JPS6215504Y2 - - Google Patents

Info

Publication number
JPS6215504Y2
JPS6215504Y2 JP9533381U JP9533381U JPS6215504Y2 JP S6215504 Y2 JPS6215504 Y2 JP S6215504Y2 JP 9533381 U JP9533381 U JP 9533381U JP 9533381 U JP9533381 U JP 9533381U JP S6215504 Y2 JPS6215504 Y2 JP S6215504Y2
Authority
JP
Japan
Prior art keywords
compressor
oil
suction
pipe
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9533381U
Other languages
Japanese (ja)
Other versions
JPS581783U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9533381U priority Critical patent/JPS581783U/en
Publication of JPS581783U publication Critical patent/JPS581783U/en
Application granted granted Critical
Publication of JPS6215504Y2 publication Critical patent/JPS6215504Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] この考案は並列圧縮式冷凍装置に関するもので
あり、特に圧縮機の並列運転時並びに任意の圧縮
機の単独運転時の何れの場合においても、それぞ
れの圧縮機の潤滑油の油面を適正に保持するよう
にした並列圧縮式冷凍装置に関するものである。
[Detailed description of the invention] [Industrial field of application] This invention relates to a parallel compression type refrigeration system, and in particular, both when compressors are operated in parallel and when any compressor is operated independently. The present invention relates to a parallel compression type refrigeration system in which the lubricating oil level of each compressor is maintained at an appropriate level.

[従来の技術] 第2図は従来の並列圧縮式冷凍装置を示す部分
構成図である。第2図において、第1の圧縮機1
は、吸入室103と油溜室104とを備えてお
り、この吸入室103と油溜室104とは、第1
の圧縮機1の容器を形成するクランクケース10
1内を、隔壁102で仕切つて構成されている。
第2の圧縮機2は、吸入室203と油溜室204
とを備えており、この吸入室203と油溜室20
4とは、第2の圧縮機2の容器を形成するクラン
クケース201内を、隔壁202で仕切つて構成
されている。第1の電動機105は固定子巻線1
05aと電機子巻線105bとを備え、第1の圧
縮機1の吸入室103内に設置されている。第2
の電動機205は固定子巻線205aと電機子巻
線205bとを備え、第2の圧縮機2の吸入室2
03に設置されている。第1のピストン106
は、第1の圧縮機1の油溜室104内に設置さ
れ、油溜室104の壁面の一部で構成された第1
のシリンダー107内を、第1の電動機105に
よつてピストン運動される。第2のピストン20
6は、第2の圧縮機2の油溜室204内に設置さ
れ、油溜室204の壁面の一部で構成された第2
のシリンダー207内を、第2の電動機205に
よつてピストン運動される。この第1、第2のピ
ストン106,206のピストン運動によつて、
吸入室103,203内の冷媒ガスは、それぞれ
孔108,208を介してシリンダー107,2
07内に吸入され、孔109,209を介してシ
リンダー107,207内から外部に吐出され
る。第1、第2の均圧孔110,210は、それ
ぞれ隔壁102,202に設けられ、吸入室10
3,203内の圧力と油溜室104,204内の
圧力とを均圧にする。第1、第2の逆止弁11
1,211は隔壁102,202にそれぞれ貫通
して設けられ、吸入室103,203側から油溜
室104,204側にのみ潤滑油を通す。液分離
器3は、第1、第2の圧縮機1,2の吸入側に設
けられており、蒸発器(図示せず)から吸入管4
を介して送入された冷媒と潤滑油との混合物を、
ガス冷媒と、液冷媒と潤滑油との混合物とに分離
するものである。U字管302はU字状の底部が
液分離器3の底部に溜つた潤滑油につながるよう
に液分離器3内に設置されており、U字状の底部
には、潤滑油を吸上げる油返し孔301が設けら
れている。第1、第2のガス吸入管5,6は、そ
れぞれの一端が、第1、第2の圧縮機1,2の吸
入室103,203に接続され、それぞれの他端
が、主ガス吸入管7を介してU字管302の吐出
側端に接続されている。第1、第2のガス吐出管
8,9は、それぞれの一端が、第1、第2の圧縮
機1,2の孔109,209に接続され、それぞ
れの他端が、主ガス吐出管10を介して凝縮器
(図示せず)に接続されている。均油管11は、
第1、第2の圧縮機1,2の油溜室104,20
4相互間に接続され、油溜室104,204のそ
れぞれの油面を等しくするものである。
[Prior Art] FIG. 2 is a partial configuration diagram showing a conventional parallel compression type refrigeration system. In FIG. 2, the first compressor 1
is equipped with a suction chamber 103 and an oil reservoir chamber 104, and the suction chamber 103 and the oil reservoir chamber 104 are connected to the first
a crankcase 10 forming a container for a compressor 1;
1 is partitioned by partition walls 102.
The second compressor 2 has a suction chamber 203 and an oil reservoir chamber 204.
The suction chamber 203 and the oil reservoir chamber 20
4 is constructed by partitioning the inside of a crankcase 201 forming a container of the second compressor 2 with a partition wall 202. The first electric motor 105 has a stator winding 1
05a and an armature winding 105b, and is installed in the suction chamber 103 of the first compressor 1. Second
The electric motor 205 includes a stator winding 205a and an armature winding 205b, and has a suction chamber 2 of the second compressor 2.
It is installed on 03. first piston 106
is installed in the oil sump chamber 104 of the first compressor 1, and is made up of a part of the wall surface of the oil sump chamber 104.
A piston is moved within the cylinder 107 by the first electric motor 105. second piston 20
6 is installed in the oil reservoir chamber 204 of the second compressor 2, and is configured by a part of the wall surface of the oil reservoir chamber 204.
The piston is moved within the cylinder 207 by the second electric motor 205. By this piston movement of the first and second pistons 106, 206,
The refrigerant gas in the suction chambers 103, 203 flows into the cylinders 107, 2 through holes 108, 208, respectively.
07, and is discharged from the cylinders 107, 207 to the outside through the holes 109, 209. The first and second pressure equalizing holes 110 and 210 are provided in the partition walls 102 and 202, respectively, and are provided in the suction chamber 10.
3, 203 and the pressure in the oil reservoir chambers 104, 204 are equalized. First and second check valves 11
1 and 211 are provided to penetrate through the partition walls 102 and 202, respectively, and allow lubricating oil to pass only from the suction chambers 103 and 203 side to the oil reservoir chambers 104 and 204 side. The liquid separator 3 is provided on the suction side of the first and second compressors 1 and 2, and is connected to the suction pipe 4 from the evaporator (not shown).
A mixture of refrigerant and lubricating oil delivered through
The refrigerant is separated into a gas refrigerant and a mixture of liquid refrigerant and lubricating oil. The U-shaped tube 302 is installed in the liquid separator 3 so that the U-shaped bottom is connected to the lubricating oil accumulated at the bottom of the liquid separator 3, and the U-shaped bottom is connected to the lubricating oil accumulated at the bottom of the liquid separator 3. An oil return hole 301 is provided. One end of each of the first and second gas suction pipes 5 and 6 is connected to the suction chambers 103 and 203 of the first and second compressors 1 and 2, and the other end of each of the first and second gas suction pipes is connected to the main gas suction pipe. 7 to the discharge side end of the U-shaped pipe 302. One end of each of the first and second gas discharge pipes 8 and 9 is connected to the holes 109 and 209 of the first and second compressors 1 and 2, and the other end of each of the first and second gas discharge pipes 8 and 9 is connected to the main gas discharge pipe 10. via a condenser (not shown). The oil equalizing pipe 11 is
Oil reservoir chambers 104 and 20 of the first and second compressors 1 and 2
4 are connected to each other to equalize the oil levels in the oil reservoir chambers 104 and 204.

次にこの従来技術の動作を説明する。今、第1
の圧縮機1が運転され、第2の圧縮機2が停止さ
れている容量制御運転時には、第1のガス吸入管
5から吸入室103迄の流路抵抗によつて、圧力
損失があるため、運転中の第1の圧縮機1の、吸
入室103内の圧力は、停止中の第2の圧縮機2
の、吸入室203及び油溜室204内の圧力より
も、必然的に低くなる。また均油管11によつ
て、油溜室104と油溜室204とは連通してい
るため、吸入室103内の圧力は、油溜室104
内の圧力よりも低くなつている。従つて、吸入室
103の油面の高さは、油溜室104の油面の高
さより高くなつている。即ち、吸入室103と油
溜室104との圧力差に相当する油面差分だけ、
高くなつた状態で釣合う。
Next, the operation of this prior art will be explained. Now, the first
During the capacity control operation in which the compressor 1 is operated and the second compressor 2 is stopped, there is pressure loss due to flow path resistance from the first gas suction pipe 5 to the suction chamber 103. The pressure in the suction chamber 103 of the first compressor 1 during operation is the same as that of the second compressor 2 when it is stopped.
The pressure in the suction chamber 203 and the oil reservoir chamber 204 is inevitably lower than that in the suction chamber 203 and the oil reservoir chamber 204 . Further, since the oil reservoir chamber 104 and the oil reservoir chamber 204 are in communication with each other through the oil equalizing pipe 11, the pressure inside the suction chamber 103 is equal to the pressure in the oil reservoir chamber 104.
It's lower than the internal pressure. Therefore, the oil level in the suction chamber 103 is higher than the oil level in the oil reservoir chamber 104. That is, the oil level difference corresponding to the pressure difference between the suction chamber 103 and the oil reservoir chamber 104 is
Balance in a high position.

[考案が解決しようとする問題点] 従来の装置は以上のように構成されているた
め、この釣合つた状態で、ピストン106が運転
されると、油溜室104内の潤滑油は、第1の均
圧孔110から吸入室103へ流入して、吸入室
103内に溜められる。また、これと同時に、孔
108→シリンダー107→孔109→第1のガ
ス吐出管8主ガス吐出管10を介して、凝縮機
(図示せず)に供給されるため、油溜室104内
の潤滑油の油量が減少する欠点があつた。
[Problems to be solved by the invention] Since the conventional device is configured as described above, when the piston 106 is operated in this balanced state, the lubricating oil in the oil reservoir chamber 104 is It flows into the suction chamber 103 from the pressure equalization hole 110 of No. 1 and is stored in the suction chamber 103. At the same time, the oil is supplied to the condenser (not shown) via the hole 108 → cylinder 107 → hole 109 → first gas discharge pipe 8 and main gas discharge pipe 10, so that The drawback was that the amount of lubricating oil decreased.

また、第1、第2の圧縮機1,2を同時に運転
する並列運転時と、第1、第2の圧縮機1,2の
何れか一方を運転する容量制御運転時との、何れ
においても、液分離器3の底部に溜められた潤滑
油は、U字管302の底部に設けられた油返し孔
301から、吸引され、U字管302と主ガス吸
入管7と、第1、第2のガス吸入管5,6とを介
して、第1、第2の圧縮機1,2の吸入室10
3,203に送還される。
Furthermore, in both parallel operation in which the first and second compressors 1 and 2 are operated simultaneously, and capacity control operation in which either one of the first and second compressors 1 and 2 is operated. The lubricating oil stored at the bottom of the liquid separator 3 is sucked through the oil return hole 301 provided at the bottom of the U-shaped tube 302, and is transferred between the U-shaped tube 302, the main gas suction tube 7, and the first and second gas suction tubes. The suction chambers 10 of the first and second compressors 1 and 2 are connected via the gas suction pipes 5 and 6 of the second compressor.
He was repatriated on 3,203.

従つて、U字管302の管径は、第1、第2の
圧縮機1,2の何れか一方のみの運転時である容
量制御運転時の、冷媒ガス速度によつて決定され
る。このため、並列運転時には、U字管302を
通る冷媒ガス速度が容量制御運転時の2倍とな
り、圧力損失が増大する。従つて、並列運転時に
は第1、第2の圧縮機1,2に吸入される冷媒ガ
スの圧力が低下して、冷凍能力が低下する欠点が
あつた。
Therefore, the pipe diameter of the U-shaped pipe 302 is determined by the refrigerant gas velocity during capacity control operation, which is when only one of the first and second compressors 1 and 2 is operated. Therefore, during parallel operation, the refrigerant gas velocity passing through the U-shaped pipe 302 is twice that of the capacity control operation, increasing pressure loss. Therefore, during parallel operation, the pressure of the refrigerant gas sucked into the first and second compressors 1 and 2 decreases, resulting in a disadvantage that the refrigerating capacity decreases.

この考案は上記のような従来のものの欠点を除
去するためになされたもので、どのような運転状
態時にも各部の油面を均一に保ち、かつ冷凍能力
の低下を防止した並列圧縮式冷凍装置を得ること
を目的とするものである。
This idea was made to eliminate the drawbacks of the conventional ones as described above, and it is a parallel compression type refrigeration system that maintains a uniform oil level in each part under any operating condition and prevents a decrease in refrigeration capacity. The purpose is to obtain.

[問題点を解決するための手段] この考案に係る並列圧縮式冷凍装置は、液分離
器で分離されたガス冷媒を第1の圧縮機に送還す
る、圧力損失がより大きい方の第1のガス吸入管
と、液分離器で分離された潤滑油を吸引して、ガ
ス冷媒と共に液分離器内に設置されたU字管を介
して第2の圧縮機の吸入室に送還する。圧力損失
がより小さい方の第2のガス吸入管と、液分離器
で分離された潤滑油を第1の圧縮機の運転時にの
み第2の圧縮機の油溜室に送還する油返送管と、
第2の圧縮機の隔壁に設けられ吸入室から油溜室
へ潤滑油を流通させる第2の逆止弁と、第1の圧
縮機のみの運転時または第1、第2の圧縮機の同
時運転時に第2の圧縮機の油溜室から第1の圧縮
機の油溜室へ潤滑油を流通させる均油管とを設け
たものである。すなわち液分離器のU字管は第2
の圧縮器の吸入管のみと接続されている。また第
1の圧縮機への吸入管は液分離器の上部に独立に
接続されている。
[Means for Solving the Problems] The parallel compression type refrigeration system according to this invention returns the gas refrigerant separated by the liquid separator to the first compressor. The lubricating oil separated by the gas suction pipe and the liquid separator is sucked and returned to the suction chamber of the second compressor through the U-shaped pipe installed in the liquid separator along with the gas refrigerant. a second gas suction pipe with smaller pressure loss; and an oil return pipe that returns the lubricating oil separated by the liquid separator to the oil sump chamber of the second compressor only when the first compressor is operating. ,
A second check valve is provided on the bulkhead of the second compressor and allows lubricating oil to flow from the suction chamber to the oil reservoir chamber. The compressor is provided with an oil equalizing pipe that allows lubricating oil to flow from the oil reservoir chamber of the second compressor to the oil reservoir chamber of the first compressor during operation. In other words, the U-shaped pipe of the liquid separator is
Connected only to the compressor suction pipe. Moreover, the suction pipe to the first compressor is independently connected to the upper part of the liquid separator.

[作用] この発明においては、第1の圧縮機のみの運転
時には、第1のガス吸入管の圧力損失により、第
1の圧縮機側の圧力を低くして第2の逆止弁と均
油管とにより油面を均一とし、かつ、油返送管よ
り液分離器内の潤滑油を、第2の圧縮機を介して
第1の圧縮機に送還する。第2の圧縮機のみの運
転時には、均油管を閉じて第2のガス吸入管から
液分離器内の潤滑油をガス冷媒と共に吸引して送
還し、かつU字管の使用を第2の圧縮機が運転す
る時のみとして、冷凍能力の低下を防止する。さ
らに、第1、第2の圧縮機の運転時には、均油管
を開いて第1の圧縮機の運転時と同様に油面を均
一にする。
[Function] In this invention, when only the first compressor is operated, the pressure on the first compressor side is lowered due to the pressure loss in the first gas suction pipe, and the second check valve and the oil equalizing pipe are closed. This makes the oil level uniform, and the lubricating oil in the liquid separator is returned from the oil return pipe to the first compressor via the second compressor. When only the second compressor is in operation, the oil equalizing pipe is closed and the lubricating oil in the liquid separator is sucked and returned from the second gas suction pipe together with the gas refrigerant, and the use of the U-shaped pipe is replaced by the second compressor. This is done only when the machine is in operation to prevent a drop in refrigeration capacity. Further, when the first and second compressors are operated, the oil equalizing pipe is opened to equalize the oil level in the same way as when the first compressor is operated.

[実施例] 以下この考案の一実施例を図について説明す
る。第1図はこの考案に係る並列圧縮式冷凍装置
の一実施例を示す。図において、第1の圧縮機1
は吸入室103と油溜室104とを備えており、
この吸入室103と油溜室104とは、第1の圧
縮機1の容器を形成するクランクケース101内
を隔壁102で仕切つて構成されている。第1の
逆止弁111は隔壁102に設けられ、吸入室1
03内の圧力が油溜室104内の圧力より高くな
つた場合にのみ、吸入室103内の潤滑油を油溜
室104内に流入させる。第2の圧縮機2は、吸
入室203と油溜室204とを備えており、この
吸入室203と油溜室204とは、第2の圧縮機
2の容器を形成するクランクケース201内を、
隔壁202で仕切つて構成されている。第2の逆
止弁211は、隔壁202に設けられ、吸入室2
03内の圧力が油溜室204内の圧力より高くな
つた場合にのみ、吸入室203内の潤滑油を油溜
室204内に流入させる。第1の電動機105
は、固定子巻線105aと電機子巻線105bと
を備え、第1の圧縮機1の吸入室103内に設置
されている。第2の電動機205は、固定子巻線
205aと電機子巻線205bとを備え、第2の
圧縮機2の吸入室203内に設置されている。第
1のピストン106は、第1の圧縮機1の油溜室
104内に設置され、油溜室104の壁面の一部
で構成された第1のシリンダー107内を、第1
の電動機105によつてピストン運動される。第
2のピストン206は、第2の圧縮機2の油溜室
204内に設置され、油溜室204の壁面の一部
で構成された第2のシリンダー207内を、第2
の電動機205によつてピストン運動される。こ
の第1、第2のピストン106,206のピスト
ン運動によつて、吸入室103,203内の冷媒
ガスは、それぞれ孔108,208を介してシリ
ンダー107,207内に吸入され、孔109,
209を介してシリンダー107,207内から
外部に吐出される。第1、第2の均圧孔110,
210は、それぞれ隔壁102,202に設けら
れ、吸入室103,203内の圧力と油溜室10
4,204内の圧力とを均圧にする。液分離器3
は、第1、第2の圧縮機1,2の吸入側に設けら
れており、蒸発器(図示せず)から吸入管4を介
して送入された冷媒と潤滑油との混合物を、ガス
冷媒と、液冷媒と潤滑油との混合物とに分離する
ものである。U字管302は、U字状の底部が液
分離器3の底部に溜つた潤滑油につかるように液
分離器3内に設置されており、U字状の底部に
は、潤滑油を吸上げる油返し孔301が設けられ
ている。第1のガス吸入管5は、圧力損失が増大
するように、例えば長く構成されており、その一
端は第1の圧縮機1の吸入室103に接続され、
その他端は液分離器3の上端部に接続されてい
る。第2のガス吸入管6は、圧力損失が小さくな
るように、例えば短く構成されており、その一端
は第2の圧縮機2の吸入室203に接続され、そ
の他端はU字管302の吐出側端部に接続されて
いる。第1、第2のガス吐出管8,9は、それぞ
れの一端が第1、第2の圧縮機1,2の孔10
9,209に接続され、それぞれの他端が、主ガ
ス吐出管10を介して凝縮機(図示せず)に接続
されている。均油管11は、第1、第2の圧縮機
1,2の油溜室104,204相互間に接続さ
れ、油溜室204から油溜室104側にのみ潤滑
油を通す第3の逆止弁12が設けられている。油
返送管13は液分離器3の底部と第2の圧縮機2
の吸入室203間に設けられている。電磁弁14
は油返送管13に設けられ、第2の圧縮機2の運
転時には閉成し、第2の圧縮機2の停止時には開
放するものである。
[Example] An example of this invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a parallel compression type refrigeration system according to this invention. In the figure, the first compressor 1
is equipped with a suction chamber 103 and an oil reservoir chamber 104,
The suction chamber 103 and the oil reservoir chamber 104 are configured by partitioning the inside of the crankcase 101, which forms the container of the first compressor 1, with a partition wall 102. The first check valve 111 is provided in the partition wall 102 and is provided in the suction chamber 1
Only when the pressure in the oil reservoir chamber 104 becomes higher than the pressure in the oil reservoir chamber 104, the lubricating oil in the suction chamber 103 is caused to flow into the oil reservoir chamber 104. The second compressor 2 includes a suction chamber 203 and an oil reservoir chamber 204, and the suction chamber 203 and the oil reservoir chamber 204 are arranged inside the crankcase 201 that forms the container of the second compressor 2. ,
It is partitioned by a partition wall 202. The second check valve 211 is provided in the partition wall 202 and is provided in the suction chamber 2
Only when the pressure in the oil reservoir chamber 204 becomes higher than the pressure in the oil reservoir chamber 204, the lubricating oil in the suction chamber 203 is caused to flow into the oil reservoir chamber 204. First electric motor 105
includes a stator winding 105a and an armature winding 105b, and is installed in the suction chamber 103 of the first compressor 1. The second electric motor 205 includes a stator winding 205a and an armature winding 205b, and is installed in the suction chamber 203 of the second compressor 2. The first piston 106 is installed in the oil sump chamber 104 of the first compressor 1, and moves inside the first cylinder 107, which is made up of a part of the wall surface of the oil sump chamber 104.
The piston is moved by an electric motor 105. The second piston 206 is installed in the oil reservoir chamber 204 of the second compressor 2, and the second piston 206 moves inside the second cylinder 207, which is made up of a part of the wall surface of the oil reservoir chamber 204.
The piston is moved by an electric motor 205. Due to the piston movements of the first and second pistons 106 and 206, the refrigerant gas in the suction chambers 103 and 203 is sucked into the cylinders 107 and 207 through the holes 108 and 208, respectively, and
It is discharged from inside the cylinders 107, 207 to the outside via 209. first and second pressure equalizing holes 110,
210 is provided in the partition walls 102, 202, respectively, and is connected to the pressure in the suction chambers 103, 203 and the oil reservoir chamber 10.
Equalize the pressure in 4,204. Liquid separator 3
is provided on the suction side of the first and second compressors 1 and 2, and converts the mixture of refrigerant and lubricating oil sent from the evaporator (not shown) through the suction pipe 4 into gas. The refrigerant is separated into a mixture of liquid refrigerant and lubricating oil. The U-shaped tube 302 is installed in the liquid separator 3 so that the U-shaped bottom part is soaked in the lubricating oil collected at the bottom of the liquid separator 3; An oil return hole 301 for raising the oil is provided. The first gas suction pipe 5 is configured to be long, for example, to increase pressure loss, and one end thereof is connected to the suction chamber 103 of the first compressor 1.
The other end is connected to the upper end of the liquid separator 3. The second gas suction pipe 6 is configured to be short, for example, to reduce pressure loss, and one end thereof is connected to the suction chamber 203 of the second compressor 2, and the other end is connected to the discharge chamber 203 of the U-shaped pipe 302. Connected to the side ends. The first and second gas discharge pipes 8 and 9 each have one end connected to the hole 10 of the first and second compressor 1 and 2.
9 and 209, and the other end of each is connected to a condenser (not shown) via a main gas discharge pipe 10. The oil equalizing pipe 11 is connected between the oil reservoir chambers 104 and 204 of the first and second compressors 1 and 2, and is a third check that allows lubricating oil to pass only from the oil reservoir chamber 204 to the oil reservoir chamber 104 side. A valve 12 is provided. The oil return pipe 13 connects the bottom of the liquid separator 3 and the second compressor 2.
It is provided between the suction chambers 203 of. Solenoid valve 14
is provided in the oil return pipe 13, is closed when the second compressor 2 is in operation, and is opened when the second compressor 2 is stopped.

次にこの実施例の動作を説明する。今、第1、
第2の圧縮機1,2が運転されている並列運転時
において、蒸発器(図示せず)から吸入管4を介
して液分離器3に送還された冷媒と潤滑油とは、
ガス冷媒と、液冷媒と潤滑油との混合物とに分離
され、液冷媒と潤滑油との混合物が液分離器3の
底部に溜る。この底部に滞溜した潤滑油は油返し
孔301よりU字管302に吸入され、液分離器
3の上部のガス冷媒と共に、U字管302と第2
のガス吸入管6を介して第2の圧縮機2の吸入室
203に吸入される。この場合、第1のガス吸入
管5は第2のガス吸入管6より長く、圧力損失が
大きくなるように構成されているため、吸入室1
03,203と油溜室104,204とのそれぞ
れの圧力関係は、吸入室103<油溜室104<
油溜室204<吸入室203の順となる。従つ
て、第2の圧縮機2の吸入室203に吸入された
潤滑油は、第2の逆止弁211を通つて油溜室2
04へ供給されると共に、均油管11と第3の逆
止弁12を通つて油溜室104へも供給される。
なお、吸入室103と油溜室104間には第1の
逆止弁111があるため、油溜室104に供給さ
れた潤滑油は吸入室103に流入することなく、
油溜室104で潤滑に供される。
Next, the operation of this embodiment will be explained. Now, first,
During parallel operation when the second compressors 1 and 2 are operated, the refrigerant and lubricating oil returned from the evaporator (not shown) to the liquid separator 3 via the suction pipe 4 are as follows:
It is separated into a gas refrigerant and a mixture of liquid refrigerant and lubricating oil, and the mixture of liquid refrigerant and lubricating oil accumulates at the bottom of the liquid separator 3. The lubricating oil accumulated at the bottom is sucked into the U-shaped pipe 302 through the oil return hole 301, and together with the gas refrigerant in the upper part of the liquid separator 3, the lubricating oil is drawn into the U-shaped pipe 302 and the second
The gas is sucked into the suction chamber 203 of the second compressor 2 through the gas suction pipe 6 . In this case, since the first gas suction pipe 5 is longer than the second gas suction pipe 6 and is configured to have a large pressure loss, the suction chamber 1
The pressure relationship between 03, 203 and the oil reservoir chambers 104, 204 is as follows: suction chamber 103<oil reservoir chamber 104<
The order is oil reservoir chamber 204<suction chamber 203. Therefore, the lubricating oil sucked into the suction chamber 203 of the second compressor 2 passes through the second check valve 211 and enters the oil reservoir chamber 2.
04, and is also supplied to the oil reservoir chamber 104 through the oil equalizing pipe 11 and the third check valve 12.
Note that since there is a first check valve 111 between the suction chamber 103 and the oil reservoir chamber 104, the lubricating oil supplied to the oil reservoir chamber 104 does not flow into the suction chamber 103.
The oil reservoir chamber 104 provides lubrication.

次に、第2の圧縮機2のみ運転されている容量
制御運転時においては、前述の並列運転時と同様
に、潤滑油は油返し孔301よりU字管302内
に吸入されて、ガス冷媒と共に吸入室203に供
給される。この時、第2のガス吸入管6は圧力損
失が生じるため、第1の圧縮機1の吸入室103
の圧力の方が、第2の圧縮機2の吸入室203の
圧力より高くなるが、均油管11にある第3の逆
止弁12の閉成によつて、油溜室104と油溜室
204とは独立して分離された状態となる。従つ
て、油溜室204に供給された潤滑油は潤滑に供
される。
Next, during the capacity control operation in which only the second compressor 2 is operated, the lubricating oil is sucked into the U-shaped pipe 302 through the oil return hole 301, and the gas refrigerant is It is also supplied to the suction chamber 203. At this time, since pressure loss occurs in the second gas suction pipe 6, the suction chamber 103 of the first compressor 1
The pressure of 204 and is in a separated state. Therefore, the lubricating oil supplied to the oil reservoir chamber 204 is used for lubrication.

次に、第1の圧縮機1のみ運転されている容量
制御運転時においては、潤滑油と液冷媒とは液分
離器3の底部に滞留し、ガス冷媒のみが、液分離
器3の上部から第1のガス吸入管5を通つて、第
1の圧縮機1の吸入室103に供給される。ま
た、液分離器3で分離した液冷媒は、蒸発してガ
ス冷媒となり、前述と同様に吸入室103に供給
される。この状態において、電磁弁14は第2の
圧縮機2が停止している時には開放しているた
め、液分離器3に滞留した潤滑油は、油返送管1
3を介して、第2の圧縮機2の油溜室204に流
入する。この場合、第1のガス吸入管5には圧力
損失が生じるため、それぞれの吸入室103,2
03及び油溜室104,204の圧力関係は、前
述と同様に吸入室103<油溜室104<油溜室
204<吸入室203の順となる。従つて、油溜
室204に流入した潤滑油は、前述と同様に、第
2の逆止弁211を介して吸入室203に、均油
管11と第3の逆止弁12を介して油溜室104
に供給され、潤滑に供される。
Next, during capacity control operation in which only the first compressor 1 is operated, the lubricating oil and liquid refrigerant stay at the bottom of the liquid separator 3, and only the gas refrigerant flows from the top of the liquid separator 3. The gas is supplied to the suction chamber 103 of the first compressor 1 through the first gas suction pipe 5 . Further, the liquid refrigerant separated by the liquid separator 3 evaporates to become a gas refrigerant, and is supplied to the suction chamber 103 in the same manner as described above. In this state, since the solenoid valve 14 is open when the second compressor 2 is stopped, the lubricating oil accumulated in the liquid separator 3 is transferred to the oil return pipe 1.
3 into the oil reservoir chamber 204 of the second compressor 2. In this case, since a pressure loss occurs in the first gas suction pipe 5, each suction chamber 103, 2
03 and the oil reservoir chambers 104 and 204 are in the order of suction chamber 103<oil reservoir chamber 104<oil reservoir chamber 204<suction chamber 203, as described above. Therefore, the lubricating oil that has flowed into the oil reservoir chamber 204 is transferred to the suction chamber 203 via the second check valve 211 and to the oil reservoir via the oil equalizing pipe 11 and the third check valve 12, as described above. Room 104
and is used for lubrication.

また、油分離器3のU字管302の管径は、第
2の圧縮機2の容量によつてのみ決まり、かつ、
第1の圧縮機1へは、油分離器3の上部からガス
冷媒のみを供給しているため、第1、第2の圧縮
機1,2の2台並列運転時においても、U字管3
02の圧力損失は、第2の圧縮機2の1台運転時
と全く同じとなり、圧力損失が小さくなる。
Further, the pipe diameter of the U-shaped pipe 302 of the oil separator 3 is determined only by the capacity of the second compressor 2, and
Since only gas refrigerant is supplied to the first compressor 1 from the upper part of the oil separator 3, even when the first and second compressors 1 and 2 are operated in parallel, the U-shaped pipe 3
The pressure loss of 02 is exactly the same as when one second compressor 2 is operated, and the pressure loss is small.

[考案の効果] この考案は以上のように構成されているので、
第1の圧縮機1のみの運転時、及び第1、第2の
圧縮機1,2の運転時には、液分離器3で潤滑油
を分離して、第2の圧縮機2へ流入させた後、第
1の圧縮機1へ供給しており、また第2の圧縮機
2のみの運転時には、均油管11に設けた第3の
逆止弁12によつて第1、第2の圧縮機1,2を
しや断するため、どのような運転状態において
も、油溜室104,204の油面が低下すること
がなく、第1、第2の圧縮機1,2の摺動部の異
常摩耗や焼損事故が生じることがない。また、液
分離器3のU字管302による圧力損失を小さく
することができるため、冷凍能力の低下及び成績
係数の低下を防止でき、経済的な運転ができる。
[Effect of the idea] This idea is structured as above, so
When only the first compressor 1 is operating, and when the first and second compressors 1 and 2 are operating, the lubricating oil is separated in the liquid separator 3, and after flowing into the second compressor 2. , is supplied to the first compressor 1, and when only the second compressor 2 is in operation, the third check valve 12 provided in the oil equalizing pipe 11 is used to supply the first and second compressors 1. , 2, the oil level in the oil reservoir chambers 104, 204 will not drop under any operating conditions, preventing abnormalities in the sliding parts of the first and second compressors 1, 2. No wear or burnout accidents occur. Moreover, since the pressure loss due to the U-shaped pipe 302 of the liquid separator 3 can be reduced, a decrease in the refrigerating capacity and a decrease in the coefficient of performance can be prevented, and economical operation can be achieved.

以上のようにこの考案によれば、圧縮機の異常
摩耗や焼損事故が防止でき、経済的な運転ができ
る効果を有している。
As described above, this invention has the effect of preventing abnormal wear and burnout of the compressor and enabling economical operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案に係る並列圧縮式冷凍装置の
一実施例を示す部分構成図、第2図は従来の並列
圧縮式冷凍装置を示す部分構成図である。 図において、各図中同一部分は同一符号を付し
ており、1,2は第1、第2の圧縮機、101,
201はクランクケース、102,202は隔
壁、103,203は吸入室、104,204は
油溜室、111,211は第1、第2の逆止弁、
3は液分離器、301は油返し孔、302はU字
管、5,6は第1、第2のガス吸入管、11は均
油管、12は第3の逆止弁、13は油返送管、1
4は電磁弁である。
FIG. 1 is a partial configuration diagram showing an embodiment of a parallel compression type refrigeration system according to this invention, and FIG. 2 is a partial configuration diagram showing a conventional parallel compression type refrigeration system. In the figures, the same parts in each figure are given the same reference numerals, and 1 and 2 are the first and second compressors, 101,
201 is a crankcase, 102, 202 are partition walls, 103, 203 are suction chambers, 104, 204 are oil reservoir chambers, 111, 211 are first and second check valves,
3 is a liquid separator, 301 is an oil return hole, 302 is a U-shaped pipe, 5 and 6 are first and second gas suction pipes, 11 is an oil equalizing pipe, 12 is a third check valve, 13 is an oil return tube, 1
4 is a solenoid valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] クランクケース内をそれぞれ隔壁によつて吸入
室と油溜室とに区画して構成された第1、第2の
圧縮機、前記第1、第2の圧縮機の吸入側に設け
られガス冷媒と潤滑油とを分離しかつ底部に溜つ
た潤滑油を吸上げる油返し孔がU字状の底部に設
けられたU字管を有する液分離器、前記液分離器
の上部と前記第1の圧縮機の吸入室とを接続する
圧力損失のより大きい第1のガス吸入管、前記U
字管の吐出側端部と前記第2の圧縮機の吸入室と
を接続する圧力損失のより小さい第2のガス吸入
管、前記第1、第2の圧縮機のそれぞれの隔壁に
設けられそれぞれの吸入室側からそれぞれの油溜
室側に潤滑油を通す第1、第2の逆止弁、前記第
1、第2の圧縮機のそれぞれの油溜室間に設けら
れ前記第2の圧縮機の油溜室側から前記第1の圧
縮機の油溜室側に潤滑油を通す第3の逆止弁を有
する均油管、前記第1の圧縮機の吸入室と前記液
分離器の底部とを接続する油返送管、及び前記油
返送管に設けられ前記第2の圧縮機の運転時に閉
成し前記第2の圧縮機の停止時に開放する電磁弁
を備えた並列圧縮式冷凍装置。
First and second compressors each having a structure in which the inside of the crankcase is divided into a suction chamber and an oil sump chamber by partition walls, and a gas refrigerant compressor provided on the suction side of the first and second compressors. A liquid separator having a U-shaped pipe provided at a U-shaped bottom with an oil return hole for separating lubricating oil and sucking up lubricating oil accumulated at the bottom, an upper part of the liquid separator and the first compressor. A first gas suction pipe with a larger pressure loss that connects to the suction chamber of the machine, the above-mentioned U
a second gas suction pipe with lower pressure loss that connects the discharge side end of the double pipe and the suction chamber of the second compressor; first and second check valves that allow lubricating oil to pass from the suction chamber side to the respective oil reservoir chambers; an oil equalizing pipe having a third check valve for passing lubricating oil from the oil sump chamber side of the compressor to the oil sump chamber side of the first compressor; a bottom portion of the suction chamber of the first compressor and the liquid separator; A parallel compression type refrigeration system comprising: an oil return pipe connecting the oil return pipe; and a solenoid valve provided in the oil return pipe, which is closed when the second compressor is in operation and opened when the second compressor is stopped.
JP9533381U 1981-06-26 1981-06-26 Parallel compression refrigeration equipment Granted JPS581783U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9533381U JPS581783U (en) 1981-06-26 1981-06-26 Parallel compression refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9533381U JPS581783U (en) 1981-06-26 1981-06-26 Parallel compression refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS581783U JPS581783U (en) 1983-01-07
JPS6215504Y2 true JPS6215504Y2 (en) 1987-04-20

Family

ID=29890242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9533381U Granted JPS581783U (en) 1981-06-26 1981-06-26 Parallel compression refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS581783U (en)

Also Published As

Publication number Publication date
JPS581783U (en) 1983-01-07

Similar Documents

Publication Publication Date Title
US5088897A (en) Swash plate type compressor with internal refrigerant and lubricant separating system
EP0403239A2 (en) Capacity controllable compressor apparatus
JPS6219593B2 (en)
US3713513A (en) Crankcase evacuation and oil return system
US6202437B1 (en) Suction accumulator pre-charged with oil
JPS6215504Y2 (en)
JPH0533888Y2 (en)
JPH0217190Y2 (en)
US3123287A (en) figure
JP4176694B2 (en) Air conditioner
JPS5838360Y2 (en) Reitou Sochi
JPS6219594B2 (en)
JP2731625B2 (en) Rotary screw compressor with inlet chamber
JPH0139913Y2 (en)
JP3443507B2 (en) Screw refrigerator
JPS6245095Y2 (en)
JPS6246874Y2 (en)
US2818210A (en) Refrigerating apparatus
JPS6245110Y2 (en)
JPS6332945Y2 (en)
US1546570A (en) Compressor
JP2000027756A (en) Compressor
JPS6346274B2 (en)
JPH07293476A (en) Rotary compressor
JPS5855355B2 (en) compressor