JPS6215404A - Non-contact system diameter measuring instrument - Google Patents

Non-contact system diameter measuring instrument

Info

Publication number
JPS6215404A
JPS6215404A JP15546585A JP15546585A JPS6215404A JP S6215404 A JPS6215404 A JP S6215404A JP 15546585 A JP15546585 A JP 15546585A JP 15546585 A JP15546585 A JP 15546585A JP S6215404 A JPS6215404 A JP S6215404A
Authority
JP
Japan
Prior art keywords
diameter
peak
measured
circular
photodetector array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15546585A
Other languages
Japanese (ja)
Other versions
JPH067048B2 (en
Inventor
Shintaro Inagaki
慎太郎 稲垣
Akira Kobayashi
彬 小林
Tomio Yamaura
山浦 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP15546585A priority Critical patent/JPH067048B2/en
Publication of JPS6215404A publication Critical patent/JPS6215404A/en
Publication of JPH067048B2 publication Critical patent/JPH067048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily measure a diameter and with a high accuracy even in case of a moving object, by projecting an image of a circular object moving at a constant speed, to a photodetector, calculating two kinds of diameters, based on a specified peak of its output, and thereafter, averaging them. CONSTITUTION:A circular image 4 of a moving circular object to be measured 3 is projected onto a photodetector array 1. This array 1 connected alternately 2n pieces of detectors, inputs its each output to a differential amplifier circuit 5 and obtains a signal having 2n pieces of peaks. In this state, first of all, by an arithmetic means 7, an approximate diameter is calculated, based on the first peak of the output signal. Also, by an arithmetic means 8, a diameter D1 is calculated from a peak amplitude of the output signal of the time when the circular image 4 has been held completely on the array 1. Also, by an arithmetic means 9, a diameter D2 is calculated, based on the appearance time of the same peak. Thereafter, by an arithmetic means 10, the diameter D1 and D2 are averaged and corrected by a moving speed value, by which a diameter is calculated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、ほぼ一定の速度で移動し、球、円盤など光
検出器上に円形の像を結ぶような形状を有する移動円形
物体の直径を非接触で測定するためのもので、光学系と
、光検出器アレイと、差動増幅回路とで構成された差動
構成の空間フィルタと、演算装置よシなる非接触方式の
直径測定装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) This invention relates to a method for determining the diameter of a moving circular object that moves at a substantially constant speed and has a shape that forms a circular image on a photodetector, such as a sphere or a disk. It is for non-contact measurement, and includes a spatial filter with a differential configuration consisting of an optical system, a photodetector array, and a differential amplifier circuit, and a non-contact diameter measuring device such as an arithmetic unit. It is related to.

(従来の技術) 従来よシ、非接触で物体の寸法を測定する手段は、様々
なものが考案されて来た。原理的には、多数の検出器に
よって静止した被測定物の像をとらえて寸法を得るもの
、被測定物を一定速度で移動させである一点を通過する
時間を測るものが多い。
(Prior Art) Various methods have been devised in the past as means for measuring the dimensions of an object in a non-contact manner. In principle, there are many methods in which dimensions are obtained by capturing images of a stationary object using multiple detectors, and methods in which the object is moved at a constant speed and the time it takes to pass a certain point is measured.

前者の、多数の検出器によって静止した被測定物の像を
とらえて寸法を得る方式には、次に述べるような問題点
がある。す々わち、被測定物の像が投影される光検出器
の数が被測定物の寸法に比例する事実に基ずいているた
め、測定の分解能は本質的に「検出器の最大測定範囲÷
検出器の数」によって決1って(〜寸う。従って、高精
度を斜るためには多くの検出器とそれに伴なう複雑力信
号処理回路を要する。また物体が移動する場合は、全て
の光検出器の出力信号を同時に処理するだめの完全に並
列的外信湯処理回路を用いるか、被チ111定物の移動
速度が無視できる速さで個々の検出器の出力信号を走査
して処理する信号処理回路を用いなけれはなら人い。こ
のように、この方式では、高精度測定が困かILであり
、才だ移動物体の寸法測定には適さ々いと考えられる。
The former method of obtaining dimensions by capturing images of a stationary object with a large number of detectors has the following problems. The resolution of a measurement is essentially the maximum measuring range of the detector, since it is based on the fact that the number of photodetectors onto which the image of the object to be measured is projected is proportional to the dimensions of the object. ÷
The number of detectors depends on the number of detectors. Therefore, in order to achieve high precision, many detectors and associated complex force signal processing circuits are required. Also, when the object moves, Either use a fully parallel processing circuit that processes the output signals of all photodetectors simultaneously, or scan the output signals of individual detectors at a speed that allows the object to move at a negligible speed. Therefore, this method has difficulty in high-precision measurement and is considered unsuitable for measuring the dimensions of moving objects.

稜者の、被測定物を一定速度で移動させである−・点を
通過する時間を測る方式の場合は、次に述べるよう々誤
差要因がある。すなわち、高い精度を得るためには被測
定物の前端と後端をとらえる際の誤差を除く必要があり
、非常に細く絞った光ビームを用いるか、非常に細いス
リットを用いなければならない。また、被測定物の移動
速度と移動方向の変動が直接測定値の誤差を生じるので
、被測定物を正確に一定速度で定まった方向に移動させ
る装置または被測定物の移動速度と移動方向を高精度で
測定する手段を併用せざるを得ない。
In the case of a method in which the object to be measured is moved at a constant speed and the time taken to pass a certain point is measured, there are error factors as described below. That is, in order to obtain high accuracy, it is necessary to eliminate errors in capturing the front and rear ends of the object to be measured, and it is necessary to use a very narrowly focused light beam or a very narrow slit. In addition, fluctuations in the moving speed and direction of the object to be measured directly cause errors in the measured values, so it is necessary to use a device that moves the object to be measured accurately at a constant speed and in a fixed direction, or to change the moving speed and direction of the object to be measured. There is no choice but to use a means of measuring with high precision.

このように、この方式でも、高精度を得るためには補助
的手段を付加せざるを得す、複雑な構成を取らざるをえ
ない。
In this way, even with this method, in order to obtain high accuracy, auxiliary means must be added and a complicated configuration must be adopted.

(発明が解決しようとする問題点) 本発明の目的は、以上に述べたような、従来の非接触寸
法測定装置では測定しにくかった移動物体を対象として
、簡単な構造によシ、しかも被測定物の移動速度変動の
影響を受けにくく、高精度測定ができる非接触方式の直
径測定装置を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a simple structure for moving objects that are difficult to measure with conventional non-contact dimension measuring devices as described above. An object of the present invention is to provide a non-contact type diameter measuring device that is not easily affected by fluctuations in the moving speed of an object and can perform highly accurate measurements.

(発明の要旨) この目的を達成するだめに、本発明では球、円盤などの
形状を有し、ほぼ一定の速度で移動する移動円形物体た
る被測定物の円形像を、光学系と、矩形状の光検出器ア
レイと、差動増幅回路とで構成された差動構成の空間フ
ィルタ上に投影し、前記空間フィルタの出力信号の被測
定物の直径に依存する特徴的ピークを有する波形を後段
の演算装置にて処理する構成を取シ、しかも波形の処理
には単純な演算によp被測定物の直径を得る方式を用い
ることにより、簡潔々構成で高精度の測定を実現してい
る。
(Summary of the Invention) In order to achieve this object, the present invention uses an optical system to generate a circular image of an object to be measured, which is a moving circular object having a shape such as a sphere or a disk and moving at a substantially constant speed. A waveform projected onto a spatial filter having a differential configuration consisting of a rectangular photodetector array and a differential amplifier circuit, and having a characteristic peak that depends on the diameter of the measured object of the output signal of the spatial filter. By using a configuration in which the data is processed by a subsequent arithmetic unit, and by using a method to obtain the diameter of the measured object through simple calculations for waveform processing, high-precision measurement can be achieved with a simple configuration. ing.

(発明の構成) つぎに、図面に示した実施例について、本発明を具体的
に説明する。第1図は、本発明の一実施例における構成
を示す。図中1は、等間隔で配列された2n個の同寸法
の矩形状の光検出器アレイである。各光検出器は光の照
射された部分の面積と光強度に比例した電気信号を出力
する。光検出器の材質、構造は種々考えられるが、−例
と17て81のpn接合を用いたホトダイオードによる
構成について述べる。ホトリソグラフィ技術により、同
寸法のStホトダイオードのアレイを同一基板上に作製
することは容易であわ高い寸法精度で廉価に生産できる
(Structure of the Invention) Next, the present invention will be specifically described with reference to embodiments shown in the drawings. FIG. 1 shows the configuration of an embodiment of the present invention. In the figure, reference numeral 1 denotes a rectangular photodetector array of 2n pieces of the same size arranged at equal intervals. Each photodetector outputs an electrical signal proportional to the area of the portion illuminated with light and the light intensity. Although various materials and structures are conceivable for the photodetector, a configuration using a photodiode using a pn junction (17 and 81) will be described as an example. Using photolithography technology, it is easy to fabricate an array of St photodiodes of the same size on the same substrate, and can be produced at low cost with high dimensional accuracy.

前記光検出器アレイ上に、図中2の光学系にて円形被測
定物(3)の円形像(4)を投影する。図ではレンズ系
による構成となっているが、平行光束によって円形被測
定物の像を光検出器アレイ上に投影する方式であっても
差し支えない。
A circular image (4) of a circular object to be measured (3) is projected onto the photodetector array using the optical system 2 in the figure. In the figure, the configuration is based on a lens system, but a system in which an image of a circular object to be measured is projected onto a photodetector array using a parallel light beam may also be used.

前記光検出器アレイの奇数番目の出力をすべて合計し、
偶数番目の出力をすべて合計し、この2本を差動増幅回
路(5)に入力する。光検出器としてホトダイオードを
用いた場合、その出力電流が受光光量と比例関係にある
ため、差動増幅回路は電流増幅形とする。このように構
成された光学系と光検出器アレイと差動増幅器とは差動
構成の空間フィルタをなす。
summing all the odd-numbered outputs of the photodetector array;
All even-numbered outputs are summed and these two are input to the differential amplifier circuit (5). When a photodiode is used as a photodetector, its output current is proportional to the amount of received light, so the differential amplifier circuit is of a current amplification type. The optical system, photodetector array, and differential amplifier configured in this manner form a spatial filter with a differential configuration.

差動増幅器の出力は、演算装w(6)に接続されている
。演算装置は後記する動作原理で述べるような信号処理
により、差動増幅回路の出力信号の被測定物の直径に依
存する特徴的ピークを有する波形を処理し、被測定物の
直径を得る機能を有し、A/D変換器を備えたマイクロ
コンビーータまだはそれと実質的に同等の処理を行うデ
ィジタル的ないしはアナログ的電気回路で構成される。
The output of the differential amplifier is connected to the arithmetic unit w(6). The arithmetic unit processes the waveform of the output signal of the differential amplifier circuit, which has a characteristic peak that depends on the diameter of the object to be measured, by signal processing as described in the operating principle described later, and has the function of obtaining the diameter of the object to be measured. A microconbeater equipped with an A/D converter is constructed of a digital or analog electric circuit that performs substantially the same processing as the microconbeater.

(動作原理) 本発明は、差動構成の空間フィルタに球、円盤などの形
状を有し、ほぼ一定の速度で移動する移動円形物体たる
被測定物の円形像を投影する時、その出力信号の波形が
被測定物の直径に依存する特徴的ピークを有する事実に
着目し、前記出力信号の波形に単純な演算を施すことに
より被測定物の直径を得るものである。以下に、差動構
成の空間フィルタの出力信号の波形の特徴と本発明の信
号処理方式について説明する。
(Principle of operation) The present invention is capable of outputting a circular image of an object to be measured, which is a moving circular object having a shape such as a sphere or a disk and moving at a substantially constant speed, onto a spatial filter with a differential configuration. Focusing on the fact that the signal waveform has a characteristic peak that depends on the diameter of the object to be measured, the diameter of the object to be measured is obtained by performing simple calculations on the waveform of the output signal. Below, the characteristics of the waveform of the output signal of the spatial filter having a differential configuration and the signal processing method of the present invention will be explained.

第1図のように一定速度Vで移動する円形物体の像f 
(x、y)を、レンズまたは平行光束によって空間的荷
重関数h (x、y)で表される光検出器アレイにより
構成された空間フィルタに投影すると、出力係号の瞬時
値g(t)は次式で与えられる。
Image f of a circular object moving at a constant speed V as shown in Figure 1
When (x, y) is projected by a lens or a parallel beam onto a spatial filter constituted by a photodetector array represented by a spatial weighting function h (x, y), the instantaneous value of the output coefficient g(t) is given by the following equation.

g(t)=g(xo、yo)−Kfdxfdyf(x、
y)h(x−xo+y−yo)  fi)ここで、Xo
−■t+c1.y、二C6+ c、、c、、 :定数に
=比例係数 一方、f(x、y) ?:白色の背景に黒色の円形像と
し、h (x、y)を2n個の同寸法の光検出器アレイ
を交互に差動形に接続した構成の荷重関数として、以下
の(2) (3)式のように表して、積分を実行すると
、(1)式よシ(4)式を得る。
g(t)=g(xo,yo)−Kfdxfdyf(x,
y) h(x-xo+y-yo) fi) Here, Xo
-■t+c1. y, 2C6+ c,,c,, : constant=proportional coefficient whereas, f(x,y)? : As a black circular image on a white background, and h (x, y) as a weight function of a configuration in which 2n photodetector arrays of the same size are alternately connected in a differential type, the following (2) ( When expressed as in equation 3) and performing integration, equation (1) and equation (4) are obtained.

ここで、D=被測定物の像の直径 ここで、P:光検出器アレイのピッチ、w:光検出器の
幅、L:光検出器の長さ、nニスリットの対数、 k 
= 0.1,2.−・、n−1゜ここで、a、、b、 
:対象をよぎる1番目の光検出器の左右端のX座標1g
o二対象がない時の出力値。
Here, D=diameter of image of object to be measured, P: pitch of photodetector array, w: width of photodetector, L: length of photodetector, n logarithm of slit, k
= 0.1, 2. −・,n−1゜Here, a, ,b,
:X coordinate 1g of the left and right ends of the first photodetector that crosses the object
o2 Output value when there is no target.

規格化した振幅G(t) = (g(t) −g1) 
)/KPと規格化した時間T=t−V/Pの関係を計算
機によってシミュレートした結果を第2図に示す。被測
定物の像の直径りをパラメータとし、てD=0.]XP
からD=2.4×Pまで24本の波形をプロy ) し
た。時間tは対象の中心がスリットの前端に到達した時
刻をOとしである。この波形は、零点の位置は不変であ
るが、波形の立ち上が9、ピークの位相(時間方向の変
位)および振幅は対象の寸法に応じて変化することを示
している。
Normalized amplitude G(t) = (g(t) - g1)
)/KP and the normalized time T=t-V/P, the results of which were simulated by a computer are shown in FIG. The diameter of the image of the object to be measured is taken as a parameter, and D=0. ]XP
24 waveforms were produced from D=2.4×P. Time t is the time O when the center of the object reaches the front end of the slit. This waveform shows that although the position of the zero point remains unchanged, the rise 9 of the waveform, the phase of the peak (displacement in the time direction), and the amplitude change depending on the size of the object.

波形のピークの特徴に着目すると、第1のピークの振幅
の絶対値は、被測定物の直径に応じて単調に増大してお
り、第2以降のピークと異方る形状を有している。また
、被測定物の像の中心が2n個の光検出器を通過する時
に2n個の大きなピークを形成し、時として大きなピー
クの間に小ピークを有している。以下ではピークとは大
きなピークを意味するものとする。移動している円形像
の前後両端が前記光検出器アレイ中に投影された状態の
ときにあらわれるピークは同形の規則的鹿波形を有して
いる。これらの特徴に着目すると波形から被測定物の直
径の情報を得ることができる。
Focusing on the characteristics of the waveform peaks, the absolute value of the amplitude of the first peak increases monotonically according to the diameter of the object to be measured, and has an anisotropic shape from the second and subsequent peaks. . Furthermore, when the center of the image of the object to be measured passes through 2n photodetectors, 2n large peaks are formed, and small peaks sometimes exist between the large peaks. In the following, peak means a large peak. The peaks that appear when both the front and rear ends of the moving circular image are projected onto the photodetector array have the same regular waveform. By focusing on these characteristics, information on the diameter of the object to be measured can be obtained from the waveform.

時間情報として、出力波形の立ち上がりから、第1.第
2.第3ピークの中心までの時間を取り、規格化した直
径D/Pとの関係を第3図に示す。k番目のピークでは
、D≦kP−Wで直線的関係、2PT= (D + W
+ P(k−1))があシ、kP−W<Dでは2PT岑
P(1(−1)となっている。
As time information, from the rise of the output waveform, the first . Second. FIG. 3 shows the relationship between the time to the center of the third peak and the normalized diameter D/P. At the kth peak, there is a linear relationship with D≦kP−W, 2PT=(D + W
+P(k-1)), and when kP-W<D, 2PT 岑P(1(-1)).

振幅特性として、第1.第2.第3ピークの振幅を取り
、D/Pとの関係を第4図に示す。第1ピークの振幅G
(tz)の絶対値は被測定物の直径りに応じて直線的な
関係ではないが単調に増大しているので、G(tz)の
測定から被測定物の直径りを演算することができる。演
算手段としては、G(tz)とDの関係をあらかじめ演
算装置内のメモリに記憶1〜でおくことにより必要に応
じてテーブル参照する々どの方式が考えられる。これに
対し、k番目のピークでは、D=lP−W(+=1.2
.・・・、k)付近を境に微係数の正負が反転している
。また1の増加とともに出力が大きくなっている。力見
られたDに対応するiが得られる場合には1が定まれば
単調関数となるので、同様の方式で測定することができ
る。
As the amplitude characteristics, the first. Second. The amplitude of the third peak is taken and the relationship with D/P is shown in FIG. Amplitude G of the first peak
The absolute value of (tz) does not have a linear relationship with the diameter of the object to be measured, but it increases monotonically, so the diameter of the object to be measured can be calculated from the measurement of G(tz). . As the calculation means, there may be a method in which the relationship between G(tz) and D is stored in advance in the memory of the calculation device as 1 to 1, and the table is referred to as necessary. On the other hand, for the kth peak, D=lP−W(+=1.2
.. ..., k), the sign of the differential coefficient is reversed. Also, as the number increases by 1, the output increases. If i corresponding to the observed force D is obtained, it becomes a monotone function if 1 is determined, so it can be measured in a similar manner.

上記の考察より、導かれた被測定物の直径を得るフロー
を以下に示す。
Based on the above considerations, the flow for obtaining the diameter of the object to be measured is shown below.

(1)  概略値D0を得る。(1) Obtain the approximate value D0.

■信号波形のあらかじめ設定された仕置のしきい値を越
える最初の立」二がシと第一ピークを検出し、最初の立
上がり時間から第1ピークまでの時間t。
■Detect the first peak of the signal waveform that exceeds a preset threshold, and determine the time t from the first rise time to the first peak.

と振@c(tz)を測定する。and measure the vibration @c(tz).

■G(tl)よp、対象の直径の概略値D0を得る。第
4図のピーク1の関係を利用し、テーブル参照などの手
段による。
(2) From G(tl), obtain the approximate diameter D0 of the object. By using the relationship of peak 1 in FIG. 4 and by means such as table reference.

■何番目のピークを測るか決定1.(k番目と呼ぶこと
にする) kの決定法は、例えばPを光検出器ピッチ、Wを光検出
器幅として(k −1)P−WEDo≦kP−Wとなる
よう選ぶと良い。このように選ぶと移動している円形像
の前後両端が前記光検出器アレイ中に投影された状態の
ときにあらわれる規則的な波形を有するピークを選ぶこ
とができる。、また、簡略化のため、特定のkをり。に
依存せず選んでも、また複数のkを選び得られた測定値
を平均する方法でも差支えない。
■Decide which peak to measure 1. (It will be referred to as the k-th one.) The method for determining k is preferably selected so that, for example, P is the photodetector pitch and W is the photodetector width so that (k-1)P-WEDo≦kP-W. By selecting in this manner, it is possible to select a peak having a regular waveform that appears when both the front and rear ends of the moving circular image are projected onto the photodetector array. , and for the sake of simplicity, a specific k value. It may be selected without depending on k, or a method of selecting a plurality of k and averaging the obtained measured values may be used.

■速度の概略値V。を得る。■Approximate speed value V. get.

voを得るには、例えばり。とtlよp、下式を用いて
算出すると良い。
To get vo, for example. and tl y p, it is best to calculate using the following formula.

2・tz ・Vo=Do+W       (Do<P
−Wの場合)2・tz・Vo=P+ε(Do−P+W)
/P (P−W≦Doの場合)εは定数 また、簡略化のためあらかじめ推定した速度の概略値を
用いても良いし、別の手段によって測定しても差し支え
ない。
2・tz ・Vo=Do+W (Do<P
-W case) 2・tz・Vo=P+ε(Do-P+W)
/P (in the case of P-W≦Do) ε is a constant. Also, for simplification, an approximate value of the velocity estimated in advance may be used, or it may be measured by another means.

以」二を実行するための手段は第1図のり。演算7であ
る。
The means for carrying out the above (2) is as shown in Figure 1. This is calculation 7.

(2)振幅情報による測定 ■DoとV。よシ下式、すなわち第3図の関係を用いl
c番目のピークの時間tkを推定する。
(2) Measurement using amplitude information ■Do and V. Using the equation below, that is, the relationship shown in Figure 3,
Estimate the time tk of the c-th peak.

2−tk−Vo=Do+W+P(k−1)■推定時間付
近を調べてに番目のピークを検出し、その時間tkと振
幅G(tk)を測定する。検出の手段はあらかじめ波形
をすべてメモリなどに記憶してかラマイクロコンビーー
タでピークを捜しても良いl〜、推定時間付近で実時間
でピークを検出し7ても良い。推定時間が得られている
ので該当ピークを見失うことはない。
2-tk-Vo=Do+W+P(k-1) (2) Check around the estimated time to detect the second peak, and measure its time tk and amplitude G(tk). The detection means may be such that all waveforms are stored in advance in a memory or the like, or a peak is searched for using a microcomputer, or the peak may be detected in real time near the estimated time. Since the estimated time is obtained, there is no chance of losing sight of the peak in question.

■にとG(tz )から第3図の関係を用いテーブル参
照などの手段によシ被測定物の円形像の直径を得て、さ
らに既知の光学系の倍率から被測定物の直径D1を得る
■ Obtain the diameter of the circular image of the object to be measured using the relationship shown in Figure 3 from G(tz) by referring to a table or other means, and further calculate the diameter D1 of the object from the known magnification of the optical system. get.

これを実行する手段は第1図のD1演算8である。The means for performing this is the D1 operation 8 in FIG.

(3)時間情報による測定 ■上記の測定によって得たtkとtlより下式を用いて
速度Vを得る。
(3) Measurement using time information ■ Obtain the speed V from the tk and tl obtained by the above measurements using the following formula.

2・tk・V=D2+W+ P・(k−1,)■tkと
■。(または■)より下式を用いてl(番目のピークの
前または後のゼロクロス点の時間tzを推定する。
2・tk・V=D2+W+ P・(k−1,) ■tk and ■. (or ■) Use the formula below to estimate the time tz of the zero crossing point before or after the l(th peak.

2− t・V=2= tk−v±0.5−P■推定時間
付近を調べてゼロクロス点を検出し、tzを測定する。
2-t·V=2=tk-v±0.5-P■ Check around the estimated time to detect the zero cross point and measure tz.

推定値と比較して、時間測定の誤差(または速度Vの値
)の補正に用いる。
It is used to correct the error in time measurement (or the value of velocity V) by comparing with the estimated value.

これを実行する手段は第1図のD2演算8である。The means for performing this is the D2 operation 8 in FIG.

(4)直径の測定値を得る。(4) Obtain diameter measurements.

■(2)で得られたDlと、(3)で得られたD2の平
均をもって測定値とする。
(2) The measured value is the average of Dl obtained in (2) and D2 obtained in (3).

さらに、時間測定や速度の変動が大きい状況ではD2を
捨ててDlを選び、光学系の非一様性による誤差が大き
い状況ではDlを捨ててD2を選ぶより、切り換え可能
とする機能を備えても良い。
Furthermore, it has a function that allows switching, rather than discarding D2 and choosing Dl in situations where there are large fluctuations in time measurement or speed, and discarding Dl and choosing D2 in situations where there is a large error due to non-uniformity of the optical system. Also good.

これを実行する手段は第1図のD演算10でちる。The means for performing this is the D operation 10 in FIG.

(発明の効果) 本発明は、以上に述べたような構成であるので、簡単な
構造により、被測定物の移動速度変動の影響を受けにく
く、高精度測定ができる。被測定物を静11−させずに
測定するので、多数の被測定物を連続して測定する用途
で特に迅速々測定が出来る。
(Effects of the Invention) Since the present invention has the above-described configuration, the present invention has a simple structure, is less susceptible to fluctuations in the moving speed of the object to be measured, and can perform highly accurate measurements. Since the measurement is performed without making the object stand still, the measurement can be carried out quickly, especially in applications where a large number of objects to be measured are to be measured in succession.

また、光検出器アレイと演算装置の組み合わせは集積化
に適した構成であり、大量生産により廉価に製造できる
Furthermore, the combination of the photodetector array and the arithmetic unit has a configuration suitable for integration, and can be manufactured at low cost through mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、第2図は差動増幅回
路の出力信号の波形を示す図、第3図は規格化されたピ
ーク時間と規格化された被測定物の直径の関係を示す図
、第4図は規格化されたピーク振幅と規格化された被測
定物の直径の関係を示す図である。 1は光検出器アレイ、2は光学系、3は円形被測定物、
4は円形像、5は差動増幅回路、6は演算装置、7は円
形像の概略直径り、を演算する手段、8は円形被測定物
の直径り、を演算する手段、9は円形被測定物の直径り
を演算する手段、10は円形被測定物の真の直径りを演
算する手段を示す。 特許出願人   安立電気株式会社 代理人  弁理士 小 池 龍太部 <        Q 第3 訂 拓4−図
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the waveform of the output signal of the differential amplifier circuit, and Fig. 3 is a diagram showing the normalized peak time and the normalized diameter of the object to be measured. FIG. 4 is a diagram showing the relationship between the normalized peak amplitude and the normalized diameter of the object to be measured. 1 is a photodetector array, 2 is an optical system, 3 is a circular object to be measured,
4 is a circular image, 5 is a differential amplifier circuit, 6 is an arithmetic unit, 7 is a means for calculating the approximate diameter of the circular image, 8 is a means for calculating the diameter of the circular object to be measured, 9 is a means for calculating the diameter of the circular object; Means for calculating the diameter of the circular object to be measured; 10 indicates means for calculating the true diameter of the circular object to be measured. Patent applicant: Anritsu Electric Co., Ltd. Agent: Patent attorney: Ryotabe Koike

Claims (1)

【特許請求の範囲】 等間隔で配列された2n個の同寸法の矩形状の光検出器
でなる光検出器アレイ(1)と; ほぼ定速度で移動する円形被測定物(3)の円形像(4
)を前記光検出器アレイに投影する光学系(2)と;前
記光検出器アレイの奇数番目の光検出器同志の出力の和
と偶数番目の光検出器同志の出力の和とを受領し、前記
円形像が前記光検出器アレイを通過するとき2n個のピ
ークをもつ信号を出力する差動増幅回路(5)と; 前記差動増幅回路の出力信号の波形から前記円形被測定
物の直径を演算する演算装置(6)とを備え、前記演算
装置は、 (1)前記差動増幅回路からの出力信号の波形のあらか
じめ設定された任意のしきい値を越える最初の立上がり
時間から該出力信号の波形の第1ピークまでの時間t_
1と該第1ピークの振幅G(t_1)を測定し、該第1
ピークの振幅G(t_1)に対応する円形像の概略直径
D_0を演算する手段(7)と;(2)移動している円
形像の前後両端が前記光検出器アレイ中に投影された状
態のときにあらわれる第k(1≦k≦2n)番目のピー
ク振幅G(t_k)から該円形被測定物の直径D_1を
演算する手段(8)と;(3)移動している円形像の前
後両端が前記光検出器アレイ中に投影された状態のとき
にあらわれる第k(1≦k≦2n)番目のピーク出現時
間t_kとそのピークの前または後のゼロクロス点出現
時間t_zから該円形像の移動速度Vを演算し、その移
動速度Vとピーク出現時間t_kと該ゼロクロス点出現
時間t_zとから該円形被測定物の直径D_2を演算す
る手段(9)と; (4)前記演算した被測定物の直径DおよびDを平均化
すると共に前記演算した移動速度Vにより速度誤差を補
正して被測定物の真の直径Dを演算する手段(10)と
からなることを特徴とする非接触方式の直径測定装置。
[Claims] A photodetector array (1) consisting of 2n rectangular photodetectors of the same size arranged at equal intervals; and a circular object to be measured (3) that moves at a substantially constant speed. Image (4
) on the photodetector array; and an optical system (2) that receives the sum of the outputs of the odd-numbered photodetectors and the sum of the outputs of the even-numbered photodetectors of the photodetector array. , a differential amplifier circuit (5) that outputs a signal having 2n peaks when the circular image passes through the photodetector array; (1) from the first rise time of the waveform of the output signal from the differential amplifier circuit exceeding a preset arbitrary threshold; Time t_ to the first peak of the waveform of the output signal
1 and the amplitude G(t_1) of the first peak, and
means (7) for calculating an approximate diameter D_0 of the circular image corresponding to the peak amplitude G(t_1); (2) both front and rear ends of the moving circular image are projected onto the photodetector array; means (8) for calculating the diameter D_1 of the circular object from the k-th (1≦k≦2n) peak amplitude G(t_k) that appears when the state is; (3) a moving circular image; From the k-th (1≦k≦2n) peak appearance time t_k that appears when both front and rear ends of the circle are projected onto the photodetector array and the zero-crossing point appearance time t_z before or after that peak, means (9) for calculating the moving speed V of the shaped image, and calculating the diameter D_2 of the circular object from the moving speed V, the peak appearance time t_k, and the zero cross point appearance time t_z; (4) the calculation; means (10) for calculating the true diameter D of the object to be measured by averaging the diameters D and D of the object to be measured and correcting the speed error using the calculated moving speed V; Non-contact diameter measuring device.
JP15546585A 1985-07-15 1985-07-15 Non-contact type diameter measuring device Expired - Lifetime JPH067048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15546585A JPH067048B2 (en) 1985-07-15 1985-07-15 Non-contact type diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15546585A JPH067048B2 (en) 1985-07-15 1985-07-15 Non-contact type diameter measuring device

Publications (2)

Publication Number Publication Date
JPS6215404A true JPS6215404A (en) 1987-01-23
JPH067048B2 JPH067048B2 (en) 1994-01-26

Family

ID=15606643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15546585A Expired - Lifetime JPH067048B2 (en) 1985-07-15 1985-07-15 Non-contact type diameter measuring device

Country Status (1)

Country Link
JP (1) JPH067048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800288A (en) * 1986-07-18 1989-01-24 Anritsu Corporation Optical image transformation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800288A (en) * 1986-07-18 1989-01-24 Anritsu Corporation Optical image transformation apparatus

Also Published As

Publication number Publication date
JPH067048B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
JPS6211110A (en) Distance measuring apparatus
JPH08178613A (en) Photodetector for interferometer
JPS6215404A (en) Non-contact system diameter measuring instrument
JPS6244201B2 (en)
JPS6215401A (en) Non-contact diameter measuring instrument
JPH0626857A (en) Solar sensor for z-axis
JPS6215403A (en) Non-contact type diameter measuring instrument
JPH067046B2 (en) Non-contact diameter measuring device
Rana et al. A non-contact method for rod straightness measurement based on quadrant laser sensor
JPS623609A (en) Range finder
Fujita et al. New types of position sensitive device for accurate sensing
JP2901747B2 (en) Distance measuring device
JPS6345504A (en) Range finder
JPH087044B2 (en) Displacement measuring device for pattern that crosses spatial filter detector and light receiving element
JPH04102004A (en) Position detecting element
JPH01105101A (en) Optical displacement measuring instrument
JP3900218B2 (en) Position detection device
JPS6264904A (en) Apparatus for measuring shape
JPH1163917A (en) Optical system displacement sensor and optical system displacement measuring equipment using the same
JPH0629691B2 (en) Optical displacement measuring device
JPH0560603A (en) Method and device for detecting central position of parallel beam
JPH04270905A (en) Detector for detecting two-dimensional position of light spot
Gómez-Pavón et al. Optoelectronic automated system for length and profile measurements
JPS61137013A (en) Optical measurement of minute displacement
JPH0476587B2 (en)