JPS62153743A - Probe rotating type ultrasonic flaw detection apparatus - Google Patents

Probe rotating type ultrasonic flaw detection apparatus

Info

Publication number
JPS62153743A
JPS62153743A JP60295990A JP29599085A JPS62153743A JP S62153743 A JPS62153743 A JP S62153743A JP 60295990 A JP60295990 A JP 60295990A JP 29599085 A JP29599085 A JP 29599085A JP S62153743 A JPS62153743 A JP S62153743A
Authority
JP
Japan
Prior art keywords
flaw detection
probe
water chamber
inspected
probe holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60295990A
Other languages
Japanese (ja)
Other versions
JPH0515223B2 (en
Inventor
Koji Sekiguchi
関口 宏治
Hiromitsu Watanabe
広光 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd, Power Reactor and Nuclear Fuel Development Corp filed Critical Tokyo Keiki Co Ltd
Priority to JP60295990A priority Critical patent/JPS62153743A/en
Publication of JPS62153743A publication Critical patent/JPS62153743A/en
Publication of JPH0515223B2 publication Critical patent/JPH0515223B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible not only to simultaneously perform flaw detection and dimensional measurement but also to automatically perform the positional alignment of a material to be inspected and a probe holder, by providing a guide holes to the central parts of partition walls to which a water chamber for flaw detection and a water chamber for dimensional measurement are respectively formed. CONSTITUTION:A probe holder 14 is rotated at a high speed and water is injected in a water chamber 38 for flaw detection and a water chamber 36 for dimensional measurement from the proper place of a groove 90 through a water guide part 92. A material P to be inspected is inserted through the guide member 86 in a rotor 84 from the leading end thereof by a feed device and further successively inserted through the bushings 46, 48, 50 provided to the partition walls 28, 30, 32 of the probe holder 14. Then, ultrasonic waves are vertically emitted to the material P to be inspected from dimension measuring probes 52, 54 to measure the dimension and thickness of the material P to be inspected. The flaw detection of said material P to be inspected is performed by a method wherein ultrasonic waves are obliquely emitted to the material P to be inspected from flaw detection probes 62, 64, 66, 68 and ultrasonic echoes reflected and returned from the interface of the damage or flaw present in the material P to be inspected are detected.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、探触子を探触子ホルダにて保持し。[Detailed description of the invention] [Industrial application field] In the present invention, a probe is held by a probe holder.

該探触子ホルダの中心部に被検材を挿通搬送し。The material to be inspected is inserted into the center of the probe holder and transported.

該被検材の回りに探触子ホルダを高速回転させて探傷を
行なう形式の探触子回転型超音波探傷装置に関する。
The present invention relates to a probe rotating type ultrasonic flaw detection device that performs flaw detection by rotating a probe holder around the test material at high speed.

[従来の技術] 一般に、金属管の中でも、高品質および品枯度を要求さ
れるもの、例えば、原子力関係で使用されるような極小
径管にあっては、管の傷や材質中の欠陥等についての散
布な超音波探傷のみならず、その内外径・肉厚等の寸法
測定(以下・を測という、)についても、散布な超音波
1測が行なわれる。
[Prior Art] In general, among metal pipes, those that require high quality and quality, such as extremely small diameter pipes used in nuclear power plants, are prone to scratches and defects in the material. Scattered ultrasonic flaw detection is performed not only for the measurement of dimensions such as inner and outer diameters and wall thicknesses (hereinafter referred to as measurement).

従来1.tflU波深傷装探傷しては、複数個の探触子
を探触子ホルダに保持させると共に、水室を形成して、
該ホルタを回転させることにより、探触子を被検材の回
りに回転させ、同時に、被検材を長さ方向に搬送するこ
とにより、該被検材の外周表面に螺旋状の走査軌跡を画
いて探傷を高密度で行なうものがあった。
Conventional 1. In TflU wave deep flaw detection, a plurality of probes are held in a probe holder, a water chamber is formed,
By rotating the holter, the probe is rotated around the test material, and at the same time, by transporting the test material in the length direction, a spiral scanning trajectory is created on the outer circumferential surface of the test material. There was one that carried out high-density flaw detection by drawing.

〜・方、超音波呼側装置としては、従来、適当なシール
を施した挿通孔を側壁に備えた水槽内に、呼側用探触子
を配置し、被検材を回転させつつ。
On the other hand, as an ultrasonic call-side device, conventionally, a call-side probe is placed in a water tank whose side wall has an insertion hole with a suitable seal, and the test material is rotated.

上記挿通孔を挿通して水槽内を搬送して、呼側を行なう
ものがあった。
There was one that carried out the calling side by inserting it through the above-mentioned insertion hole and transporting it inside the water tank.

[発明が解決しようとする問題点] しかし、これら従来の装置は、互いに独立の装置であっ
て、探傷と呼側とを別途性なう必要がある。そのため、
それぞれについて作業の段取りを行なう必要があり、作
業量が増えると共に、煩雑となり、しかも、検査に要す
る時間も長くなるという欠点がある。
[Problems to be Solved by the Invention] However, these conventional devices are mutually independent devices, and require separate functions for flaw detection and calling. Therefore,
It is necessary to set up the work for each one, which increases the amount of work, becomes complicated, and has the disadvantage that the time required for inspection also increases.

また、従来の1測装置にあっては、水槽を使用する形式
であるため、被検材を回転させる必要があり、従って、
回転数を大きくすることができず、検査に時間がかかる
欠点がある。
In addition, since the conventional single-measurement device uses a water tank, it is necessary to rotate the material to be tested.
It has the drawback that the rotation speed cannot be increased and inspection takes time.

さらに、上記従来の各装置は、被検材の中心と回転中心
とを一致させる位差合わせが容易でなかった・ 本発明は、このような欠点を解決すべくなされたもので
、探傷と呼側とを同時に行なうことができて、作業の段
取りが1回で済み、作業量を減少すると共に、作業を容
易にし、しかも、検査に時間がかからず、かつ、被検材
と探触子ホルダの回転中心との位置合わせをも自動的に
行ない得る、探触子回転型超音波探傷装置を提供するこ
とを目的とする。
Furthermore, with each of the conventional devices described above, it was not easy to align the center of the material to be inspected and the center of rotation. It is possible to perform both side and side at the same time, requiring only one setup, reducing the amount of work, making the work easier, and not only does it take less time to inspect, but also allows the inspection to be carried out more easily than the test material and the probe. It is an object of the present invention to provide a probe rotation type ultrasonic flaw detection device that can automatically perform alignment with the rotation center of a holder.

[問題点を解決するための手段] 本発明は、探触子を探触子ホルダにて保持し、該探触子
ホルダの中心部に被検材を挿通搬送し、該被検材の回り
に探触子ホルダを高速回転させて探傷を行なう形式の探
触子回転型超音波探傷装置において、上記問題点を解決
する手段として、上記探触子ホルダの両端部および中央
部の各々に隔壁を設けて、探傷用水室および1測用水室
を形成して、前者には探傷用探触子を、一方、後者には
呼側用探触子を配設し、 かつ、上記各隔壁の中心部に、被検材を、該被検材中心
と回転中心とをほぼ一致させて案内するガイド孔を設け
て構成されることを特徴とする。
[Means for Solving the Problems] The present invention holds a probe in a probe holder, inserts and conveys a test material into the center of the probe holder, and moves around the test material. In a rotating probe type ultrasonic flaw detection device that performs flaw detection by rotating the probe holder at high speed, as a means to solve the above problem, partition walls are installed at both ends and the center of the probe holder. A water chamber for flaw detection and a water chamber for one measurement are provided, and a flaw detection probe is disposed in the former, while a call side probe is disposed in the latter, and the center of each of the above-mentioned bulkheads is The test piece is characterized in that the test piece is provided with a guide hole for guiding the test material so that the center of the test material substantially coincides with the center of rotation.

[作 用] 本発明は、上記問題点解決手段に示すように、探触子ホ
ルダに、探傷用水室および1測用水室を形成して、前者
には探傷用探触子を、一方、後者には呼側用探触子を配
設しているので、探傷と同時に呼側を行なうことができ
る。この場合、両者の水室が隔壁にて分離されており、
それぞれに適した水距離を設定できる。しかも、1測用
水室を小さく設定することができる。
[Function] As shown in the above problem solving means, the present invention forms a flaw detection water chamber and one measurement water chamber in the probe holder, and the flaw detection probe is placed in the former, while the latter is provided with a flaw detection water chamber. Since a probe for the call side is installed in the tester, it is possible to conduct the call side at the same time as flaw detection. In this case, both water chambers are separated by a partition wall,
You can set the appropriate water distance for each. Furthermore, the water chamber for one measurement can be set small.

また、本発明は、上記各隔壁の中心部に、被検材を、該
被検材中心と回転中心とをほぼ一致させて案内するガイ
ド孔を設けているので、被検材と、探触子ホルダの回転
中心との位置合わせを行なうことなく、被検材がガイド
孔により位置決めされる。そのため、極小径管であ−っ
ても、精密に探傷および呼側を行ない得る。
Further, in the present invention, a guide hole is provided in the center of each of the partition walls to guide the test material so that the center of the test material and the center of rotation are substantially aligned, so that the test material and the probe The test material is positioned by the guide hole without alignment with the rotation center of the child holder. Therefore, even in extremely small diameter pipes, flaw detection and call side can be performed accurately.

[実施例] 本発明の実施例について図面を参照して説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

〈実施例の構成〉 第1図は本実施例が適用される探触子回転型超音波探傷
装置の外観を示す斜視図、第2図は本実施例の主要部で
ある探触子ホルダを示す断面図、第3図は本実施例の各
探触子の配置を示す説明図である。
<Configuration of Example> Figure 1 is a perspective view showing the external appearance of a rotating probe type ultrasonic flaw detection device to which this example is applied, and Figure 2 shows a probe holder, which is the main part of this example. The sectional view shown in FIG. 3 is an explanatory diagram showing the arrangement of each probe of this embodiment.

先ず、第1図に示す探触子回転型超音波探傷装置につい
て説明する。
First, the probe rotation type ultrasonic flaw detection apparatus shown in FIG. 1 will be explained.

同図において、本実施例装置は、各部分が架台10上面
に、−直線上に配置され、中央部に、回転駆動および信
号の電気的接続を行なう装置本体12が設置され、該本
体12の一端部に探触子ホルダ部13が連結され、かつ
、架台lOの長手方向両端側に、被検材Pを搬送する搬
送装置16および18が設に搬送できるように中心軸を
一致させて配置しである。
In the figure, each part of the device of this embodiment is arranged on the upper surface of a pedestal 10 in a straight line, and a device main body 12 that performs rotational drive and electrical connection of signals is installed in the center. The probe holder part 13 is connected to one end, and the transport devices 16 and 18 for transporting the test material P are arranged at both ends in the longitudinal direction of the pedestal lO so that their central axes coincide so that they can be transported precisely. It is.

探触子ホルダ部13内部の探触トホルタ14は、第2図
に示すように、取付部20.1測部22、探傷部24お
よび媒質導入部26からなり、全体として複数の異径円
筒を回心に干ねた構成となっている。そして、各円筒の
境界部分には、隔壁28.30および32か設けである
。なお、同図に示す部分は、高速回転する部分であって
、この外側に、回転しない外カバー34(第1図参照)
′$の非回転部分が設けられている。
As shown in FIG. 2, the probe holder 14 inside the probe holder section 13 consists of a mounting section 20.1, a measuring section 22, a flaw detecting section 24, and a medium introduction section 26, and as a whole has a plurality of cylinders with different diameters. The structure is designed to encourage conversion. Partition walls 28, 30 and 32 are provided at the boundary between each cylinder. The part shown in the same figure is a part that rotates at high speed, and on the outside thereof, there is an outer cover 34 that does not rotate (see Fig. 1).
A non-rotating part of '$ is provided.

隔壁28.30および32により、1測用水室38およ
び探傷用水室38が設けられている。また、隔壁28.
30および32の各中心部には、貫通孔40.42およ
び44が同心に設けである。これら貫通孔40.42お
よび44には、各々中心が探触子ホルダ14の中心と一
致すると共に、内径が被検材Pの外径にほぼ等しくなる
ように精密に加工した位置決め用のブッシング46.4
8および50が嵌着しである。このブッシング46.4
8および50に設けられた孔が、被検材Pを探触子ホル
タ14の回転中心と軸心を合わせて案内するガイド孔と
なる。
A water chamber 38 for one measurement and a water chamber 38 for flaw detection are provided by the partition walls 28, 30 and 32. Also, the partition wall 28.
Through holes 40, 42 and 44 are provided concentrically in the center of each of 30 and 32, respectively. These through holes 40, 42 and 44 each have positioning bushings 46 that are precisely machined so that their centers coincide with the center of the probe holder 14 and their inner diameters are approximately equal to the outer diameter of the test material P. .4
8 and 50 are fitted. This bushing 46.4
The holes provided at 8 and 50 serve as guide holes for guiding the test material P so that its axis is aligned with the rotation center of the probe holter 14.

呼側部22には、1測用探触子−52,54と、温度補
償用探触子56(第3図参照)および反射板58とが、
端部を・1測用水室36に臨ませて配tされている。探
触子52.54.58は、適当な保持部材により保持さ
れて取付けられる。例えば、探触子−52,54につい
ては、第2図に示すような保持部材60により、水距離
の調整を行なうと1(に、その位置で保持固定される。
The call side part 22 includes 1 measurement probes 52 and 54, a temperature compensation probe 56 (see FIG. 3), and a reflection plate 58.
It is arranged with its end facing the water chamber 36 for one measurement. The probes 52, 54, 58 are held and mounted by suitable holding members. For example, when the water distance is adjusted, the probes 52 and 54 are held and fixed at that position by a holding member 60 as shown in FIG.

探傷部24には、探傷用探触子62.84.88および
68が各端部を探傷用水室38に臨ませて配置されてい
る。なお、探傷用探触子68は、切断面のf、市にあっ
て、断面図である第2図には本来は表れないはずである
が、位置を示すため同図に示しである。
In the flaw detection section 24, flaw detection probes 62, 84, 88, and 68 are arranged with each end facing the flaw detection water chamber 38. Note that the flaw detection probe 68 is located at f of the cut surface and should not originally appear in the cross-sectional view of FIG. 2, but is shown in the same figure to show its position.

これらの探傷用探触子82.84.66および68は、
被検材Pに斜めに超音波を入射させるため、回転中心に
対して斜めに設定されている。この探触子も、適当な保
持部材により、水距離および角度の:JJ節を可能とし
である0例えば、探傷用探触子62、84は、保持部材
70.72により、水距離調部および角度調節を可能と
して保持されている。
These flaw detection probes 82, 84, 66 and 68 are
In order to make the ultrasonic waves obliquely enter the test material P, it is set obliquely with respect to the center of rotation. This probe can also adjust the water distance and angle by using a suitable holding member. It is held so that the angle can be adjusted.

取付部20は、上記隔壁2日の外側にフランジ状に形成
され、本体12側においてフランジ状に形成される取付
部74に、複数本のボルト78により固着される。この
取付部2oには、探触子52等に通じる信号線を接続す
るコネクタのプラグ78が探触子対応に設けられている
The attachment portion 20 is formed in a flange shape on the outside of the partition wall 2, and is fixed to an attachment portion 74 formed in a flange shape on the main body 12 side with a plurality of bolts 78. A connector plug 78 for connecting a signal line leading to the probe 52 and the like is provided on the mounting portion 2o in correspondence with the probe.

これに対し、本体12側には、上記プラグ78に対応し
て、レセプタクル80が取付部74に設けである。この
レセプタクル80から接続される信号線82は、固定側
と回転側との電気酷接続を行なうコンデンサカプリング
等の信号授受部(図示せず)に接続される。また、取付
部74は、その中心部がロータ84に連結されている。
On the other hand, on the main body 12 side, a receptacle 80 is provided in the mounting portion 74 corresponding to the plug 78 described above. A signal line 82 connected from this receptacle 80 is connected to a signal transmitting/receiving section (not shown) such as a capacitor coupling that makes electrical connection between the stationary side and the rotating side. Further, the mounting portion 74 is connected to the rotor 84 at its center.

このロータ84は、架台10内に格納された電動機と動
力伝達f段(いずれも図示せず)とにより回転駆動され
、取付部74を介して探触子ホルダ14を高速回転させ
る。さらに、このロータ84の中心部には、被検材Pを
回転中心に位置させるガイド部材86が貫装しである。
This rotor 84 is rotationally driven by an electric motor and a power transmission stage f (both not shown) housed in the pedestal 10, and rotates the probe holder 14 at high speed via the mounting portion 74. Furthermore, a guide member 86 for positioning the test material P at the center of rotation is inserted through the center of the rotor 84.

探触子ホルダ14の端部に設けられた媒質導入部2Gは
、上記隔壁32にポルト88により固着しである。この
媒質導入部26の外周には、溝30が設けてあり、この
溝90の適所から探傷用水室38に連通する導水部92
が設けである。また、探傷用水室38と1測用水室36
とを連通ずるように、隔壁30にも導水孔93が設けで
ある。そして、上記溝90は、回転しないケース94に
密閉され、該ケース94に設けられた媒質導入口96か
ら媒質(通常は水)が加圧注入される構成となっている
The medium introduction part 2G provided at the end of the probe holder 14 is fixed to the partition wall 32 by a port 88. A groove 30 is provided on the outer periphery of this medium introduction part 26, and a water guide part 92 that communicates with the flaw detection water chamber 38 from an appropriate position of this groove 90
is the provision. In addition, a flaw detection water chamber 38 and a first measurement water chamber 36 are also provided.
Water guide holes 93 are also provided in the partition wall 30 so as to communicate with each other. The groove 90 is sealed by a non-rotating case 94, and a medium (usually water) is injected under pressure from a medium inlet 96 provided in the case 94.

なお、上記構成では、1側用水室36が探触子ホルダ1
4の取付部側に設けられているか、これは。
Note that in the above configuration, the first side water chamber 36 is connected to the probe holder 1.
Is this installed on the mounting part side of No. 4?

探触子ホルダ14が取付部20にて片持状に支持される
構造となっているので、大きな遠心力の加わる径の大き
い部分を基部側として、回転を安定化させるためである
Since the probe holder 14 has a structure in which it is supported in a cantilevered manner by the mounting portion 20, the rotation is stabilized with the large-diameter portion to which a large centrifugal force is applied being on the base side.

また、上記実施例では、;f Jlll ! 22およ
び探傷部24の外周に、各々、円筒状のカバー98.1
00が装管されている。これは、探触子ホルタ14から
排出された水が過度に飛散しないよう、また、探触子の
引出線を保護するためである。
Furthermore, in the above embodiment, ;f Jllll! 22 and the outer periphery of the flaw detection section 24, respectively, a cylindrical cover 98.1 is provided.
00 is installed. This is to prevent the water discharged from the probe holter 14 from scattering excessively and to protect the lead wire of the probe.

〈実施例の作用〉 上記のように構成される本実施例の作用について、上記
各図を参照して説明する。
<Operation of the embodiment> The operation of the embodiment configured as described above will be explained with reference to the above-mentioned figures.

先ず、図示しない電動機によりロータ84を回転させて
、探触子ホルダ14を高速回転させる。また、該探触子
ホルダ14に、媒質として水を媒質導入口96から注入
する。この注入は、媒質導入口96にバイブを連結して
行なう。注入された水は、溝90の適所から導水部92
を経て探傷用水室38および呼側用水室36に達して、
これらを満たし、溢れた水は、図示していないドレイン
から探触子ホルダ14外部に排出される。
First, the rotor 84 is rotated by an electric motor (not shown) to rotate the probe holder 14 at high speed. Further, water as a medium is injected into the probe holder 14 from the medium inlet 96. This injection is performed by connecting a vibrator to the medium introduction port 96. The injected water flows from the appropriate position of the groove 90 to the water guide section 92.
It reaches the flaw detection water chamber 38 and the calling side water chamber 36 through
The water that fills these and overflows is discharged to the outside of the probe holder 14 from a drain (not shown).

一方、被検材Pは、搬送装置16により先端からロータ
84内のガイド部材86に挿通し、さらに、探触子ホル
ダ14の隔壁28.30および32に設けであるブッシ
ング46.48および50に順次挿通し、搬送装置18
に達して、第1図矢視A方向に一定の速度で搬送される
On the other hand, the test material P is passed through the guide member 86 in the rotor 84 from the tip by the conveyance device 16, and is further inserted into the bushings 46, 48 and 50 provided on the partition walls 28, 30 and 32 of the probe holder 14. Sequential insertion, conveyance device 18
, and is transported at a constant speed in the direction of arrow A in FIG.

呼側および探傷は、各々図示しないリミットスイッチ等
の近接センサにより、被検材Pの先端の接近が検出され
ると開始される。
The call side and the flaw detection are started when the approach of the tip of the test material P is detected by a proximity sensor such as a limit switch (not shown).

呼側は、呼側用探触子52.54からa音波を被検材P
に垂直に放射し、そのエコーが帰るまでの時間を計測し
て、該被検材Pの外径寸法、内径寸法、肉厚等を計測す
る。
On the call side, a sound wave is transmitted from the call side probes 52 and 54 to the test material P.
The outer diameter, inner diameter, wall thickness, etc. of the test material P are measured by emitting it perpendicularly to the object P and measuring the time it takes for the echo to return.

なお、このt測は、媒質の温度変化による音速変化によ
り、誤差を生じ易い。そのため1本実施例では、温度補
償を行なっている。
Note that this t-measurement is likely to cause errors due to changes in the speed of sound due to changes in the temperature of the medium. Therefore, in this embodiment, temperature compensation is performed.

この温度補償は、温度補償用探触子56と、これに対し
て一定間隔を持って対向する反射板58とにより行なわ
れる。即ち、温度補償用探触子56から発射される超音
波が反射板58にて反射され、再び、温度補償用探触子
56にて検出されるまでに要する時間の音速による変化
を検出し、これにより呼側用探触子からの信号を補正し
て、温度変化の影響を除去する。
This temperature compensation is performed by a temperature compensating probe 56 and a reflecting plate 58 facing the probe 56 at a constant distance. That is, detecting changes in the time required for the ultrasonic waves emitted from the temperature compensation probe 56 to be reflected by the reflection plate 58 and detected again by the temperature compensation probe 56 due to the speed of sound, This corrects the signal from the calling side probe and eliminates the influence of temperature changes.

このような考え方の温度補償は、従来の水槽にて呼側を
行なう場合にも取入れられていた。しかし、この従来の
温度補償は、水槽が大きいため。
Temperature compensation based on this concept has also been adopted in the case of calling side in a conventional water tank. However, this traditional temperature compensation is difficult due to the large size of the aquarium.

水の温度分布が不均一となり、正確な補正ができなかっ
た。
The temperature distribution of the water became uneven, making it impossible to make accurate corrections.

本実施例では、温度補償を行なう寸測用水室の容積が小
さく、しかも、高速回転により水が攪拌されるので、温
度分布が均一となって、精度良く補正を行なうことがで
きる。
In this embodiment, the volume of the measuring water chamber for temperature compensation is small, and the water is stirred by high-speed rotation, so the temperature distribution becomes uniform and correction can be performed with high precision.

探傷は、探傷用の探触子62.64.68および68か
ら、被検材Pに対して斜めに超音波を放射し、被検材P
内部にある傷や欠陥の界面で反射されて戻ってくる1t
fl盲波エコーを検出することにより行なう。この探傷
は、探触)ホルダ14が高速回転しているため、4個の
探触子82,84.66および68による4条の螺旋状
走査軌跡により探傷が行なわれる。
Flaw detection is performed by emitting ultrasonic waves obliquely to the test material P from the flaw detection probes 62, 64, 68 and 68.
1t reflected back at the interface of internal scratches and defects
This is done by detecting fl blind wave echoes. Since the probe holder 14 is rotating at high speed, this flaw detection is performed by four spiral scanning trajectories by the four probes 82, 84, 66, and 68.

このように、未実施例では、呼側と探傷とが、被検材を
1回の搬送だけで、同時に行なわれるので、作業時間の
大幅な減少が可能である。
In this way, in the unimplemented example, the calling side and the flaw detection are carried out simultaneously by transporting the material to be inspected only once, making it possible to significantly reduce the working time.

また、呼側および探傷に際し、被検材Pは、3グ48.
48および50により拘束されるため、その中心軸が探
触子ホルダ14の回転中心とほぼ一致した状態で、呼側
および探傷が行なわれる。従って、極小径管等の径が小
さい被検材についても、精度よく呼側および探傷を行な
い得る。なお、本実施例では、これらのブッシング4B
、48および50に、その開口部にテーパが設けである
ので、被検材の先端を挿通する際に、先端部との衝突が
なく、容易に挿通することができる。
In addition, on the call side and during flaw detection, the material P to be tested is 3g 48.
Since it is restrained by 48 and 50, the call side and flaw detection are performed with its central axis substantially coinciding with the center of rotation of the probe holder 14. Therefore, it is possible to perform accurate call-side and flaw detection even on specimens with small diameters such as extremely small diameter pipes. In addition, in this embodiment, these bushings 4B
, 48 and 50 are tapered at their openings, so that when the tip of the test material is inserted, there is no collision with the tip, and the insertion can be made easily.

〈実施例の変形〉 上記実施例では、探触子ホルダの隔壁中心部に貫通孔を
設け、これに位置決め用のブッシングを嵌着しているが
、貫通孔自体を精密加工して、ガイド孔とし、ブッシン
グを省略してもよい。
<Modification of the embodiment> In the above embodiment, a through hole is provided in the center of the partition wall of the probe holder, and a positioning bushing is fitted into this. and the bushing may be omitted.

また、本実施例では、探傷用探触子を4個使用している
が、これに限らないこと勿論である。
Further, in this embodiment, four flaw detection probes are used, but of course the number is not limited to this.

[発明の効果] 以上説明したように本発明は、探傷と呼側とを同時に行
なうことができて2作業の段取りが1回し、しかも、検
査に時間がかからず、かつ、被検材と探触子ホルタの回
転中心との位置合わせをも自動的に11ない得る効果が
ある。
[Effects of the Invention] As explained above, the present invention allows flaw detection and call side to be performed at the same time, requiring only one set-up for two operations, shortening the inspection time, and making it possible to This has the effect of automatically aligning the probe holster with the center of rotation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例か適用される探触子回転型超)”1波
深傷装置の外観を示す斜視図、第2図は本実施例の1要
部である探触子ホルタを示す断面図、:p”S 3図は
(実施例の各探触子−の配置を示す説明図である。 P・・・被検材      10・・・架台12・・・
装置本体     14・・・探触子ホルダ16.18
・・・搬送装置   20・・・取付部22・・・す3
14部       24・・・探傷部26・・・媒質
導入部    28.30.32・・・隔壁34・・・
外カバー     36・・・1測用水室38・・・探
傷用水室    40.42.44・・・貫通孔46.
48.50・・・ブッシング 52.54・・・・J−測用探触7−56・・・温度補
償用探触子58・・・反射板      60・・・保
持部62.64.66.68・・・探傷用探触子70.
72・・・保持部材   74・・・取付部76.88
・・・ボルト78・・・プラグ80・・・レセプタクル
   82・・・信号線84・・・ロータ      
86・・・ガイド部材90・・・溝        9
2・・・導水部94・・・ケース96・・・媒質導入[
198,100・・・カバー
Fig. 1 is a perspective view showing the external appearance of a rotary probe type ultra) single-wave deep wound device to which this embodiment is applied, and Fig. 2 shows a probe holter, which is one of the main parts of this embodiment. Cross-sectional view, :p"S Figure 3 is an explanatory diagram showing the arrangement of each probe in the example. P... Test material 10... Frame 12...
Device body 14... Probe holder 16.18
...Conveyance device 20...Mounting section 22...S3
14 parts 24...Flaw detection part 26...Medium introduction part 28.30.32...Partition wall 34...
Outer cover 36...1 Water chamber for inspection 38...Water chamber for flaw detection 40.42.44...Through hole 46.
48.50...Bushing 52.54...J-measurement probe 7-56...Temperature compensation probe 58...Reflection plate 60...Holding part 62.64.66. 68...Flaw detection probe 70.
72... Holding member 74... Mounting part 76.88
... Bolt 78 ... Plug 80 ... Receptacle 82 ... Signal line 84 ... Rotor
86...Guide member 90...Groove 9
2...Water guide section 94...Case 96...Medium introduction [
198,100...Cover

Claims (2)

【特許請求の範囲】[Claims] (1)探触子を探触子ホルダにて保持し、該探触子ホル
ダの中心部に被検材を挿通搬送し、該被検材の回りに探
触子ホルダを高速回転させて探傷を行なう形式の探触子
回転型超音波探傷装置において、 上記探触子ホルダの両端部および中央部の 各々に隔壁を設けて、探傷用水室および寸測用水室を形
成して、前者には探傷用探触子を、一方、後者には寸測
用探触子を配設し、 かつ、上記各隔壁の中心部に、被検材を、該被検材中心
と回転中心とをほぼ一致させて案内するガイド孔を設け
て構成されることを特徴とする探触子回転型超音波探傷
装置。
(1) Hold the probe in a probe holder, insert and transport the test material into the center of the probe holder, and rotate the probe holder at high speed around the test material for flaw detection. In a rotating probe type ultrasonic flaw detection device, partition walls are provided at both ends and the center of the probe holder to form a water chamber for flaw detection and a water chamber for dimension measurement. A probe for flaw detection is placed on the other hand, and a probe for dimension measurement is placed on the latter, and the material to be tested is placed at the center of each of the partition walls, with the center of the material to be tested and the center of rotation approximately matching. 1. A rotating probe type ultrasonic flaw detection device comprising a guide hole for guiding the probe.
(2)上記探触子ホルダの探傷用水室および寸測用水室
を設けるに際し、前者を探触子ホルダの先端側に、後者
を該探触子ホルダの基端側に配置し、該探触子ホルダの
基端を回転駆動部に取付けてなる特許請求の範囲第1項
記載の探触子回転型超音波探傷装置。
(2) When providing the water chamber for flaw detection and the water chamber for dimension measurement of the probe holder, the former is placed on the distal end side of the probe holder, the latter on the base end side of the probe holder, and the A probe rotating type ultrasonic flaw detection apparatus according to claim 1, wherein the base end of the child holder is attached to a rotation drive section.
JP60295990A 1985-12-27 1985-12-27 Probe rotating type ultrasonic flaw detection apparatus Granted JPS62153743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60295990A JPS62153743A (en) 1985-12-27 1985-12-27 Probe rotating type ultrasonic flaw detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295990A JPS62153743A (en) 1985-12-27 1985-12-27 Probe rotating type ultrasonic flaw detection apparatus

Publications (2)

Publication Number Publication Date
JPS62153743A true JPS62153743A (en) 1987-07-08
JPH0515223B2 JPH0515223B2 (en) 1993-03-01

Family

ID=17827706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295990A Granted JPS62153743A (en) 1985-12-27 1985-12-27 Probe rotating type ultrasonic flaw detection apparatus

Country Status (1)

Country Link
JP (1) JPS62153743A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423219A (en) * 1992-11-30 1995-06-13 Mitsubishi Nuclear Fuel Co. Defects detection device for fuel rod weldment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249321A (en) * 1994-03-10 1995-09-26 Tatsuo Kumeta Electric cord

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119982A (en) * 1978-02-10 1979-09-18 Commissariat Energie Atomique Device for testing quality of tubular article by ultrasonic waves
JPS5888653A (en) * 1981-11-24 1983-05-26 Nippon Kokan Kk <Nkk> Ultrasonic flaw detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119982A (en) * 1978-02-10 1979-09-18 Commissariat Energie Atomique Device for testing quality of tubular article by ultrasonic waves
JPS5888653A (en) * 1981-11-24 1983-05-26 Nippon Kokan Kk <Nkk> Ultrasonic flaw detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423219A (en) * 1992-11-30 1995-06-13 Mitsubishi Nuclear Fuel Co. Defects detection device for fuel rod weldment

Also Published As

Publication number Publication date
JPH0515223B2 (en) 1993-03-01

Similar Documents

Publication Publication Date Title
JPH04221758A (en) Ultrasonic inspecting probe for bolt and operating method thereof
JPH04233455A (en) Ultrasonic inspecting apparatus
JP2006153546A (en) Contact type steel pipe dimension-measuring device
US4388831A (en) Ultrasonic probe for nondestructive inspection
JPS62153744A (en) Probe rotating type ultrasonic flaw detection apparatus
JPS62153743A (en) Probe rotating type ultrasonic flaw detection apparatus
JPH04215061A (en) Ultrasonic inspecting apparatus of head screw which is screwed into component
US4991441A (en) Positioning assembly for a transducer in a boresonic inspection system
CN115836876B (en) Geometric distortion detection device and detection method for ultrasonic imaging equipment
US5398551A (en) Ultrasonic testing method for balls
KR20200061419A (en) Automatic rotating ultrasonic inspection system using brushless
JPH0320775Y2 (en)
CN112461167B (en) Nondestructive testing device for thickness of damping layer of torsional vibration damper
JPH0579829A (en) Probe jig in ultrasonic thickness inspecting apparatus and ultrasonic thickness inspecting apparatus using the probe jig
JPS62153741A (en) Probe rotating type ultrasonic flaw detection apparatus
CN113777173A (en) Ultrasonic nonlinear measurement clamping device and measurement method thereof
JPS6170456A (en) Inspection head-holder for device ultrasonic-inspecting welding seam of welded large-diameter pipe
JP2569705Y2 (en) Probe rotating ultrasonic flaw detector
JP2994852B2 (en) Ultrasonic probe for boiler tube flaw detection
GB1582874A (en) Test body for ultrasonic testing
JPH0540873U (en) Ultrasonic probe holding device
JPS61100653A (en) Method of adjusting angle of probe
JPS63241460A (en) Scanning jig for ultrasonic probe
JPS5868663A (en) Ultrasonic flaw detector with self-sensitivity compensating device
JPH0524052Y2 (en)