JPS6215418A - Spectral fluorophotometer - Google Patents
Spectral fluorophotometerInfo
- Publication number
- JPS6215418A JPS6215418A JP15489585A JP15489585A JPS6215418A JP S6215418 A JPS6215418 A JP S6215418A JP 15489585 A JP15489585 A JP 15489585A JP 15489585 A JP15489585 A JP 15489585A JP S6215418 A JPS6215418 A JP S6215418A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light
- spectrometer
- light source
- shutter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003595 spectral effect Effects 0.000 title abstract 2
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 230000005284 excitation Effects 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 229910052724 xenon Inorganic materials 0.000 description 5
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
- G01J3/4406—Fluorescence spectrometry
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【発明の詳細な説明】
イ、産業上の利用分野
本発明は分光蛍光光度系に関し、特にその励起分光器及
び蛍光分光器の波長較正手段に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a spectrofluorometry system, and particularly to wavelength calibration means for an excitation spectrometer and a fluorescence spectrometer.
口、従来の技術
従来から分光蛍光光度計の波長較正には水銀ランプの輝
線を用いる方法があり、水銀ランプを分光光度計の光路
中に自動的に挿入するようなことも実施されている。し
かしこの方法は蛍光測定用光源とは別に水銀ランプを必
要とし、何等かの装置で水銀ランプを光路中に挿入する
必要があるから、分光蛍光光度計の価格押上げの一要素
となっていた。他の方法として、1−セノンランプのI
Mを用いる較正方法が用いられている。これは第3図に
示すように、試料室C内の試料位置に鏡mをセットし、
励起分光器M eを0波長にセットし、蛍光分光器Mf
を波長走査し、キセノンランプXeのn腺を検出して波
長較正を行い、励起分光器Meの波長較正はモニタ用光
検出器Dmを用いるか、或は蛍光分光器MfをO波長に
セットし、励起分光器Meを波長走査してキセノンラン
プの輝線を検出するものである。この方法は−L述した
従来例よりは波長較正に必要な部品が少な(、その構造
も簡単なものでよいが、それでも鏡mの設置操作を必要
とし、試料室内に何等かの付属装置を設置したま\の状
態では波長較正が行えないと云う欠点がある。BACKGROUND OF THE INVENTION Conventionally, there has been a method of calibrating the wavelength of a spectrofluorometer using the bright line of a mercury lamp, and methods have also been implemented in which a mercury lamp is automatically inserted into the optical path of a spectrophotometer. However, this method requires a mercury lamp in addition to the light source for fluorescence measurement, and it is necessary to insert the mercury lamp into the optical path with some kind of device, which is one factor that drives up the price of spectrofluorometers. . As another method, I of the 1-senone lamp
A calibration method using M is used. As shown in Fig. 3, a mirror m is set at the sample position in the sample chamber C,
Set the excitation spectrometer M e to 0 wavelength, and set the fluorescence spectrometer Mf.
The wavelength is scanned and wavelength calibration is performed by detecting the n gland of the xenon lamp Xe, and the wavelength calibration of the excitation spectrometer Me is performed by using the monitoring photodetector Dm or by setting the fluorescence spectrometer Mf to the O wavelength. , the excitation spectrometer Me is wavelength scanned to detect the bright line of the xenon lamp. This method requires fewer parts for wavelength calibration than the conventional example described above (and its structure may be simple, but it still requires the installation and operation of the mirror m and the installation of some accessory equipment in the sample chamber). The disadvantage is that wavelength calibration cannot be performed while the device is installed.
ハ2発明が解決しようとする問題点
本発明は上述した従来例の欠点を解消し、水銀ランプの
ような余分な光源及びその出入機構とか、鏡mの設置等
の操作不要で、かつ試料室内に付属装置を設置したま\
でも波長較正が行えるような分光蛍光光度計の波長較正
手段を得ようとするものである。C2 Problems to be Solved by the Invention The present invention eliminates the drawbacks of the conventional example described above, eliminates the need for an extra light source such as a mercury lamp, its entrance/exit mechanism, installation of a mirror, etc. I installed the attached equipment on
However, the present invention aims to provide a wavelength calibration means for a spectrofluorometer that can perform wavelength calibration.
二9問題点解決のための手段
第1図に示すように分光蛍光光度計の光源室1から励起
分光器h4eを通らないで蛍光分光器M fに光を導く
光学系Bと、この光学系を通る光を通断するシャッター
2と、試料セルの位置から蛍光分光器に至る光路を通断
するシャッター3を分光蛍光光度計に設けた。29 Means for Solving Problems As shown in Figure 1, there is an optical system B that guides light from the light source chamber 1 of the spectrofluorometer to the fluorescence spectrometer Mf without passing through the excitation spectrometer h4e, and this optical system. The spectrofluorometer was equipped with a shutter 2 for passing light passing through the sample cell, and a shutter 3 for passing the light path from the position of the sample cell to the fluorescence spectrometer.
ホ0作用
分光蛍光光度計の光源にキセノンランプを用いているの
で、その光を利用して波長較正を行う。Since a xenon lamp is used as the light source of the HO action spectrofluorometer, wavelength calibration is performed using that light.
蛍光分光器の波長較正を行うときは、試料セル位置から
蛍光分光器に至る光路を通断するシャッター3を閉じ、
光源室から蛍光分光器に光を導く光学系の光路を通断す
るシャッター2を開いて蛍光分光器Mfの波長走査を行
えばよい。励起分光器の波長較正は励起分光器のM e
の波長走査を行い、モニタ用光検出器Dmを用いてキセ
ノンランプの輝線を検出すればよい。When calibrating the wavelength of the fluorescence spectrometer, close the shutter 3 that passes the optical path from the sample cell position to the fluorescence spectrometer.
The wavelength scanning of the fluorescence spectrometer Mf may be performed by opening the shutter 2 that cuts off the optical path of the optical system that guides light from the light source chamber to the fluorescence spectrometer. The wavelength calibration of the excitation spectrometer is performed using the M e of the excitation spectrometer.
What is necessary is to perform wavelength scanning and detect the bright line of the xenon lamp using the monitoring photodetector Dm.
へ、実施例
第1図は本発明の一実施例を示す。Meは励起分光器、
Mfは蛍光分光器で、励起分光器の出射側光軸と蛍光分
光器の入射側光軸とが直交して、その交点が試料セル位
置で、Ce J’J(試料セルである。■は光源室でX
eは光源のクー1!ノンランプである。4は透明石英板
のビームスプリッタで分光器M eの出射光光路中に配
置され、Me出射光の一部をモニタ用受光素子Dmに向
けて分割している。5はオプチカルファイバーで光源の
4−七ノンランプXeの光を蛍光分光器Mfに導く光学
系Bの一部を構成している。試料セル位置と蛍光分光器
Mfとの間に透明板のビームスプリッタ6が45°の傾
きで配置され、オプチカルファイバー5の光出射端から
出射した光を蛍光分光器Mfに入射させるよううになっ
ている。2はオプチカルファイバー5の出射端とビーム
スプリッタ6との間に位置せしめられるシャッターであ
り、駆動モータ2mによって開閉操作が行われる。3は
試料セル位置とビームスプリッタ6との間に位置せしめ
られるシャッターで駆動モータ3mにより開閉操作が行
われる。DOは蛍光分光器Mfの光検出器である。Embodiment FIG. 1 shows an embodiment of the present invention. Me is an excitation spectrometer,
Mf is a fluorescence spectrometer, the emission side optical axis of the excitation spectrometer and the input side optical axis of the fluorescence spectrometer are perpendicular to each other, the intersection is the sample cell position, and Ce J'J (sample cell.■ is X in the light source room
e is the light source Ku1! It is a non-lamp. Reference numeral 4 denotes a beam splitter made of a transparent quartz plate, which is arranged in the optical path of the emitted light of the spectrometer Me, and splits a part of the Me emitted light toward the monitoring light-receiving element Dm. Reference numeral 5 denotes an optical fiber, which constitutes a part of an optical system B that guides light from a 4-7 lamp Xe as a light source to a fluorescence spectrometer Mf. A beam splitter 6 made of a transparent plate is arranged at an angle of 45° between the sample cell position and the fluorescence spectrometer Mf, so that the light emitted from the light output end of the optical fiber 5 is made to enter the fluorescence spectrometer Mf. There is. A shutter 2 is located between the output end of the optical fiber 5 and the beam splitter 6, and is opened and closed by a drive motor 2m. A shutter 3 is located between the sample cell position and the beam splitter 6, and is opened and closed by a drive motor 3m. DO is the photodetector of the fluorescence spectrometer Mf.
第2図は上述装置の制御系の構成を示す。励起分光器M
eにおいてmeは分光器波長送り用パルスモータ、Pe
は分光器の波長減点検出用素子である。蛍光分光器Mf
において、mfは波長送り用パルスモータ、Pfは分光
器の波長原点検出用素子である。その他第1図の各部と
同じ部分には同じ符号が付けである。励起分光器Meの
波長較正の場合の動作説明と兼ねて装置構成を説明する
。M’P’Uはマイクロプロセッサ、10はメモリ、1
1はデータバス、I’f’lはインターフェースである
。励起分光□器波長較正のモードではMPUはスイッチ
S w 1を閉じ8w2を開いてモニタ用光検出器Dm
の出力を取込むようにする。MPUはまず励起分光器M
’e G波長原点まで駆□動する。次に励起分光器用
の波長カウンタの計数を〇(原点波長)にする。これは
パルスモータmeに送る駆動パルスを波長カウンタで計
数するとその計数値が波長を示す構成で、M P Uは
このカウンタの計数値によって分光器の波長を検知して
いるのである。次にMeの波長走査を行い、波長430
〜470nmの範囲で光検出器Dmの出力をA/D変換
器ADを介してメモリ10のRAM領域に取込む。その
後このRAM領域に格納したデータからキセノンの波長
450.lnmの輝線のピークを検索する。この輝線の
ピークに対応する波長カウンタの計数値Yは通常450
.1より若干ずれている。そこでM P UはMe用の
波長カウンタの計数値がYになるようにMeを駆動し、
その位置で波長カウンタの計数値を正しい′波長値45
0.1にセットし直す。これで励起分光器Meの波長較
正を終わる。また輝線は他の波長の輝線を用いてもよい
。FIG. 2 shows the configuration of the control system of the above-mentioned device. Excitation spectrometer M
In e, me is a pulse motor for sending the wavelength of the spectrometer, and Pe
is a wavelength reduction detection element of a spectrometer. Fluorescence spectrometer Mf
, mf is a pulse motor for wavelength feeding, and Pf is an element for detecting the wavelength origin of the spectrometer. Other parts that are the same as those in FIG. 1 are given the same reference numerals. The configuration of the device will be explained as well as an explanation of the operation in the case of wavelength calibration of the excitation spectrometer Me. M'P'U is a microprocessor, 10 is a memory, 1
1 is a data bus, and I'f'l is an interface. In the excitation spectrometer wavelength calibration mode, the MPU closes the switch Sw1 and opens the switch Sw2 to open the monitoring photodetector Dm.
Import the output of MPU first uses excitation spectrometer M
'e Drive to the G wavelength origin. Next, set the count of the wavelength counter for the excitation spectrometer to 0 (origin wavelength). This is a configuration in which the driving pulses sent to the pulse motor me are counted by a wavelength counter and the counted value indicates the wavelength, and the MPU detects the wavelength of the spectrometer based on the counted value of this counter. Next, wavelength scanning of Me is performed, and wavelength 430
The output of the photodetector Dm in the range of ~470 nm is taken into the RAM area of the memory 10 via the A/D converter AD. After that, from the data stored in this RAM area, the wavelength of xenon is 450. Search for the peak of the lnm emission line. The count value Y of the wavelength counter corresponding to the peak of this bright line is usually 450.
.. It is slightly off from 1. Therefore, MPU drives Me so that the count value of the wavelength counter for Me becomes Y,
At that position, set the count value of the wavelength counter to the correct wavelength value of 45.
Reset to 0.1. This completes the wavelength calibration of the excitation spectrometer Me. Furthermore, bright lines having other wavelengths may be used.
次に蛍光分光器Mfの波長較正の動作を説明する。この
場合、MPUはスイッチSwlを開き、S w 2を閉
じて、蛍光分光器用の光検出器DOの−〇 −
出力を取込4ハ上うにする。次にシャッター駆動モータ
2m、3mに信号を送ってシャッター2を開き、シャッ
ター3を閉しる。次に蛍光分光器M fを波長原点に駆
動し、蛍光分光器用波長ノノウンタを原点波長にセット
し、波長走査を行って波長430〜470nmの波長節
回で光検出器F)oの出力データを取込みメモリ10の
RAM領域に格納する。その後このRAM内のデータか
ら波長45r’)、1nmのピークを検索し、励起分光
器M eの場合と同様、蛍光分光器用波長カウンタの#
1数値が1記ビークに対応するノ1ウンタ計数値になる
ように蛍光分光器を駆動し、その位置で波長ノノウンタ
を正しい波長値450.]にセセラし伯]ず。なお使用
する輝線は4.50.1nm以外の輝線を用いてt)よ
い。Next, the operation of wavelength calibration of the fluorescence spectrometer Mf will be explained. In this case, the MPU opens the switch Swl and closes the switch Sw2 to take in the -0- output of the photodetector DO for the fluorescence spectrometer. Next, signals are sent to shutter drive motors 2m and 3m to open shutter 2 and close shutter 3. Next, drive the fluorescence spectrometer Mf to the wavelength origin, set the wavelength counter for the fluorescence spectrometer to the origin wavelength, perform wavelength scanning, and collect the output data of the photodetector F) at a wavelength of 430 to 470 nm. The data is stored in the RAM area of the capture memory 10. After that, from the data in this RAM, search for a peak at wavelength 45r') and 1 nm, and as in the case of the excitation spectrometer M e, set the wavelength counter #
The fluorescence spectrometer is driven so that the 1 value corresponds to the 1st peak, and at that position the wavelength counter is set to the correct wavelength value of 450. ]. Note that an emission line other than 4.50.1 nm may be used.
上述実施例ではシャッター3は試料セル位置と蛍光分光
器Mfとの間に配置しているが、これはビーlいスプリ
ッタ4と試料セル位置との間に配置してもよい。In the above embodiment, the shutter 3 is placed between the sample cell position and the fluorescence spectrometer Mf, but it may be placed between the beam splitter 4 and the sample cell position.
1・、効果
本発明装置は上述したような構成で、分光蛍光光度計の
光源を利用しているので別の光源を用意し、かつその光
源を測定光路中に出入させる機構を川音すると云った必
要がなく、付属の光路とかシャッターを用いるが−F記
した光源とか出入機構に比し構造的に簡単で安価であり
、試料位置に鏡等の波長較正用の素子を置く必要がない
から波長較正の操作が筒中で、しかち試料室に試オ4セ
ル他任意の付属装置を置いた」;\で波長較正ができる
と云う特徴がある。1. Effect The device of the present invention has the above-mentioned configuration and uses the light source of a spectrofluorophotometer, so it is necessary to prepare another light source and provide a mechanism for moving the light source into and out of the measurement optical path. There is no need for it, and the attached optical path and shutter are used, but it is structurally simpler and cheaper than the light source and entry/exit mechanism described in F. It is not necessary to place a wavelength calibration element such as a mirror at the sample position, so the wavelength can be easily adjusted. The calibration operation is carried out in the cylinder, and the wavelength calibration can be performed by placing a sample cell and other optional accessories in the sample chamber.
第1図は本発明の一実施例の光学系の平面図、第2図は
同実施例の制御系のブロック図、第3図は従来例の光学
系の平面図である。FIG. 1 is a plan view of an optical system according to an embodiment of the present invention, FIG. 2 is a block diagram of a control system according to the same embodiment, and FIG. 3 is a plan view of a conventional optical system.
Claims (1)
く光学系とこの光学系を通る光を通断するシャッターと
、励起分光器から試料セル位置を通って蛍光分光器に至
る光路中で光を通断するシャッターを設けたことを特徴
とする分光蛍光光度計。An optical system that guides light from the light source chamber to the fluorescence spectrometer without passing through the excitation spectrometer, a shutter that blocks the light passing through this optical system, and an optical path from the excitation spectrometer to the fluorescence spectrometer through the sample cell position. A spectrofluorometer characterized by having a shutter that allows light to pass through.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15489585A JPS6215418A (en) | 1985-07-13 | 1985-07-13 | Spectral fluorophotometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15489585A JPS6215418A (en) | 1985-07-13 | 1985-07-13 | Spectral fluorophotometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6215418A true JPS6215418A (en) | 1987-01-23 |
Family
ID=15594302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15489585A Pending JPS6215418A (en) | 1985-07-13 | 1985-07-13 | Spectral fluorophotometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6215418A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006300632A (en) * | 2005-04-19 | 2006-11-02 | Shimadzu Corp | Excitation spectrum correction technique in fluorescencespectrophotometer |
JP2008070172A (en) * | 2006-09-13 | 2008-03-27 | Hitachi High-Technologies Corp | Spectrophotofluorometer and its correction method |
JP2010276362A (en) * | 2009-05-26 | 2010-12-09 | Hitachi High-Technologies Corp | Spectrofluorophotometer and spectroscopic analysis photometer |
JP2011013167A (en) * | 2009-07-06 | 2011-01-20 | Hitachi High-Technologies Corp | Spectrofluorometer and sample cell |
JP2012047562A (en) * | 2010-08-26 | 2012-03-08 | Shimadzu Corp | Fluorescence spectrophotometer |
US8717557B2 (en) | 2010-02-18 | 2014-05-06 | Hitachi High-Technologies Corporation | Spectrophotometer and method for determining performance thereof |
-
1985
- 1985-07-13 JP JP15489585A patent/JPS6215418A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006300632A (en) * | 2005-04-19 | 2006-11-02 | Shimadzu Corp | Excitation spectrum correction technique in fluorescencespectrophotometer |
JP4710393B2 (en) * | 2005-04-19 | 2011-06-29 | 株式会社島津製作所 | Excitation spectrum correction method in fluorescence spectrophotometer |
JP2008070172A (en) * | 2006-09-13 | 2008-03-27 | Hitachi High-Technologies Corp | Spectrophotofluorometer and its correction method |
JP2010276362A (en) * | 2009-05-26 | 2010-12-09 | Hitachi High-Technologies Corp | Spectrofluorophotometer and spectroscopic analysis photometer |
JP2011013167A (en) * | 2009-07-06 | 2011-01-20 | Hitachi High-Technologies Corp | Spectrofluorometer and sample cell |
US8717557B2 (en) | 2010-02-18 | 2014-05-06 | Hitachi High-Technologies Corporation | Spectrophotometer and method for determining performance thereof |
JP2012047562A (en) * | 2010-08-26 | 2012-03-08 | Shimadzu Corp | Fluorescence spectrophotometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6891618B2 (en) | Optical instrument and process for measurement of samples | |
US4795256A (en) | Dual-wavelength spectrophotometry system | |
EP0987540B1 (en) | Sample imaging device for high-throughput screening by fluorescence measurements | |
US4622468A (en) | Fluorescence intensity compensation method and device | |
US7023553B2 (en) | Intelligent instrumentation with changeable optical components | |
US20050213092A1 (en) | Apparatus and methods relating to enhanced spectral measurement systems | |
JP2000500875A (en) | Improved spectrophotometer | |
CA2407296A1 (en) | An imaging fluorometer for time resolved fluorescence | |
US6822741B2 (en) | Optical instrument and process for measurement of samples | |
US4630925A (en) | Compact temporal spectral photometer | |
JPS6215418A (en) | Spectral fluorophotometer | |
US6597439B1 (en) | Method and apparatus for measurement of light from illuminated specimen eliminating influence of background light | |
JP2000230903A (en) | Photometric method and apparatus | |
JPS62110126A (en) | Color tone measuring device | |
US5815254A (en) | Transmittance and reflectance measuring spectrophotometer having dual use light channels | |
JP4725087B2 (en) | microscope | |
JPH09248281A (en) | Endoscope spectrometer | |
US20050264803A1 (en) | Optical apparatus for measuring absorption and fluorescence or scattering properties of a sample | |
JPH055083B2 (en) | ||
US6372184B1 (en) | Shipboard automatic liquid (chemical) agent detector | |
JPS5992318A (en) | Spectrometry method | |
JP2004094116A (en) | Infrared microscope | |
JP3262877B2 (en) | Spectroscope | |
JPH02115749A (en) | Spectrophotometer | |
EP2899534A1 (en) | Dynamic signal extension in optical detection systems |