗庭 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29600685A priority Critical patent/JPS62155149A/en
Publication of JPS62155149A publication Critical patent/JPS62155149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To minimize a power loss, by providing an arithmetic means, which calculates mean voltage of pantograph collecting points by all the electric motor vehicles, and setting output voltage of a self substation on the basis of an output from said arithmetic means. CONSTITUTION:A voltage controller 101, which fetches output voltage and current signals from substations 100A-100C, calculates an optimum output voltage value to be fed to the substation 100B as a voltage setting signal. Then the substation 100B outputs voltage, corresponding to the setting signal from the voltage controller 101B, to each electric overhead line 50A, 50B of up and down electric motor vehicles, and each electric line 50A, 50B is controlled so that it always generates proper voltage for a change of an electric load. Accordingly, a voltage drop by the electric overhead line can be minimized by applying 100% voltage to the electric motor vehicle positioned just below the self substation 100B while preventing a load from being applied to the electric motor vehicles positioned just below the neighboring substations 100A, 100C.

Description

【発明の詳細な説明】 〔発明の抜術分野〕 本発明は電気鉄道用変電所の出力電圧制御装置に係り、
特に直流変電所の出力電圧を可変とし、電気車の負荷に
応じて最適な出力電圧を設定して電気車の性能を十分に
引き出ずに好適な電気鉄道用変電所の出力電圧制御l装
置に関する。
[Detailed Description of the Invention] [Field of the Invention] The present invention relates to an output voltage control device for an electric railway substation,
In particular, an output voltage control device for an electric railway substation that is suitable for making the output voltage of a DC substation variable and setting the optimal output voltage according to the load of the electric car without fully drawing out the performance of the electric car. Regarding.

(発明の技術的背景とその問題点) 最近の直流電気車は非抵抗器化が進み、電力回生を目的
としたインバータ制1111mやチョッパー制御車を採
用することにより省エネルギー化が計られている。しか
しながら、変電所側では電気巾負荷に応じた適正なパン
ク点電圧になるような電圧制御を行なっていないため、
例えば変電所直下付近の軽負荷の電気車においてはパン
ク点電圧が上昇してしまい、回生ブレーキが十分に作用
しないという問題点があり、一方、自己変電所と相隣接
する変電所間に複数台の力行する電気車が存在する場合
、負荷電流の増大によるパンク点電圧の降下によりモー
タ特性の低下つまり電気車の速度が上がらないという問
題点につながる。つまり、変電所側で負荷に応じた対応
をとらない限り、電気車側だけでその性能を十分に引き
出すことはできないため、何らかの対策が必要とされて
きた。
(Technical background of the invention and its problems) Recent DC electric cars have become non-resistor, and energy saving is being achieved by adopting inverter-controlled 1111m or chopper-controlled cars for the purpose of power regeneration. However, since the substation does not perform voltage control to maintain the appropriate puncture point voltage according to the electrical width load,
For example, there is a problem that the puncture point voltage increases in light-load electric vehicles near the substation, and regenerative braking does not work sufficiently. When there is an electric vehicle running under power, the drop in the puncture point voltage due to the increase in load current leads to a problem in that the motor characteristics deteriorate, that is, the speed of the electric vehicle does not increase. In other words, unless the substation takes measures according to the load, it will not be possible to fully extract the performance of the electric vehicle on its own, so some kind of countermeasure has been required.

〔発明の目的〕[Purpose of the invention]

従って、本発明の目的はかかる従来技術の問題点を解消
し、電気車の負荷にかかわらずパンタ点電圧が適正とな
るように常時パンタ点電圧を監視し、出力電圧を制御す
ることにより、電気車がカ行および回生ブレーキ中のど
ちらにあっても電気車の能力を十分引き出すことを可能
とした電気鉄道用変電所の出力電圧制御装置を提供する
にある。
Therefore, an object of the present invention is to solve the problems of the prior art, and to constantly monitor the pantograph point voltage and control the output voltage so that the pantograph point voltage is appropriate regardless of the load on the electric vehicle. To provide an output voltage control device for an electric railway substation, which makes it possible to fully draw out the ability of an electric car whether the car is in motion or under regenerative braking.

(発明の概要) 上記目的を達成するために、本発明は自己変電所と両側
の各隣接変電所間の区間の軌道上に存在する少なくとも
1台の電気車負荷に対する自己および各隣接変電所の出
力電圧と軌道種石の出力電流情報を取り込み、各電気車
のパンタ点電圧を求める第1の演算手段と、各隣接変電
所と電気車の距離、自己変電所と各隣接変電所間の距離
、ならびに第1の演算手段出力に基づいて全電気車によ
る平均パンタ点電圧を算定する第2の演算手段と、第2
の演算手段出力に基づいて自己変電所の出力電圧を設定
する手段を備える電気鉄通用変電所の出力電圧制御装置
を提供するものである。
(Summary of the Invention) In order to achieve the above object, the present invention provides for the self-substation and each adjacent substation for at least one electric vehicle load existing on the track in the section between the self-substation and each adjacent substation on both sides. A first calculation means that takes in the output voltage and output current information of the track seed stone and calculates the pantograph point voltage of each electric car, the distance between each adjacent substation and the electric car, and the distance between the own substation and each adjacent substation. , and a second calculation means for calculating the average pantograph voltage of the all-electric vehicle based on the output of the first calculation means;
The present invention provides an output voltage control device for an electric railway utility substation, which includes means for setting the output voltage of the own substation based on the output of the calculation means.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る電気鉄道用変電所の出
力電圧制御装置の全体構成図である。同図に示すように
、自己変電所100Bに対して両側に隣接して変電所1
00Aおよび100Cが配される。各変電所100A、
100B、100Gは上り電車線50A、下り電車?2
50Bならびに上り軌道51A、下り軌道51Bに並列
接続される。上り電気車10A、10Bは上り電車線5
0Aから集電しながら帰線として作用する上り軌道51
A上を走行する。一方、下り電気車10C210Dは下
り電気150Bから集電しながら帰線として作用する下
り軌道51Bを走行する。各変電所100Δ、100B
、100Cにはそれぞれ対応しr?’tf圧制御器10
1A、1018.10ICが設置されそれぞれの出力電
圧が制御される。
FIG. 1 is an overall configuration diagram of an output voltage control device for an electric railway substation according to an embodiment of the present invention. As shown in the figure, there are substations 1 adjacent to both sides of the own substation 100B.
00A and 100C are arranged. Each substation 100A,
100B and 100G are up train lines 50A and down trains? 2
50B, and are connected in parallel to the up track 51A and the down track 51B. Inbound electric cars 10A and 10B are inbound electric train line 5
Upward track 51 that acts as a return line while collecting current from 0A
Run on A. On the other hand, the downhill electric car 10C210D runs on the downhill track 51B, which acts as a return line, while collecting current from the downhill electricity 150B. Each substation 100Δ, 100B
, 100C respectively correspond to r? 'tf pressure controller 10
1A, 1018.10 ICs are installed and their respective output voltages are controlled.

自己変電所100Bの電圧制御11器101Bには各変
電所100A、1008.1000の電圧、電流を取り
込むべく信@1102Δ、102B。
In order to take in the voltage and current of each substation 100A, 1008.1000, the voltage control unit 101B of the own substation 100B is sent @1102Δ, 102B.

102Cが接続される。自己変電所100Bに対しては
電圧制御器101Bからの出力信号線103Bが接続さ
れ、その出力電圧を設定される。
102C is connected. An output signal line 103B from a voltage controller 101B is connected to the own substation 100B, and its output voltage is set.

ちなみに、第1図構成では自己変電所100Bを中心に
構成を示しであるが、他の変電所100A、100Cに
ついても、図示しないが全く同様構成が適用される。
Incidentally, although the configuration in FIG. 1 mainly shows the configuration of the own substation 100B, the completely similar configuration is applied to the other substations 100A and 100C, although not shown.

さて、かかる構成において、電圧制御器101Bは変電
所100A〜100Cから1秒周期で出力電圧および電
流信号を信号線102A〜102Cを介して取り込み、
最適出力電圧値を算定し、これを電圧設定信号として変
電所100Bに対して出力信号線103Bを経て送出す
る。変電所100Bは電圧制n器101Bからの設定信
号に対応する電圧を上り、下りの各電車線50A。
Now, in this configuration, the voltage controller 101B receives output voltage and current signals from the substations 100A to 100C at a one-second period via the signal lines 102A to 102C,
The optimum output voltage value is calculated and sent as a voltage setting signal to the substation 100B via the output signal line 103B. The substation 100B outputs a voltage corresponding to the setting signal from the voltage controller 101B to each of the overhead contact lines 50A.

50Bに出力して、各電車線50A、50Bが電気負荷
の変動に対して常時適正な電圧となるように制御する。
50B to control each overhead contact line 50A, 50B so that it always has an appropriate voltage in response to fluctuations in electrical load.

第2図は第1図に示した制御器101Bを示寸ブロック
図である。同図において、クロック発生器20は1秒周
期のクロック信号を発生して電圧電流入力回路21にサ
ンプリング信号を送出する。
FIG. 2 is a dimensional block diagram of the controller 101B shown in FIG. 1. In the figure, a clock generator 20 generates a clock signal with a period of 1 second and sends a sampling signal to a voltage/current input circuit 21.

電圧電流入力回路21はサンプリング信号の入力時に変
電所100△、100B、100Cからの電圧・電流値
を信@線102△、102B。
The voltage and current input circuit 21 receives voltage and current values from the substations 100△, 100B, and 100C at the time of inputting the sampling signal to the lines 102△ and 102B.

102Cを通じて取り込み、次にサンプリング信号が入
力されるまでの間これらを保持するとともに、保持信号
をパンタ点電圧計算回路22に送出する。パンタ点電圧
計算回路22は各変電所100A、100B、100C
の各電圧と各方向別の電流から変電所100A側および
変電所100C側と上り線下り線別の計4個所のパンタ
点電圧を31算して、その結果を変電所出力電圧算定回
路23に送出する。変電所出力電圧算定回路23はパン
全点電圧h10回路22によりn出されたそれぞれのパ
ンタ点電圧に基づいてその平均電圧を予め定められた算
定式により求め、これを変電所出力電Jlll設定回路
24に送出する。変電所出力電圧設定回路24はパンタ
点電圧の平均値がある決められた許容電圧値内に入って
いるか否かを判定して、これが許容電圧値内にあれば現
状の設定電圧を維持りるような設定信号を、許容電圧値
外にあればこれを補正するような設定信号を発生し、一
時遅れ回路25を介して変電所1.0OBに送出する。
102C and hold them until the next sampling signal is input, and send the held signal to the pantograph voltage calculation circuit 22. Panta point voltage calculation circuit 22 is installed at each substation 100A, 100B, 100C.
From each voltage and current in each direction, calculate the pantograph voltage at a total of 4 locations on the substation 100A side, substation 100C side, and up and down lines, and send the result to the substation output voltage calculation circuit 23. Send. The substation output voltage calculation circuit 23 calculates the average voltage using a predetermined calculation formula based on the respective pantograph point voltages outputted by the pantotal voltage h10 circuit 22, and calculates the average voltage using a predetermined calculation formula. Send on 24th. The substation output voltage setting circuit 24 determines whether the average value of the pantograph point voltage is within a certain permissible voltage value, and if this is within the permissible voltage value, maintains the current set voltage. If such a setting signal is outside the allowable voltage value, a setting signal that corrects this is generated and sent to the substation 1.0OB via the temporary delay circuit 25.

次に、パンク点電圧計算回路22の作用について第3図
の回路図を参照しながら説明り−る。
Next, the operation of the puncture point voltage calculation circuit 22 will be explained with reference to the circuit diagram of FIG.

第3図において、[2は自己変電所100Bの出力電圧
、[、E3は両隣りの変電所100△、100Cの各出
力電圧を示す。なJ3、電気車10A〜10Dは変電所
100△と100C間に存6しているものどする。この
場合、EPl−・にP4は′上気中10A〜10D1.
:J5けるパンタ点電圧、しは変電所100Δ、100
B間の距薗1、Xは変電所100Bと電気車1013間
の距離、1.12は変電所100A、100Bから電気
車10Bに与えられるn荷電流をそれぞれ示している。
In FIG. 3, [2 indicates the output voltage of the own substation 100B, [, E3 indicates the respective output voltages of the substations 100Δ and 100C on both sides. Assume that J3 and electric cars 10A to 10D are located between substations 100Δ and 100C. In this case, P4 is 10A to 10D1 in the upper air.
:J5 point voltage, substation 100Δ, 100
The distance 1 between B and X indicates the distance between the substation 100B and the electric car 1013, and 1.12 indicates the n charge current given to the electric car 10B from the substations 100A and 100B, respectively.

第3図から明らかなように、例えばパンタ点電圧EP、
は(1)式および(2)式から求めることができる。
As is clear from FIG. 3, for example, the pantograph point voltage EP,
can be determined from equations (1) and (2).

E   E2 =11 (L  x)r+l2Xr・・
・・・・(1) EPl =E2−I2 x r       −・−(
2)ここで、r【よ電車P250△または50 B J
Nよび帰線として作用する軌道51△または51Bを含
んだ単位長さ当りの電車線の抵抗を示す。(1)式より
X を求めて(2)式に代入づるとEPlは(3)式と
なる。
E E2 = 11 (L x) r + l2Xr...
...(1) EPl = E2-I2 x r ---(
2) Here, r [yo train P250△ or 50 B J
It shows the resistance of the overhead contact line per unit length including N and the track 51Δ or 51B acting as a return line. If X is determined from equation (1) and substituted into equation (2), EPl becomes equation (3).

同様にして(EP2〜EP4が求まり、電気車10△と
100と変電所100Bからの距N1がわからなくても
変電所の電圧と軌道極毎の電流、つまり上り線、下り線
および左右方向別の電流を知ればパンク点電圧を求める
ことができる。
In the same way (EP2 to EP4 are found, even if you do not know the electric cars 10△ and 100 and the distance N1 from the substation 100B, you can calculate the voltage of the substation and the current for each track pole, that is, for the up line, down line, and left/right direction. If you know the current, you can find the puncture point voltage.

一方、変電所出力電圧算定回路23は、パンク点電圧i
t l’2回路22で求めたパンタ点電圧[1)1〜E
P4が与えられると、自己変電所100Bの直下に位置
する電気車には100%の電圧を、また隣接変電所10
0Aまたは100Cの直下に位置する電気車には電圧O
としたいわゆる電気車が自己変電所100Bから離れる
につれて出力電圧をしぼる市み句を導入して、パンク焦
電圧印EP、〜「1〕4から自己変電所100Bの出力
電圧E2を次の式(/l)、(5)、(6)を通じ(求
める。
On the other hand, the substation output voltage calculation circuit 23 calculates the puncture point voltage i
t l'2 Pantograph point voltage determined by circuit 22 [1) 1 to E
When P4 is given, 100% voltage is applied to the electric car located directly under the own substation 100B, and 100% voltage is applied to the electric car located directly under the own substation 100B.
Electric cars located directly below 0A or 100C have a voltage of O.
Introducing a common phrase that reduces the output voltage as the so-called electric car moves away from the substation 100B, the output voltage E2 of the substation 100B is expressed as /l), (5), (6) to (find).

まず、例として電気車10Bの変電所100 Bからの
距111ixと変電所100△と100Bとの距m+−
から重み9を(4)式で1!?る。
First, as an example, the distance 111ix from the substation 100B of the electric car 10B and the distance m+- between the substations 100Δ and 100B.
The weight 9 is set to 1 using equation (4)! ? Ru.

この(4)式にX、すなわち 点電圧EP1の重みglとしては式(5)を11するこ
とができる。
Equation (5) can be added to this equation (4) as X, that is, the weight gl of the point voltage EP1.

・・・・・・(5) 同様にして、パンタ点電圧EP2〜EP4の市み92〜
g4を求めることができるため、変′市所100Bの出
力電圧E2は鈴術平均値法を用いで(6)式から(9る
ことができる。
......(5) In the same way, the market of pantograph point voltages EP2 to EP4 is 92 to
Since g4 can be obtained, the output voltage E2 of the variable market 100B can be calculated from equation (6) to equation (9) using the average value method.

このようにして、電気車の負荷に対して最適な変゛市所
電圧を算定することができる。
In this way, it is possible to calculate the optimum variable voltage for the load of the electric vehicle.

次に、変電所出力電圧設定回路24は変電所出力電圧算
定回路23で求めた最適な変電所の設定電圧]三、に対
して、電気車のカ行および回生ブレーキ性能を十分に引
き出すための許容範囲を設(プており、設定電圧E2が
許容範囲をはずれていないかを常時監視している。そし
て設定電圧E2が許容範囲からはずれていれば、許容範
囲になるようにこれに補正をかける。
Next, the substation output voltage setting circuit 24 sets the optimal substation setting voltage determined by the substation output voltage calculation circuit 23 to obtain sufficient power and regenerative braking performance of the electric vehicle. A permissible range is set, and the set voltage E2 is constantly monitored to see if it is outside the permissible range.If the set voltage E2 is outside the permissible range, corrections are made to bring it within the permissible range. put on.

ちなみに、変電所出力電圧設定回路24に設定される最
大許容電圧EPIIlaxは回生ブレーキ中の電気車に
対して回生プレーキネ能の小寒を防止するための許容電
圧であり、一方、最低許容電圧EP□inはカ行中の電
気車に対してモータ電圧−速度特性の低下による走行時
間の延びを防止するだめの許容電圧である。
Incidentally, the maximum allowable voltage EPIIlax set in the substation output voltage setting circuit 24 is the allowable voltage for preventing the regenerative braking ability from becoming cold for the electric vehicle during regenerative braking, while the minimum allowable voltage EP II is an allowable voltage that prevents the running time of a running electric car from increasing due to a decrease in motor voltage-speed characteristics.

なお、自己変電所100Bに対する出力電圧の設定は(
7)弐〜(9)式の条件に基づいてそれぞれ与えられる
In addition, the output voltage setting for the own substation 100B is (
7) Given based on the conditions of Equations 2 to (9), respectively.

EPmin≦EPmax        −= (7)
ならばE2を設定、 EP  くE2        ・・・・・・(8)a
x ならばE2−ΔEを設定、 EP、>E2        ・・・・・・(9〉1n ならばE丁子ΔEを設定することができる。
EPmin≦EPmax −= (7)
If so, set E2, EP ku E2 ・・・・・・(8)a
If x, then E2-ΔE can be set, and if EP,>E2...(9>1n), then E clove ΔE can be set.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の電気鉄道用変電所の出力電
圧制御装置によれば、自己および両側に隣接する変電所
間の軌道上に存在する各電気車のパンタ点電圧を算定し
て、自己変電所の出力エネルギーの最小化を考慮して自
己変電所直下の電気車には100%負荷を、最も遠い隣
接変電所直下の電気車には負荷させないようにすること
により、電車線による電圧降下による電力ロスを最小に
づ゛ることができる。また、上り、下り線切や方面別の
変電所出力電圧や電流値を知ることにより、自己および
隣接変電所の軌道上に存在する電気車の位置や列車の本
数を求める必要がないので、処理が簡単になるという効
果もある。さらに、橿めて短い時間周期、例えば1秒周
期で変電所出力電圧や電流値を入力するので、電気車の
変化に応じた最適な変電所出力電圧を設定することがで
きる。
As described above, according to the output voltage control device for an electric railway substation of the present invention, the pantograph voltage of each electric car existing on the track between itself and the substations adjacent on both sides is calculated, Considering the minimization of the output energy of the own substation, the electric cars directly under the own substation are loaded with 100% of the load, and the electric cars directly under the farthest adjacent substation are not loaded, thereby reducing the voltage caused by the contact line. Power loss due to descent can be minimized. In addition, by knowing the substation output voltage and current value for each direction, such as up and down line breaks, there is no need to calculate the positions of electric cars or the number of trains existing on the tracks of the own substation and adjacent substations. It also has the effect of making it easier. Furthermore, since the substation output voltage and current values are input in a relatively short time period, for example, in a one-second period, it is possible to set the optimal substation output voltage according to changes in the electric vehicle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る電気鉄道用変電所の出
力電圧制ね■装置の全体溝成図、第2図は第1図に示し
た電圧制御器の構成を示すブロック図、 第3図は第2図の構成の作用を説明するための回路図で
ある。 10A、IOB、10C,100・・・電気車、100
A、1008.100C・’117H所、101A、l
0IB、101G・・・電圧制御器、50A。 50B・・・電1liFA、51△、51B・・・軌道
、20・・・クロック発生器、21・・・電圧電流入力
回路、23・・・パンタ点電圧計算回路、23・・・変
電所出力電圧算定回路、24・・・変電所出力電圧設定
回路。 出願人代理人  佐  藤  −雄 躬 1 図 10旧
FIG. 1 is an overall configuration diagram of an output voltage control device for an electric railway substation according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of the voltage controller shown in FIG. 1. FIG. 3 is a circuit diagram for explaining the operation of the configuration shown in FIG. 2. 10A, IOB, 10C, 100...Electric car, 100
A, 1008.100C・'117H place, 101A, l
0IB, 101G...Voltage controller, 50A. 50B...Electrical 1liFA, 51△, 51B...Trajectory, 20...Clock generator, 21...Voltage and current input circuit, 23...Panta point voltage calculation circuit, 23...Substation output Voltage calculation circuit, 24... substation output voltage setting circuit. Applicant's agent Sato-Yuman 1 Figure 10 old

Claims (1)

【特許請求の範囲】 1、自己変電所と両側の各隣接変電所間の区間の軌道上
に存在する少なくとも1台の電気車負荷に対する自己お
よび各隣接変電所の出力電圧と軌道種毎の出力電流情報
を取り込み、各電気車のパンタ点電圧を求める第1の演
算手段と、各隣接変電所と電気車の距離、自己変電所と
各隣接変電所間の距離、ならびに第1の演算手段出力に
基づいて全電気車による平均パンタ点電圧を算定する第
2の演算手段と、第2の演算手段出力に基づいて自己変
電所の出力電圧を設定する手段を備えることを特徴とす
る電気鉄道用変電所の出力電圧制御装置。 2、第2の演算手段が全電気車に対する平均パンタ点電
圧を距離に応じた重み付けに基づいて算出することを特
徴とする特許請求の範囲第1項に記載の電気鉄道用変電
所の出力電圧制御装置。 3、設定手段が第2の演算手段出力が予め設定した許容
範囲にあるか否かを判定し、許容範囲外にある場合これ
に補正を加える補正手段を含むことを特徴とする特許請
求の範囲第2項に記載の電気鉄道用変電所の出力電圧制
御装置。
[Claims] 1. Output voltage of the own substation and each adjacent substation and output for each track type with respect to at least one electric vehicle load existing on the track in the section between the own substation and each adjacent substation on both sides A first calculation means that takes in current information and calculates the pantograph voltage of each electric car, the distance between each adjacent substation and the electric car, the distance between its own substation and each adjacent substation, and the output of the first calculation means. for electric railways, characterized by comprising a second calculation means for calculating the average pantograph voltage of all electric cars based on the above, and a means for setting the output voltage of the own substation based on the output of the second calculation means. Substation output voltage control device. 2. The output voltage of the electric railway substation according to claim 1, wherein the second calculation means calculates the average pantograph voltage for all electric cars based on weighting according to distance. Control device. 3. Claims characterized in that the setting means includes correction means for determining whether or not the output of the second calculation means is within a preset tolerance range, and correcting the output if it is outside the tolerance range. The output voltage control device for an electric railway substation according to item 2.
JP29600685A 1985-12-27 1985-12-27 Control device for output voltage from substation for electric railway Pending JPS62155149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29600685A JPS62155149A (en) 1985-12-27 1985-12-27 Control device for output voltage from substation for electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29600685A JPS62155149A (en) 1985-12-27 1985-12-27 Control device for output voltage from substation for electric railway

Publications (1)

Publication Number Publication Date
JPS62155149A true JPS62155149A (en) 1987-07-10

Family

ID=17827910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29600685A Pending JPS62155149A (en) 1985-12-27 1985-12-27 Control device for output voltage from substation for electric railway

Country Status (1)

Country Link
JP (1) JPS62155149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346163A (en) * 1991-07-19 1994-09-13 Hitachi, Ltd. Power supply regulation system for a railway

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346163A (en) * 1991-07-19 1994-09-13 Hitachi, Ltd. Power supply regulation system for a railway

Similar Documents

Publication Publication Date Title
US6799096B1 (en) Method for optimizing energy in a vehicle/train with multiple drive units
CN101138967B (en) Vehicle driving system
JP5485319B2 (en) Power flow control method and control device for vehicle mounted with secondary battery
CN105291887B (en) The bi-motor moment of torsion distribution control method of rubber tire low-floor intelligent track train
KR100556224B1 (en) Train control system, train communication network system and train control apparatus
CN106428035A (en) Main circuit system suitable for energy-storage type tramcar
CN110834545B (en) Power supply system of guide rail electric car and control method thereof
CN109591613A (en) A kind of municipal rail train traction control method and system
WO2021046963A1 (en) Method for controlling automatic switching between vcb and hscb on basis of tcms of dual-current-system train
WO2023103556A1 (en) Permanent magnet direct-drive torpedo ladle car and control method therefor
CN110091766A (en) A kind of intelligent ground automatic passing over of neutral section method and device
CN109228872A (en) Power supply system of train and its detection of electrical leakage positioning device, method and train
KR100966203B1 (en) A method and system for regulating the power demanded by a rail motor
JPH07304353A (en) Feeding voltage controller for railway substation
CN113002372B (en) Transition area contact net and transition area system based on double-flow system rail vehicle operation
JP6753809B2 (en) Electric connection circuit for power supply car, power supply car, electric connection circuit for formation vehicle, formation vehicle, control method, battery mode switching method, and overhead wire mode switching method
JPS62155149A (en) Control device for output voltage from substation for electric railway
JP7234675B2 (en) Charge/discharge control device and train traffic system
WO2024077824A1 (en) Railway vehicle and heating control system and method therefor
JP2002058110A (en) Power facility for bullet train
CN108068640B (en) Power supply control method and device for double-source trolley bus
JP2020061919A (en) Railway vehicle, and power control method of railway vehicle
CN114906015A (en) Alternating current-direct current traction power supply structure and control method for electrified railway
JP5190883B2 (en) Overhead voltage compensation vehicle
CN210363256U (en) Electronic control type air suspension system with accurate displacement control and adjustment