JPS62154604A - Permanent magnet and manufacture thereof - Google Patents

Permanent magnet and manufacture thereof

Info

Publication number
JPS62154604A
JPS62154604A JP60297671A JP29767185A JPS62154604A JP S62154604 A JPS62154604 A JP S62154604A JP 60297671 A JP60297671 A JP 60297671A JP 29767185 A JP29767185 A JP 29767185A JP S62154604 A JPS62154604 A JP S62154604A
Authority
JP
Japan
Prior art keywords
ferromagnetic material
permanent magnet
magnetic
bore
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60297671A
Other languages
Japanese (ja)
Other versions
JPH0519962B2 (en
Inventor
Noboru Tsuya
津屋 昇
Kenichi Arai
賢一 荒井
Yoshifuru Saitou
斉藤 兆古
Hideo Nakamura
秀男 中村
Seiji Hayano
誠治 早野
Tadao Tokushima
忠夫 徳島
Makoto Shiraki
白木 真
Yukio Wakui
幸夫 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60297671A priority Critical patent/JPS62154604A/en
Publication of JPS62154604A publication Critical patent/JPS62154604A/en
Publication of JPH0519962B2 publication Critical patent/JPH0519962B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To obtain a permanent magnet having high coercive force of excellent shape anisotropy by utilizing the properties of acicular single crystal magnetic material precipitated in pores of anodic oxidation film of aluminum or aluminum alloy. CONSTITUTION:Pore diameter is controlled to a range of 80-400Angstrom and barrier layer film thickness is controlled to a range of 100-300Angstrom in a process for precipitating a ferromagnetic material in the pores of an anodic oxidation film of aluminum or aluminum alloy to precipitate single crystal acicular ferromagnetic material to form a magnetic material, thereby magnetizing the ferromagnetic material of this magnetic material. An anodeic oxidation is executed, for example, by applying a voltage and a current controlled at 20 deg.C with oxalic acid solution with aluminum alloy base material to form a film having pores, the material is then dipped in phosphoric acid path to enlarge the pores, thereby adjusting to 150Angstrom of pore diameter, 200Angstrom of cell diameter and 200Angstrom of barrier layer. Thus, the base material is electrolytically treated in Mohrs.. salt to precipitate ferromagnetic material in the pores, thereby forming a permanent magnet material.

Description

【発明の詳細な説明】 発明の屈する技術分野 この発明は、アルミニラ1、又はアルミニウム合金の陽
極酸化皮膜中のボアに析出させた強磁性体の形状異方性
を利用した、高抗磁力の永久磁石及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical field to which the invention pertains The present invention provides a permanent magnet with high coercive force that utilizes the shape anisotropy of a ferromagnetic material deposited in a bore in an anodized film of Aluminum 1 or an aluminum alloy. The present invention relates to a magnet and a method for manufacturing the same.

従来技術とその欠点 磁気異方性とは、磁化容易方向が特定の方向にある性質
をいう。この性質を有する弔−磁性体は、その度合によ
りlI& la界に対抗する強さ、すなわち、抗磁力が
大きいので、永久磁石材料に適している。そして、形状
異方性を利用した磁性体は単一磁性体の寸法比、すなわ
ち、弔−磁性体の長袖と短軸の比が大きいほど良好であ
る。
Prior Art and Its Disadvantages Magnetic anisotropy refers to the property that the direction of easy magnetization is in a specific direction. A magnetic material having this property has a strong strength against the II and LA fields, that is, a large coercive force, and is therefore suitable as a permanent magnet material. The magnetic material utilizing shape anisotropy is better as the size ratio of a single magnetic material, that is, the ratio of the long axis to the short axis of the magnetic material is larger.

強磁性体の形状異方性を利用した磁石としては、米国の
ジェネラル・エレクトリック社により発表されたLad
ox (同社の商品名)が知られているが、これは、水
銀負電極に析出する針状磁性体を鉛合金等と混合して、
プレス成型することにより得られる一磁石である。
One example of a magnet that utilizes the shape anisotropy of ferromagnetic material is the Lad, which was announced by General Electric Company in the United States.
OX (the company's product name) is known, which is made by mixing acicular magnetic material deposited on a mercury negative electrode with a lead alloy, etc.
This is a magnet obtained by press molding.

この磁石の特徴は、正確な寸法の磁石を製造できる利点
を有するが、得られる単一磁性体の直径が500〜10
,000λで、寸法比が最大5程度であるため、肝心の
抗磁力が600〜1.0000e程度と低いことである
。また、同磁石の製造方法では強磁性微粒子の分散が難
しく、強磁性体の充填率も最大50%程度であるため、
最大エネルギー積(B H)■a!は最大3 M G 
Oe程度のものであって、永久磁石として特に優れたも
のではない。
The characteristics of this magnet have the advantage that magnets with accurate dimensions can be manufactured, but the diameter of the single magnetic body obtained is 500 to 10
,000λ, and the dimension ratio is about 5 at most, so the important thing is that the coercive force is as low as about 600 to 1.0000e. In addition, with the manufacturing method of the same magnet, it is difficult to disperse ferromagnetic particles, and the filling rate of ferromagnetic material is only about 50% at maximum.
Maximum energy product (B H) ■a! is up to 3 MG
Oe, and is not particularly excellent as a permanent magnet.

解決しようとする課題 アルミニウム又はアルミニウム合金の陽極酸化皮膜のボ
ア中に析出する磁性体は、これ以外のどの単一磁性体よ
りもはるかに大きい寸法比を有し、形状異方性も格段に
良好な?トー磁性体であることが指摘されている。
The problem to be solved The magnetic material precipitated in the bore of the anodic oxide film of aluminum or aluminum alloy has a much larger dimensional ratio than any other single magnetic material, and has a much better shape anisotropy. What? It has been pointed out that it is a magnetic material.

しかし、これまでに報告されているものは、永久磁石の
性能として重要な磁性の−っである抗磁力が必ずしも実
用−1−の各種需要に応えうるちのではなかった。それ
は、従来のアルミニウム又はアルミニウム合金の陽極酸
化皮膜のボア中に磁性体を析出させたものは、専ら書込
み読出し可能な磁気記録材料としての用途にのみ配慮さ
れ、従って、上記磁気記録材料としての適格条件を満た
す単一磁性体の寸法比、゛抗磁力が得られるような陽極
酸化、ボア拡大、磁性体電解析出の各処理の条件(印加
電圧、処理時間、バリヤ一層厚、充填率など)の模索・
設定が専らの研究開発の対象とされ、これを永久磁石と
して利用する際の実用上の問題点を探究するに至らなか
っだからである。
However, in what has been reported so far, the coercive force, which is an important magnetic characteristic of permanent magnet performance, has not necessarily been able to meet various practical needs. The conventional anodic oxide film of aluminum or aluminum alloy in which a magnetic material is deposited in the bore is considered to be used exclusively as a readable/writable magnetic recording material, and therefore is not suitable as the above-mentioned magnetic recording material. The dimensional ratio of a single magnetic material that satisfies the conditions, the processing conditions of anodization, bore enlargement, and magnetic material electrolytic deposition to obtain coercive force (applied voltage, processing time, barrier layer thickness, filling rate, etc.) Exploration of
This is because the setting was the subject of exclusive research and development, and it was not possible to explore the practical problems of using this as a permanent magnet.

従っ−C1この出願に係る第1の発明は、アルマイトの
ボア中に析出される磁性体の形状異方性の利点を活用す
る永久磁石であって。
Therefore - C1 The first invention according to this application is a permanent magnet that takes advantage of the shape anisotropy of the magnetic material deposited in the bore of alumite.

とくに優れた形状異方性により高い抗磁力を有する永久
磁石を提供することを目的とする。
It is an object of the present invention to provide a permanent magnet having high coercive force due to particularly excellent shape anisotropy.

また、第2の発明及び第3の発明は、優良な形状異方性
と高抗磁力を有する針状単結晶磁性体を備えた永久磁石
を製造する二つの方法を提供することを目的とするもの
であって、第2の発明は、アルミニウム又はアルミニウ
ム合金の陽極酸化皮膜のボア中に針状単結晶磁性体を析
出させ、これにより析出される単一磁性体のとくに大き
い寸法比と高い抗磁力により高性能の永久磁石の提供を
可能にすることを目的とし、第3の発明は大寸法比と高
抗磁力を有する単一磁性体を用いて形状異方性に優れた
永久磁石を製造する他の方法を提供することを目的とす
る。
Moreover, the second invention and the third invention aim to provide two methods for producing a permanent magnet having an acicular single crystal magnetic material having excellent shape anisotropy and high coercive force. According to the second invention, an acicular single crystal magnetic material is deposited in the bore of an anodic oxide film of aluminum or an aluminum alloy, and the single magnetic material thus deposited has a particularly large size ratio and high resistance. Aiming to make it possible to provide high-performance permanent magnets using magnetic force, the third invention manufactures permanent magnets with excellent shape anisotropy using a single magnetic material having a large dimension ratio and high coercive force. The purpose is to provide other ways to

課題解決手段 本発明溝は、アルミニウム又はアルミニウム合金の陽極
酸化皮膜のボア中に析出される単一磁性体の寸法比は陽
極酸化処理における印加電気量を制御することにより、
50以−1−の任意の値を選択できること、及び、ある
制御電気i (8500Q)においてはアルマイトのボ
ア中に析出する磁性微粒子の寸法比が膜厚500ルにお
いて50,000にも達し5文字通り、針状の単一磁性
体となることを見出した。
Means for Solving Problems In the groove of the present invention, the dimensional ratio of a single magnetic substance deposited in the bore of the anodic oxide film of aluminum or aluminum alloy can be determined by controlling the amount of electricity applied in the anodizing process.
It is possible to select any value from 50 to 1, and in a certain control electric i (8500Q), the size ratio of magnetic fine particles precipitated in the alumite bore reaches 50,000 at a film thickness of 500 l5. It was discovered that the material becomes a needle-like single magnetic material.

また、ボア径は陽極酸化時の印加電圧により自由に制御
可能であるが、ボア径の値は永久磁石の抗磁力を大きく
左右することを確認している0本発明者の実験によれば
、永久磁石材料として適切なボア径は、80〜4. O
Oが1.0000e以下に下るため永久磁石として好ま
しくない。
In addition, although the bore diameter can be freely controlled by the applied voltage during anodization, the inventor's experiments have confirmed that the value of the bore diameter greatly affects the coercive force of the permanent magnet. A suitable bore diameter for the permanent magnet material is 80 to 4. O
Since O is less than 1.0000e, it is not preferable as a permanent magnet.

さらに、アルマイトのボア中への強磁性体析出に際して
、バリヤ一層厚いかんは、析出成長する磁性体結晶の形
状・質を左右させ、永久磁石の性能の重要な決定要素の
他の一つである最大エネルギー積に影響することを見出
した。そして、そのバリヤ一層厚が100〜30OAに
なるように制御して交流電解法を用いれば、針状単結晶
強磁性体が得られるため、形状異方性が特に良好で、抗
磁力が最大30000 eにも達する。
Furthermore, when depositing ferromagnetic material into the alumite bore, a thicker barrier influences the shape and quality of the magnetic crystals that are deposited and grown, and is another important determining factor for the performance of permanent magnets. It was found that the maximum energy product is affected. By controlling the barrier layer thickness to 100 to 30 OA and using AC electrolysis, an acicular single-crystal ferromagnetic material can be obtained, which has particularly good shape anisotropy and a coercive force of up to 30,000. It also reaches e.

バリヤ一層厚がxooi未満又は3ooiを越える範囲
でも、適当な還元剤を使用して電解析出液のPHを制御
することにより、強磁性体の析出は可能であるが、針状
粒子中にガスなどの不純物がとり込まれて良好な単結晶
強磁性体が得られない、このため、この場合の永久磁石
では抗磁力が低くなる。
Even if the thickness of the barrier layer is less than xooi or more than 3ooi, it is possible to deposit a ferromagnetic material by controlling the pH of the electrolytic deposit using an appropriate reducing agent, but it is possible to deposit a ferromagnetic substance in the acicular particles. A good single-crystal ferromagnetic material cannot be obtained due to the incorporation of impurities such as ferromagnets, and as a result, the permanent magnet in this case has a low coercive force.

ボアに対する磁性体の充填率は、陽極酸化処理のみを経
た通常のアルマイト皮膜中では10容積%程度であるが
、陽極酸化処理後にボア拡大処理を施せば、最大70容
積%は容易に達成される。
The filling rate of magnetic material in the bore is approximately 10% by volume in a normal alumite film that has undergone only anodizing treatment, but a maximum of 70% by volume can be easily achieved by performing bore enlargement treatment after anodizing treatment. .

に記Lodoxの場合は、針状強磁性体を鉛又は鉛合金
、樹脂等に分散させるため、分散が均等・充分でないの
で、強磁性体の充填率は最大30%程度である。これに
対して、アルマイト皮膜中では、側状弔結晶磁性体がボ
ア中に1木ずつ規則正しく析出するので、均等に分散さ
れるため、この発明による永久磁石、とくに第2の発明
により製造された永久磁石は、最大エネルギー積が40
 M G Oeにも達する。これは、希土類、コバルト
合金製の永久磁石に勝るとも劣らない。
In the case of Lodox mentioned above, since the acicular ferromagnetic material is dispersed in lead, lead alloy, resin, etc., the dispersion is not uniform or sufficient, so the filling rate of the ferromagnetic material is about 30% at maximum. On the other hand, in the alumite film, the lateral crystalline magnetic material is regularly precipitated one by one in the bore, so that it is evenly dispersed. Permanent magnets have a maximum energy product of 40
It also reaches M G Oe. This is comparable to permanent magnets made of rare earth or cobalt alloys.

なお、この発明による永久磁石は、陽極酸化処理により
生成するボア中に磁性体を析出させてなるものであるか
ら1例えば、アルミニウムパイプの内面にも永久磁石を
−・様に作成することができ、例えば、バイブ内面の磁
場を利用した水処理装置に使用できる特殊形状の磁石の
製造にも応用可能である。
Furthermore, since the permanent magnet according to the present invention is made by precipitating a magnetic material in a bore formed by anodizing treatment, it is possible to create a permanent magnet on the inner surface of an aluminum pipe, for example. For example, it can be applied to the production of specially shaped magnets that can be used in water treatment equipment that utilizes the magnetic field inside the vibrator.

以上のように、t51の発明は、アルミニウム又はアル
ミニウム合金の陽極酸化皮膜のボア中に析出された針状
単結晶磁性体の特性全利用しているから、形状異方性に
とくに優れた高抗磁力の永久磁石を提供することができ
、コバルトなどの高価な原料を必要としないので、経済
的効果が大きい。
As mentioned above, the invention of t51 utilizes all the characteristics of the acicular single crystal magnetic material deposited in the bore of the anodic oxide film of aluminum or aluminum alloy, so it has a high resistance with particularly excellent shape anisotropy. Since it can provide a permanent magnet with magnetic force and does not require expensive raw materials such as cobalt, it has great economic effects.

また、第2の発明は、アルミニウム又はアルミニウム合
金の陽極酸化皮膜のボア中に針状単結晶磁性体を析出さ
せた基材を磁化することにより、容易に高性簡の永久磁
石を製造することができる。
In addition, the second invention makes it possible to easily produce a high-strength permanent magnet by magnetizing a base material in which acicular single-crystal magnetic material is deposited in the bore of an anodic oxide film of aluminum or aluminum alloy. .

アルミニウム又はアルミニウム合金の陽極酸化皮膜のボ
ア中に析出させた針状単結晶磁性体の優良な形状異方性
及び高抗磁力の利点を利用した永久磁石は、第2の発明
における強磁性体析出後の陽極酸化皮膜をリン酸クロム
酸溶液で溶解して、針状単結晶強磁性体のみを取り出し
、これを鉛又は鉛合金など、あるいは、合成樹脂などの
バインダーと混合し、磁場内で固化、プレス成型するこ
とにより、第2の発明による永久磁石と同様の性能を有
する永久磁石を製造することもできるやなお、この製造
方法における溶解処理工程において、針状磁性体の表面
が自然に酸化され、保護皮膜が形成される。
A permanent magnet that takes advantage of the excellent shape anisotropy and high coercive force of an acicular single-crystal magnetic material precipitated in the bore of an anodic oxide film of aluminum or aluminum alloy is the ferromagnetic material precipitation in the second invention. The subsequent anodic oxide film is dissolved in a phosphoric chromic acid solution to extract only the acicular single crystal ferromagnetic material, which is mixed with a binder such as lead or lead alloy, or synthetic resin, and solidified in a magnetic field. By press molding, it is also possible to manufacture a permanent magnet having the same performance as the permanent magnet according to the second invention.In addition, in the melting process of this manufacturing method, the surface of the acicular magnetic material is naturally oxidized. A protective film is formed.

この発明の実施例 次に、この発明の詳細な説明する。Examples of this invention Next, the present invention will be explained in detail.

実施例 1 アルミニウム合金基材に、3%シュウ酸溶液を用いて2
0℃において制御された電圧及び電流の印加の下に陽極
酸化処理を行なってボアを有する皮膜を生成した後、1
%リン酸浴中に10分間浸漬してボア拡大処理をして、
ボア径150人、セル径200λ、バリヤ一層厚200
Aに調整し、その基材をモール塩10%溶液中で電解処
理し、ボア中に強磁性体を析出させて永久磁石材料を形
成した。次いで、その永久磁石材料に磁場を加え、飽和
磁束密度の状態から磁化力を完全に取り去り、飽和磁束
密度Bs、残留磁束密度B「と保磁力Heを測定し、ま
た、減磁曲線」二の磁束密度と磁化力の積から最大エネ
ルギー積(BH)waxを測定したところ、それぞれ下
記の通りであった。
Example 1 An aluminum alloy base material was coated with 2% oxalic acid solution.
After anodizing under controlled voltage and current application at 0°C to produce a coating with bores, 1
% phosphoric acid bath for 10 minutes to enlarge the bore.
Bore diameter 150, cell diameter 200λ, barrier thickness 200
A, the base material was electrolytically treated in a 10% Mohr's salt solution, and a ferromagnetic material was deposited in the bore to form a permanent magnet material. Next, a magnetic field is applied to the permanent magnet material to completely remove the magnetizing force from the state of saturation magnetic flux density, and the saturation magnetic flux density Bs, residual magnetic flux density B' and coercive force He are measured, and the demagnetization curve is The maximum energy product (BH) wax was measured from the product of magnetic flux density and magnetizing force, and the results were as follows.

Bs:12KG Br : 11.5KG Hc : 25000 e (B H) wax : 20MG Oe上記実施例と
同一条件で陽極酸化処理のみ又はその後にボア拡大処理
をし、磁性体(Fe、Co)析出処理をし、ただボア径
のみを異にした場合の抗磁力を測定した結果は。
Bs: 12KG Br: 11.5KG Hc: 25000 e (B H) wax: 20MG Oe Under the same conditions as the above example, only anodizing treatment was performed, or bore enlargement treatment was performed afterwards, and magnetic material (Fe, Co) precipitation treatment was performed. However, here are the results of measuring the coercive force when only the bore diameter was different.

第1図に示す通りである。As shown in FIG.

実施例 2 実施例1と同一の条件で陽極酸化処理とボア拡大処理を
それぞれ行ない、ボア径150に調整したものと、40
0λ強に調整したものとの2種類の基材を用意し、それ
ぞれの基材をモール塩10%溶液中で電解処理し、ボア
中に強磁性体を析出させてなる永久磁石材料を得た。そ
して、実施例1の場合と同様にして、飽和磁束密度Bs
、残留磁束密度Brと保磁力Heを測定し、また、減磁
曲線りの磁束密度と磁化力の積から最大エネルギー積(
BH)+wazを測定した。
Example 2 Anodizing treatment and bore enlargement treatment were carried out under the same conditions as in Example 1, and the bore diameter was adjusted to 150 mm, and the bore diameter was adjusted to 40 mm.
Two types of base materials were prepared, one adjusted to slightly more than 0λ, and each base material was electrolytically treated in a 10% Mohr's salt solution to precipitate a ferromagnetic material in the bore to obtain a permanent magnet material. . Then, in the same manner as in Example 1, the saturation magnetic flux density Bs
, the residual magnetic flux density Br and the coercive force He are measured, and the maximum energy product (
BH)+waz was measured.

バリヤ一層厚が200λの場合の保持力Hcは2700
0 eであるのに対して、バリヤ一層厚が400λ強の
場合の保持力Heは8000eである。この差異の原因
を究明するため、ボア中に析出した磁性体の成長状態を
電子顕微鏡で観察した結果、バリヤ一層厚200Aの場
合は添付写真1に示すように、高密度の針状単結晶磁性
体が得られているのに対し、400λ強の場合は析出磁
性体が針状にはなっているが、2種類以上の微粒子の集
合体で構成されて、完全な弔−磁性体になっていないこ
とが判明した。
When the barrier layer thickness is 200λ, the holding force Hc is 2700
0 e, whereas the holding force He when the barrier layer thickness is a little over 400 λ is 8000 e. In order to investigate the cause of this difference, we observed the growth state of the magnetic material precipitated in the bore using an electron microscope.As a result, when the barrier layer was 200A thick, as shown in attached photo 1, a high density acicular single crystal magnet On the other hand, in the case of 400λ or more, the precipitated magnetic material is needle-shaped, but it is composed of an aggregate of two or more types of fine particles and becomes a complete magnetic material. It turns out there isn't.

その他のBs、Br、(BH)sawは実施例1の場合
とほぼ同様である。
Other Bs, Br, and (BH)saw are almost the same as in Example 1.

実施例 3 実施例1と同様にしてアルマイト皮1模のボア中に針状
単結晶磁性体を析出させたのち、これをリン酸クロム酸
溶液(リン酸35ccZ見、クロム酸30g/文)中に
、皮膜厚200、において液温40℃、10分間浸漬し
て、基材の溶解により単一磁性体のみを抽出し、沈殿し
た針状磁性体を回収してこれを熱硬化性樹脂材料の一例
として塩化ビニル樹脂に前者の割合が容[30%になる
ように混合し、磁場内で加熱プレスして、永久磁石を成
型した。
Example 3 In the same manner as in Example 1, an acicular single-crystal magnetic material was precipitated in the bore of a model of alumite skin, and then it was placed in a phosphoric acid chromic acid solution (phosphoric acid 35 ccZ, chromic acid 30 g/text). The film was immersed in a liquid with a film thickness of 200°C for 10 minutes at a temperature of 40°C to extract only a single magnetic substance by dissolving the base material, collect the precipitated acicular magnetic substance, and transfer it to a thermosetting resin material. As an example, the mixture was mixed with vinyl chloride resin so that the proportion of the former was 30%, and the mixture was heated and pressed in a magnetic field to form a permanent magnet.

この永久磁石をJIS 02501による永久磁石試験
法により得られた測定値は、次の通りである。
The measured values obtained from this permanent magnet by the permanent magnet test method according to JIS 02501 are as follows.

Bs :8KG Br:8KG Hc  :25000e (BH) mat  + 5.0 MGOeこの発明の
永久磁石の用途例 」二連のように、この発明による永久磁石は、アルミニ
ウム又はアルミニウム合金の陽極酸化皮膜のボア中に析
出させた針状単結晶磁性体の、従来品にない優れた形状
異方性と高抗磁力を利用するものであるから、第2の発
明により前記針状単結晶磁性体を析出・充填させたアル
ミニウムもしくはアルミニウム合金板を磁化された円板
、又は第3の発明により抽出した針状単結晶磁性体をバ
インダーに混合して磁場プレスした円板を、プリントコ
イルと組合せて使用すれば、薄型の電動機が製作できる
。このような電動機は、例えば薄型磁気ディスクドライ
バ用に適する。
Bs: 8KG Br: 8KG Hc: 25000e (BH) mat + 5.0 MGOe Application examples of the permanent magnet of the present invention" As shown in the double series, the permanent magnet of the present invention has a bore of an anodized coating of aluminum or aluminum alloy. The second invention makes use of the excellent shape anisotropy and high coercive force of the acicular single crystal magnetic material precipitated therein, which are not found in conventional products. If a disk magnetized with a filled aluminum or aluminum alloy plate, or a disk prepared by mixing the acicular single crystal magnetic material extracted according to the third invention with a binder and magnetic field pressing is used in combination with a printed coil, , a thin electric motor can be manufactured. Such a motor is suitable for, for example, a thin magnetic disk driver.

また、この磁性円板は抗磁力がとくに大きいので、通常
のプリントコイルの磁場では記録された磁気信号が消去
されない。従って、この発明方法により製造される永久
磁石は、第2図に例示するように、円板1に円周方向に
交互に異なる磁極2n、2sが配置されるように磁化さ
せて磁気ロータを形成し、かつ、−例として周縁に回転
位置又は回転角度検出用信号3を磁化記録することによ
り、動力源とエンコータとを一体化した新製品を提供す
ることができる。
Furthermore, since this magnetic disk has a particularly large coercive force, the recorded magnetic signal will not be erased by the magnetic field of a normal printed coil. Therefore, as illustrated in FIG. 2, the permanent magnet manufactured by the method of the present invention is magnetized so that different magnetic poles 2n and 2s are arranged alternately in the circumferential direction on a disk 1 to form a magnetic rotor. Moreover, by magnetizing and recording the rotational position or rotational angle detection signal 3 on the periphery, for example, it is possible to provide a new product in which the power source and the encoder are integrated.

なお、アルマイト磁性膜は磁化容易方向が垂直であるた
め、o、i−ピッチという高精度で回転位置又は回転角
度を示すことができるので、例えば、磁気ディスクドラ
イバ川サーボモータに使用するのに好適である。
Furthermore, since the direction of easy magnetization of the alumite magnetic film is perpendicular, it is possible to indicate the rotational position or rotational angle with high precision such as o- and i-pitch, so it is suitable for use in, for example, magnetic disk drive servo motors. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるボア径の制御範囲と抗磁力の関
係を示す特性グラフ、第2図はこの発明により製造され
る永久磁石の一応用例である磁気ロータの正面図である
。 特許出願人  律   屋    昇 ゛ご・−i;、、j、二一り二) 第2図
FIG. 1 is a characteristic graph showing the relationship between the bore diameter control range and coercive force according to the present invention, and FIG. 2 is a front view of a magnetic rotor which is an application example of the permanent magnet manufactured according to the present invention. Patent Applicant: Lawyer No. 2) Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウム又はアルミニウム合金の陽極酸化皮
膜のボア内に析出させた針状単結晶強磁性体の形状異方
性を利用した永久磁 石。
(1) A permanent magnet that utilizes the shape anisotropy of an acicular single-crystal ferromagnetic material deposited in the bore of an anodic oxide film of aluminum or aluminum alloy.
(2)アルミニウム又はアルミニウム合金の陽極酸化皮
膜のボア内に強磁性体を析出させる処理において、前記
ボア径を80〜400Å、バリヤー層膜厚を100〜3
00Åの範囲に制御することにより、単結晶針状強磁性
体を析出させて磁性材料を形成し、その磁性材料の強磁
性体を磁化させることを特徴とする永久磁石の製造方法
(2) In the process of depositing a ferromagnetic material in the bore of the anodic oxide film of aluminum or aluminum alloy, the bore diameter is 80 to 400 Å, and the barrier layer thickness is 100 to 3
1. A method for producing a permanent magnet, comprising: precipitating a single-crystal acicular ferromagnetic material to form a magnetic material, and magnetizing the ferromagnetic material of the magnetic material by controlling the ferromagnetic material within a range of 00 Å.
(3)アルミニウム又はアルミニウム合金の陽極酸化皮
膜のボア内に強磁性体を析出させる処理において、前記
ボア径を80〜400Å、バリヤー層膜厚を100〜3
00Åの範囲に制御することにより、針状単結晶強磁性
体を析出させ、その陽極酸化皮膜をリン酸クロム酸溶液
でエッチング処理して前記針状単結晶強磁性体のみを抽
出し、その針状単結晶強磁性体をバインダーと混合し、
磁場内で固化することを特徴とする永久磁石の製造方 法。
(3) In the process of depositing a ferromagnetic material in the bore of the anodic oxide film of aluminum or aluminum alloy, the bore diameter is 80 to 400 Å, and the barrier layer thickness is 100 to 3
By controlling the thickness to a range of 00 Å, a needle-like single crystal ferromagnetic material is precipitated, and the anodic oxide film is etched with a phosphoric acid chromic acid solution to extract only the needle-like single crystal ferromagnetic material. Mixing a shaped single crystal ferromagnetic material with a binder,
A method for producing a permanent magnet characterized by solidifying in a magnetic field.
JP60297671A 1985-12-26 1985-12-26 Permanent magnet and manufacture thereof Granted JPS62154604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60297671A JPS62154604A (en) 1985-12-26 1985-12-26 Permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60297671A JPS62154604A (en) 1985-12-26 1985-12-26 Permanent magnet and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62154604A true JPS62154604A (en) 1987-07-09
JPH0519962B2 JPH0519962B2 (en) 1993-03-18

Family

ID=17849626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60297671A Granted JPS62154604A (en) 1985-12-26 1985-12-26 Permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62154604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349620A (en) * 1993-06-10 1994-12-22 Agency Of Ind Science & Technol Magnetic porous material and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130406A (en) * 1983-01-17 1984-07-27 Nippon Telegr & Teleph Corp <Ntt> Manufacture of powder permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130406A (en) * 1983-01-17 1984-07-27 Nippon Telegr & Teleph Corp <Ntt> Manufacture of powder permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349620A (en) * 1993-06-10 1994-12-22 Agency Of Ind Science & Technol Magnetic porous material and manufacture thereof

Also Published As

Publication number Publication date
JPH0519962B2 (en) 1993-03-18

Similar Documents

Publication Publication Date Title
AlMawlawi et al. Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size
CN1838244A (en) Soft magnetic thin film and magnetic recording head
JP2923790B2 (en) Magnetic recording media
Daimon et al. Magnetic properties of Fe-Cu and Fe-P electrodeposited alumite films
Kashi et al. Template-based electrodeposited nonmagnetic and magnetic metal nanowire arrays as building blocks of future nanoscale applications
JPS5882514A (en) Continuous thin film magnetic medium and method of producing same
JPS62154604A (en) Permanent magnet and manufacture thereof
Bao et al. Synthesis and magnetic properties of electrodeposited metal particles on anodic alumite film
EP0322420B1 (en) Magnetic recording material
Ji et al. Synthesis of crystalline CoFex nanowire arrays through high voltage pulsed electrochemical deposition
CN108914174A (en) The preparation method of Tb-Dy-Fe-Co alloy Magnetic nano-pipe array
Sallo et al. Studies of High Coercivity Cobalt‐Phosphorous Electrodeposits
JPH0765228B2 (en) Method for producing high magnetic flux density quaternary alloy electrodeposited thin film
JPS61164215A (en) Manufacture of thin-walled cylindrical magnet
Tekgül et al. Optimization of Fe content in Electrodeposited FeCoCu/Cu magnetic multilayer
Arai et al. Magnetic properties of Fe electrodeposited alumite films
CN108660487A (en) The preparation method of Nd-Fe-B Magnetic Nanowire Arrays
Arai et al. Magnetic properties of Co and Co-Fe electrodeposited alumite films
JPH0479026A (en) Production of intra-surface magnetized film consisting of anodized aluminum
JP2003022909A (en) Magnetic thin film, its manufacturing method and magnetic head using the same
CN103882479B (en) Preparation method with the magnetic alloy nano wire of diameter gradient
JPH0670854B2 (en) Plate-shaped Ba ferrite fine particle powder for magnetic recording and method for producing the same
JPH0482012A (en) Magnetic recording medium
JPH02223008A (en) Magnetic recording medium and its production
Su et al. Fe48Co52 alloy nanowire arrays: Effects of magnetic field annealing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term