JPH0540873U - Ultrasonic probe holding device - Google Patents

Ultrasonic probe holding device

Info

Publication number
JPH0540873U
JPH0540873U JP9803591U JP9803591U JPH0540873U JP H0540873 U JPH0540873 U JP H0540873U JP 9803591 U JP9803591 U JP 9803591U JP 9803591 U JP9803591 U JP 9803591U JP H0540873 U JPH0540873 U JP H0540873U
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
nozzle
test material
holding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9803591U
Other languages
Japanese (ja)
Other versions
JP2541958Y2 (en
Inventor
廣章 近藤
篤志 山代
広光 渡辺
智信 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Tokyo Keiki Inc
Original Assignee
JFE Steel Corp
Tokyo Keiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Tokyo Keiki Inc filed Critical JFE Steel Corp
Priority to JP1991098035U priority Critical patent/JP2541958Y2/en
Publication of JPH0540873U publication Critical patent/JPH0540873U/en
Application granted granted Critical
Publication of JP2541958Y2 publication Critical patent/JP2541958Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】被検材の回りに超音波探触子を回転して周面を
走査し、オンライン欠陥検出における被検材との音響結
合の改良を図る。 【構成】内筒体1とこの内筒体1に外方より被冠され当
該内筒体1との間に水室3を形成する外筒体2とから成
り駆動手段により回転駆動される探触子ホルダ10を有
している。そして、この探触子ホルダ10に水室3に音
響結合剤を導入する給水口12が形成され、探触子ホル
ダ10に超音波の伝搬経路を成すノズル16を有する超
音波探触子8が該ノズル16が水室3を貫通した状態で
且その先端が内筒体1に嵌合した状態で取り付けられ、
ノズル16の先端が内筒体1の内周面に開口するととも
に連通口17を介して水室3に連通している。
(57) [Abstract] [Purpose] An ultrasonic probe is rotated around a test material to scan the peripheral surface to improve acoustic coupling with the test material in online defect detection. A probe which is composed of an inner cylinder body 1 and an outer cylinder body 2 which is crowned from the outside to form a water chamber 3 between the inner cylinder body 1 and the inner cylinder body 1 and which is rotationally driven by a driving means. It has a tentacle holder 10. Then, a water supply port 12 for introducing an acoustic coupling agent into the water chamber 3 is formed in the probe holder 10, and an ultrasonic probe 8 having a nozzle 16 forming an ultrasonic wave propagation path is formed in the probe holder 10. The nozzle 16 is attached in a state where the nozzle 16 penetrates the water chamber 3 and the tip of the nozzle 16 is fitted into the inner cylinder 1.
The tip of the nozzle 16 opens to the inner peripheral surface of the inner cylindrical body 1 and communicates with the water chamber 3 through the communication port 17.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、超音波探触子保持装置に係り、更に詳しくは、ライン上を搬送され る管材あるいは丸棒材等の被検材の周囲を超音波探触子を回転させながら被検材 の周面をヘリカル走査する方式の超音波探触子保持装置に関する。 The present invention relates to an ultrasonic probe holding device, and more specifically, to an ultrasonic probe holding device that rotates an ultrasonic probe around a test material such as a pipe or a round bar that is conveyed on a line. The present invention relates to an ultrasonic probe holding device of a system of helically scanning a peripheral surface.

【0002】[0002]

【背景技術】[Background technology]

この種の超音波探触子保持装置の従来例が、図5に示されている。この図にお いて、丸棒材から成る被検材30より幾分大きな内径を有する内筒体21とこの 内筒体21に外方より被冠され当該内筒体21との間に水室23を形成する外筒 体22とから探触子ホルダ20が構成されている。この内、外筒体22の周面に は、図示の如く、相互に180度を成す位置に超音波探触子24が当該周面に直 交する方向(半径方向)に向かって取り付けられ保持されている。また、この外 筒体22の図における右端面近傍にはフランジ部22Aが設けられ、このフラン ジ部22Aの図中上端部には、外部から音響結合剤としての水を水室23内に送 り込むための給水口22Bが設けられている。一方、内筒体21の周面には、超 音波探触子24を構成する図示しない超音波振動子の超音波の伝搬方向先の位置 に通水口25がそれぞれ設けられている。また、この内筒体21の内周面の両端 部は、図示如くテーパ状に面取がなされているが、これは探触子ホルダ20内へ の被検材30の挿入を円滑に行ないかつ通水口25を介して被検材側に流出した 水が効率良く外部に排出されるようにするためである。この図5において、符号 26は、内筒体21と外筒体22とを結合するボルトを示す。 A conventional example of this type of ultrasonic probe holding device is shown in FIG. In this figure, an inner cylindrical body 21 having an inner diameter somewhat larger than that of a test material 30 made of a round bar and a water chamber between the inner cylindrical body 21 and the inner cylindrical body 21 which is crowned from the outside. The probe holder 20 is composed of the outer cylindrical body 22 forming 23. Of these, as shown in the drawing, the ultrasonic probe 24 is attached to and held on the peripheral surface of the outer cylindrical body 22 in a direction (radial direction) directly intersecting with the peripheral surface at a position forming an angle of 180 degrees with each other. Has been done. A flange portion 22A is provided in the vicinity of the right end surface of the outer cylindrical body 22 in the drawing, and water as an acoustic coupling agent is sent from the outside into the water chamber 23 at the upper end portion of the flange portion 22A in the drawing. A water supply port 22B for inserting the water is provided. On the other hand, on the peripheral surface of the inner cylindrical body 21, water passages 25 are provided at positions ahead of the ultrasonic wave propagation direction of an ultrasonic transducer (not shown) that constitutes the ultrasonic probe 24. Further, both end portions of the inner peripheral surface of the inner cylindrical body 21 are chamfered in a tapered shape as shown in the drawing, which facilitates insertion of the test material 30 into the probe holder 20. This is so that the water that has flowed out to the test material side through the water passage port 25 can be efficiently discharged to the outside. In FIG. 5, reference numeral 26 indicates a bolt that connects the inner cylindrical body 21 and the outer cylindrical body 22.

【0003】 上記の如く構成された従来の超音波探触子保持装置によると、図示しない駆動 手段により探触子ホルダ20を回転駆動しながら給水口22Bを介して水室23 内へ外部から超音波伝搬の音響結合に用いられる水を送り込むと、この水が通水 口25を介して被検材30側に流れ出し図中符号WPで示す水柱が形成され、超 音波探触子24内部の超音波振動子から水室23内へ放射(送波)された超音波 は水柱WPを介して被検材30の表面に伝達され、該表面で反射してこの反射さ れた超音波が同様に水柱WPを介して超音波探触子24に伝達され該超音波探触 子24内部の超音波振動子で受波される。このようにして、搬送ライン上を走行 する被検材30の全周面にわたるヘリカル走査並びに微小欠陥検出等がなされて いた。According to the conventional ultrasonic probe holding device configured as described above, the ultrasonic holder is rotated from the outside into the water chamber 23 via the water supply port 22B while the probe holder 20 is rotationally driven by the driving means (not shown). When water used for acoustic coupling of sound wave propagation is fed, this water flows out to the test material 30 side through the water passage port 25, and a water column indicated by the reference numeral WP in the figure is formed. The ultrasonic wave radiated (transmitted) from the sound wave oscillator into the water chamber 23 is transmitted to the surface of the test material 30 through the water column WP, is reflected by the surface, and the reflected ultrasonic wave is similarly. It is transmitted to the ultrasonic probe 24 via the water column WP and received by the ultrasonic transducer inside the ultrasonic probe 24. In this way, helical scanning and detection of minute defects are performed over the entire peripheral surface of the material 30 to be inspected traveling on the transport line.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

上記のような超音波探触子保持装置では、探触子ホルダ20の外筒体22に保 持された超音波探触子24から水室23内へ超音波が放射されることから、内筒 体21の通水口25近傍から反射された超音波は超音波探触子24との間に多重 反射を発生することがあり、これらは雑エコーとして欠陥検出に悪影響を与える ,即ち,放射(送波)された超音波の一部が上記の如く反射されるので、通水口 25と被検材30との間に形成された水柱WPを介して被検材30に伝達される 超音波のレベルが低下し、従って、欠陥からの反射信号のレベルも減少し微小欠 陥の正確な検出がきわめて困難になる。このため、被検材30に到達する超音波 のレベルを増加する必要があり、そのための手段として通水口25の寸法を大き くすることが考えられるが、この場合には、探触子ホルダ20が高速度で回転す るとき、遠心力の作用により通水口25と被検材30との間に形成される音響結 合用の水柱WPの形成が阻害されるので、該水柱WPを十分に形成するためには その高さをあまり大きくできないという不都合があり、また、高さを適度に設定 した場合にあっても通水口25の寸法を大きくすると流出量が増加して水室内の 加圧が困難になるとともに回転速度が増加すると遠心力も大きくなるので、水柱 WPを正しく形成することが一層困難になり、これがため超音波の被検材30へ の伝達がなされずひいては正確な欠陥の検出が殆ど不可能になるという不都合が あった。更に、被検材30の偏心量が大きい場合も遠心力の影響を受け上記の場 合と同様の状態を呈すると考えられるので、内筒体21の内周面と被検材30の 外周面との間隙を小さくし且被検材30の真円度、真直度及び搬送時の軸芯の振 れ量を厳しく規制しなければならないという不都合があった。 In the ultrasonic probe holding device as described above, ultrasonic waves are radiated into the water chamber 23 from the ultrasonic probe 24 held by the outer cylindrical body 22 of the probe holder 20, The ultrasonic waves reflected from the vicinity of the water passage 25 of the cylindrical body 21 may generate multiple reflections with the ultrasonic probe 24, and these adversely affect the defect detection as coarse echo, that is, the radiation ( Since a part of the transmitted ultrasonic wave is reflected as described above, the ultrasonic wave transmitted to the test material 30 is transmitted through the water column WP formed between the water passage 25 and the test material 30. As a result, the level decreases, and the level of the reflected signal from the defect also decreases, making accurate detection of minute defects extremely difficult. Therefore, it is necessary to increase the level of the ultrasonic waves reaching the test material 30, and as a means therefor, it is conceivable to increase the size of the water passage 25. In this case, in this case, the probe holder 20 When rotating at a high speed, the formation of the acoustically coupled water column WP formed between the water passage 25 and the test material 30 is hindered by the action of the centrifugal force, so that the water column WP is sufficiently formed. However, even if the height is set appropriately, increasing the size of the water inlet 25 will increase the outflow rate and increase the pressure in the water chamber. Since it becomes difficult and the centrifugal force increases as the rotation speed increases, it becomes more difficult to form the water column WP correctly, which prevents the ultrasonic waves from being transmitted to the material 30 to be detected, which in turn enables accurate detection of defects. Almost nothing There is a disadvantage that the function. Further, even when the amount of eccentricity of the test material 30 is large, it is considered that the same state as above is exhibited due to the influence of the centrifugal force. Therefore, the inner peripheral surface of the inner cylindrical body 21 and the outer peripheral surface of the test material 30 are considered. However, there is a problem in that the gap between the test material 30 and the roundness and straightness of the test material 30 and the swing amount of the shaft core during transportation must be strictly controlled.

【0005】[0005]

【考案の目的】[The purpose of the device]

本考案の目的は、かかる従来技術の有する不都合を改善し、とくに、被検材の 周りを回転する超音波探触子の回転速度が増加した場合にあっても、超音波探触 子と被検材との間に安定した水柱を形成し得るとともに微小欠陥の検出や肉厚の 測定を正確ならしめる超音波探触子保持装置を提供することにある。 The object of the present invention is to improve the disadvantages of the prior art, and in particular, even when the rotation speed of the ultrasonic probe rotating around the test material is increased, the ultrasonic probe and the It is an object of the present invention to provide an ultrasonic probe holding device capable of forming a stable water column between a material to be inspected and accurately detecting minute defects and measuring the wall thickness.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本考案の超音波探触子保持装置は、丸棒材等の被検材より幾分大きな内径を有 する内筒体とこの内筒体に外方より被冠され当該内筒体との間に結合剤収容室を 形成する外筒体とから成り駆動手段により回転駆動される探触子ホルダを有して いる。そして、この探触子ホルダの一部に結合剤収容室に音響結合剤を導入する 結合剤導入口が形成され、探触子ホルダに1または2以上の超音波探触子が保持 され、当該各探触子が超音波を送受波する超音波振動子を内蔵する本体部とこの 本体部の先端に設けられた超音波の伝搬経路を成すノズルブロックとにより構成 され、該ノズルブロックが結合材収容室を貫通した状態で且その先端が内筒体に 嵌合した状態で超音波探触子が探触子ホルダに取り付けられ、ノズルブロックに 先端が内筒体の内周面に開口するとともに連通口を介して前記結合材収容室に連 通したノズルが穿設されている。このような構成によって、前述した目的を達成 しようとするものである。 The ultrasonic probe holding device of the present invention includes an inner cylindrical body having an inner diameter somewhat larger than that of a test material such as a round bar and an inner cylindrical body externally crowned to the inner cylindrical body. In addition, it has a probe holder which is composed of an outer cylinder forming a binder accommodating chamber and is rotationally driven by a driving means. Then, a binder inlet for introducing the acoustic binder into the binder storage chamber is formed in a part of the probe holder, and one or more ultrasonic probes are held in the probe holder. Each probe is composed of a main body that contains an ultrasonic transducer that transmits and receives ultrasonic waves, and a nozzle block that is provided at the tip of the main body and that forms an ultrasonic wave propagation path. The ultrasonic probe is attached to the probe holder with the tip of the penetrating chamber contained and fitted into the inner cylinder, and the tip of the nozzle block opens to the inner peripheral surface of the inner cylinder. A nozzle that communicates with the binder storage chamber through the communication port is provided. With such a configuration, the above-mentioned object is to be achieved.

【0007】[0007]

【作用】[Action]

本考案によると、搬送される管材あるいは丸棒材の周りを超音波探触子が保持 された探触子ホルダが駆動手段により高速度で回転駆動され、これにより被検材 全周面にわたりヘリカル走査が行なわれる。このヘリカル走査の際に、音響結合 剤として加圧水を使用することができ、この加圧水が結合剤導入口を介して結合 剤収容室内に外部より送り込まれ、この送り込まれた加圧水が連通口を介してノ ズル内に送り込まれノズル先端の開口端から被検体表面に向かって放出される。 これにより、ノズル内及びノズルと被検体との間に加圧水により水柱が形成され 、しかもノズルと被検体との間に形成された水柱部分はその高さ(ノズル先端と 被検体との間隙の寸法)を小さくできるので、遠心力が作用してもその影響を殆 ど受けることがなく、安定した水柱が形成される。 According to the present invention, the probe holder, which holds the ultrasonic probe around the pipe material or the round bar material to be conveyed, is rotationally driven at a high speed by the driving means, and as a result, the helical circumference is applied to the entire circumference of the test material. The scan is performed. During this helical scan, pressurized water can be used as an acoustic binder, and this pressurized water is sent from the outside into the binder storage chamber via the binder inlet, and this sent pressurized water is passed through the communication port. It is sent into the nozzle and discharged from the opening end of the nozzle tip toward the surface of the subject. As a result, a water column is formed by the pressurized water inside the nozzle and between the nozzle and the subject, and the water column portion formed between the nozzle and the subject is at its height (the size of the gap between the nozzle tip and the subject). ) Can be made small, and even if centrifugal force acts, it is hardly affected and a stable water column is formed.

【0008】[0008]

【実施例】【Example】

以下、本考案の好適な実施例を図1ないし図4に基づいて説明する。図1には 、本考案の一実施例の超音波探触子保持装置の主要部の構成が図中上半分を断面 して示されている。この図において、丸棒材から成る被検材30より幾分大きな 内径を有する内筒体1とこの内筒体1に外方より被冠され当該内筒体1との間に 結合剤収容室としての水室3を形成する外筒体2とから図1中下半分に示す外観 の探触子ホルダ10が構成されている。この探触子ホルダ10は、ここでは、図 示していないが、実際には図示しない公知の駆動手段により回転駆動されるよう になっている。 Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the configuration of the main part of an ultrasonic probe holding device according to an embodiment of the present invention, with the upper half of the drawing being cross-sectioned. In this figure, a binder accommodating chamber is provided between an inner cylindrical body 1 having an inner diameter somewhat larger than that of a test material 30 made of a round bar, and the inner cylindrical body 1 being externally capped with the inner cylindrical body 1. The outer cylindrical body 2 forming the water chamber 3 serves as a probe holder 10 having an external appearance shown in the lower half of FIG. Although not shown here, the probe holder 10 is actually driven to rotate by a known driving means (not shown).

【0009】 これを更に詳述すると、内筒体1は、一端(第1図における右端)にフランジ 部4Aが設けられた円筒部材4と、この円筒部材4に嵌合するボス部5Aが図1 の右端面に形成されたドーナツ状の板部材5とから構成されている。外筒体2は 、同じく一端(第1図における右端)にフランジ部6Aが設けられ且円筒部材4 より大径の円形の内周部を有する八角柱状部材6(図2参照)と、この八角柱状 部材6の左端面に同心状に固着されたドーナツ状の板部材7とから構成されてい る。ここで、探触子ホルダ10の組み立て方法について概説すると、八角柱状部 材6の左端面に板部材7を予め固着して外筒体2を構成し、この外筒体2に図1 の右方より円筒部材4を挿入し、次いで、図1に示すように、円筒部材4と八角 柱状部材6の右端面が面一となるようにして、平均半径が両部材4,6の境界線 とほぼ一致するリング状の固定部材11を当て、当該固定部材11を介してスク リュ12,12を締め付けることにより両部材を固定する。そして、最後に、板 部材5を図1の左方から円筒部材4の右端に嵌合せしめることにより、探触子ホ ルダ10の組み立てが完了する。More specifically, the inner cylindrical body 1 includes a cylindrical member 4 having a flange portion 4A at one end (right end in FIG. 1) and a boss portion 5A fitted to the cylindrical member 4. 1 and a doughnut-shaped plate member 5 formed on the right end surface of 1. The outer cylindrical body 2 is also provided with a flange portion 6A at one end (the right end in FIG. 1) and has an octagonal columnar member 6 (see FIG. 2) having a circular inner peripheral portion having a diameter larger than that of the cylindrical member 4, and this octagonal member. The columnar member 6 is composed of a donut-shaped plate member 7 concentrically fixed to the left end surface of the columnar member 6. Here, an outline of the method of assembling the probe holder 10 will be described. The plate member 7 is preliminarily fixed to the left end surface of the octagonal columnar member 6 to form the outer cylindrical body 2, and the outer cylindrical body 2 is provided on the right side of FIG. Then, the cylindrical member 4 is inserted from one side, and then, as shown in FIG. 1, the right end surfaces of the cylindrical member 4 and the octagonal columnar member 6 are flush with each other, and the average radius is the boundary line between the members 4 and 6. A ring-shaped fixing member 11 that is substantially aligned is applied, and the screws 12 and 12 are tightened via the fixing member 11 to fix both members. Finally, by assembling the plate member 5 from the left side of FIG. 1 to the right end of the cylindrical member 4, the assembly of the probe holder 10 is completed.

【0010】 前記板部材5と板部材7との外周面には同一傾斜のテーパが設けられており、 これら両者は、図1に示す如く、それぞれの外周面が同一円錐の外周面の所定間 隔を隔てた部分をそれぞれ形成するような位置関係にある。そして、これらの板 部材5,7の中間の間隙により水室3に音響結合剤(本実施例では、加圧水が用 いられる。)を導入する結合剤導入口としての給水口12が形成されている。こ の給水口12に対応してリング状の放水口13が固定部側に設けられ、この放水 口13からポンプ等で加圧された加圧水が音響結合材として給水口12を介して 水室3内に強制的に供給されるようになっている。The outer peripheral surfaces of the plate member 5 and the plate member 7 are provided with tapers having the same inclination. As shown in FIG. 1, these two outer peripheral surfaces have a predetermined conical outer peripheral surface. The positional relationship is such that separate parts are formed. Then, a water supply port 12 as a binder introduction port for introducing an acoustic binder (pressurized water is used in this embodiment) into the water chamber 3 is formed by the gap between the plate members 5 and 7. There is. A ring-shaped water discharge port 13 is provided on the fixed portion side corresponding to the water supply port 12, and the pressurized water pressurized from the water discharge port 13 by a pump or the like serves as an acoustic coupling material through the water supply port 12 to the water chamber 3. It is forcibly supplied inside.

【0011】 前記外筒体2には、図1ないし図2に示すように、超音波探触子としての垂直 探触子8及び斜角探触子9がそれぞれ2個づつ且交互に十字状に配置され、保持 されている。ここで、垂直探触子8は、当該垂直探触子8に内蔵される超音波振 動子で送受波される超音波の経路が被検材30表面に対して垂直方向となる探触 子で外筒体2の図1ないし図2における上面及び下面に各一つ配設されている。 また、斜角探触子9は、当該垂直探触子9に内蔵される超音波振動子で送受波さ れる超音波の経路が被検材30に対して斜め方向となる探触子で外筒体2の図1 の紙面手前及び紙面裏面側,即ち図2における左右両側の面に各一つ配設されて いる。As shown in FIG. 1 and FIG. 2, the outer cylindrical body 2 has two vertical probes 8 and two beveled probes 9 as an ultrasonic probe, which are alternately arranged in a cross shape. Are placed and held in. Here, the vertical probe 8 is a probe in which the path of the ultrasonic waves transmitted and received by the ultrasonic vibrator built in the vertical probe 8 is perpendicular to the surface of the test material 30. One is provided on each of the upper surface and the lower surface of the outer cylindrical body 2 in FIGS. The bevel probe 9 is a probe in which the path of ultrasonic waves transmitted and received by the ultrasonic transducer built into the vertical probe 9 is oblique to the material 30 to be tested. One is provided on each of the front side and the back side of the cylinder 2 in the plane of FIG.

【0012】 垂直探触子8は、図2ないし図3に示すように、段付き円柱状の本体部8Aと 、この本体部8Aの先端面に被検材30の中心に向かって突設された段付き円柱 状のノズルブロック8Bとから構成されている。本体部8Aの内部には、図3に 示すように、背板14が片面に設けられた超音波振動子15が収納され、この超 音波振動子15の向きは被検材30の中心に向かって超音波を送波し得る方向に なっている。ノズルブロック8Bの内部には、超音波振動子15の長さとほぼ同 一径のノズル16が超音波の送波方向に向かって穿設されている。ノズルブロッ ク8Bの周壁の一部には、図1ないし図2に示すように、水室3に連通する連通 口17が設けられている。そして、この垂直探触子8は、図1ないし図2に示す ように、ノズルブロック8B部分が水室3を貫通した状態でその先端が内筒体1 に形成された貫孔1Aに嵌合した状態で探触子ホルダ10に取り付けられ保持さ れている。この垂直探触子8は、丸棒材の垂直探傷や管材の肉厚測定等に利用さ れる。As shown in FIGS. 2 to 3, the vertical probe 8 has a stepped columnar main body portion 8A, and is provided on the tip end surface of the main body portion 8A so as to project toward the center of the test material 30. And a stepped cylindrical nozzle block 8B. As shown in FIG. 3, an ultrasonic transducer 15 having a back plate 14 provided on one side is housed inside the main body portion 8A, and the ultrasonic transducer 15 is oriented toward the center of the test material 30. The direction is such that ultrasonic waves can be transmitted. Inside the nozzle block 8B, a nozzle 16 having a diameter substantially equal to the length of the ultrasonic transducer 15 is bored in the ultrasonic wave transmitting direction. As shown in FIGS. 1 and 2, a communication port 17 communicating with the water chamber 3 is provided in a part of the peripheral wall of the nozzle block 8B. As shown in FIGS. 1 and 2, the vertical probe 8 is fitted at its tip into a through hole 1A formed in the inner cylinder 1 with the nozzle block 8B penetrating the water chamber 3. The probe holder 10 is attached and held in this state. The vertical probe 8 is used for vertical flaw detection of a round bar, wall thickness measurement of a pipe material, and the like.

【0013】 斜角探触子9も、垂直探触子9と同様に本体部9Aとノズルブロック9Bとか ら構成され、同様にして探触子ホルダ10に取り付けられ保持されているが、こ の場合、図4のような断面形状のノズルブロック9Bが使用されており、このノ ズルブロック9Bに被検材30の表面に対し斜めの方向に向かってノズル18が 穿設されている。そして、超音波振動子15の配置もこのノズル18の方向に超 音波を送波し得る配置となっている。ノズルブロック9Bにも連通口19が形成 されている。この斜角探触子19は、被検材30に対して斜め方向から超音波を 入射するので、表面及び内部の欠陥検出に利用される。Like the vertical probe 9, the bevel probe 9 is also composed of a main body portion 9A and a nozzle block 9B, and is similarly attached to and held by a probe holder 10. In this case, a nozzle block 9B having a cross-sectional shape as shown in FIG. 4 is used, and a nozzle 18 is bored in this nozzle block 9B in a direction oblique to the surface of the material 30 to be tested. The ultrasonic transducer 15 is also arranged so that ultrasonic waves can be transmitted in the direction of the nozzle 18. A communication port 19 is also formed in the nozzle block 9B. The bevel probe 19 is used to detect defects on the surface and inside since ultrasonic waves are incident on the test material 30 from an oblique direction.

【0014】 次に、上記のように構成された本実施例の全体的な動作及び作用について説明 する。まず、図1における矢印Xと反対の向きにライン上を搬送される被検材3 0の周りを超音波探触子8,8,9,9が保持された探触子ホルダ10が図示し ない駆動手段により回転駆動され、これにより被検材30の全周面にわたりヘリ カル走査が行なわれる。このヘリカル走査の際に、音響結合剤として加圧水が使 用され、図示しないポンプ等で加圧された加圧水が放水口13から給水口12を 介して水室3内に強制的に送り込まれ、例えば垂直探触子8の場合は、この送り 込まれた加圧水が連通口17を介してノズル16内に送り込まれノズル16の先 端(内筒体1側)の開口端から被検材30の表面に向かって放出される。これに より、ノズル16と被検材30との間に加圧水により水柱WPが形成される。こ の場合、ノズル16内を含めれば十分な高さの水柱が形成されるのでノズル16 と被検材30との間に形成された水柱WPはその高さ(ノズル16先端と被検材 30との間隙の寸法)を小さくでき、しかもノズル16が放出する水の流量も小 さいので、放水口13からは十分な圧力の加圧水を供給することができる。従っ て、回転速度が1000〜3000rpmと増加し、水柱WPに大きな遠心力が 作用してもその影響が軽減されるので、安定した水柱WPが形成される。斜角探 触子9の方も同様の作用を奏し、同様に安定した水柱WPが形成される。Next, the overall operation and action of the present embodiment configured as described above will be described. First, a probe holder 10 in which ultrasonic probes 8, 8, 9, 9 are held around a test material 30 conveyed on a line in a direction opposite to the arrow X in FIG. It is rotationally driven by a non-driving unit, and thereby helical scanning is performed over the entire peripheral surface of the material 30 to be tested. During this helical scanning, pressurized water is used as an acoustic coupling agent, and the pressurized water pressurized by a pump or the like (not shown) is forcibly sent from the water outlet 13 into the water chamber 3 through the water inlet 12, and, for example, In the case of the vertical probe 8, the fed pressurized water is fed into the nozzle 16 through the communication port 17 and the open end of the nozzle 16 (inner cylinder 1 side) to the surface of the test material 30. Is released towards. As a result, the water column WP is formed between the nozzle 16 and the test material 30 by the pressurized water. In this case, since the water column having a sufficient height is formed including the inside of the nozzle 16, the water column WP formed between the nozzle 16 and the test material 30 has the height (the tip of the nozzle 16 and the test material 30). Since the size of the gap) can be made small and the flow rate of the water discharged from the nozzle 16 is also small, pressurized water of sufficient pressure can be supplied from the water discharge port 13. Therefore, the rotational speed is increased to 1000 to 3000 rpm, and even if a large centrifugal force acts on the water column WP, the effect is reduced, so that a stable water column WP is formed. The bevel probe 9 also has the same effect, and similarly a stable water column WP is formed.

【0015】 以上説明した本実施例によると、探触子ホルダ10には、被検材30の長手方 向や円周方向の欠陥検出に用いられる斜角探触子9並びにラミネーション欠陥検 出や管肉厚測定に用いられる垂直探触子8等の複数種の超音波探触子がバランス 良く配設されるので、高速回転時においても探触子ホルダ10の偏心量が抑制さ れ安定した水柱WPが形成され、各種超音波探触子の探触子ホルダ10に対する バランス取りも容易にでき、簡易且迅速に装着できる。超音波探触子8,9は、 振動子15から送波された超音波が伝搬損失が小さく且不要反射に基づく雑エコ ーの発生が抑制されてノズル16(あるいは18)内を伝搬し、水柱WPを介し て被検材30へ信号対雑音比が優れレベルの大きな超音波が伝達されるので、超 音波探触子8,9を用いて搬送される被検材30の周面をヘリカル走査すること により、全周面にわたる微小欠陥検出並びに管材の肉厚測定が生産行程のオンラ インにて高速度で行なえて被検材の品質向上に貢献できる。超音波探触子として 複数種の探触子8,9が使用されているので、被検材30への超音波の照射域が 拡大できる。探触子ホルダ10は、被検材30との接触部がないので、探触子ホ ルダ10への被検材30の搬入,搬出及び搬送が自在にでき、併せて摺動部がな いので保守期間が長くなるという利点がある。According to the present embodiment described above, the probe holder 10 includes the bevel probe 9 used for detecting defects in the longitudinal direction and the circumferential direction of the material 30 to be detected and the lamination defect detection and the defect detection. Since a plurality of types of ultrasonic probes such as the vertical probe 8 used for measuring the pipe wall thickness are arranged in a well-balanced manner, the amount of eccentricity of the probe holder 10 is suppressed and stable even at high speed rotation. Since the water column WP is formed, various ultrasonic probes can be easily balanced with respect to the probe holder 10, and can be mounted easily and quickly. In the ultrasonic probes 8 and 9, the ultrasonic wave transmitted from the transducer 15 propagates in the nozzle 16 (or 18) with a small propagation loss and suppressing the generation of miscellaneous echoes due to unnecessary reflection. Since ultrasonic waves having an excellent signal-to-noise ratio and a large level are transmitted to the test material 30 via the water column WP, the circumferential surface of the test material 30 conveyed using the ultrasonic probes 8 and 9 is helically wound. By scanning, it is possible to detect minute defects on the entire circumference and measure the wall thickness of the pipe material at high speed online in the production process, which can contribute to the quality improvement of the material to be inspected. Since a plurality of types of probes 8 and 9 are used as the ultrasonic probe, the irradiation range of the ultrasonic wave to the test material 30 can be expanded. Since the probe holder 10 does not have a contact portion with the test material 30, the test material 30 can be freely carried in, carried out, and transported to and from the probe holder 10, and also has no sliding part. Therefore, there is an advantage that the maintenance period becomes long.

【0016】 なお、上記実施例では、超音波探触子を合計4つ探触子ホルダ10に十字状に 配置する場合を例示したが、本発明はこれに限定されるものではなく、1つ,2 つ,3つ,5つ,6つあるいはそれ以上でもよく、また、超音波探触子の種類の 組み合わせも上記実施例のものに限定されず、全てを垂直探触子8あるいは斜角 探触子9としたり、あるいはその他の組み合わせも可能である。更に、上記実施 例において、探触子ホルダ10を構成する内筒体1を耐摩耗性や機械特性に優れ たプラスチックを用いて形成した場合には、高速回転する探触子ホルダ10に仮 に被検材30が接触しても被検材30の損傷を回避できるので、探触子ホルダ1 0と被検材30との隙間寸法(水柱WPの高さ)を一層小さく設定することがで き、遠心力の影響が一層軽減されるので一層安定した水柱WPを形成することが でき、仮に、水柱WPが変形し水膜状を呈しても被検材30との間の音響結合を 正しく維持することができ、超音波の伝送を効率良く行なうことができるという 利点がある。In the above embodiment, a case where a total of four ultrasonic probes are arranged in a cross shape on the probe holder 10 has been illustrated, but the present invention is not limited to this and one ultrasonic probe is used. , 2, 3, 5, 6 or more, and the combination of the types of ultrasonic probes is not limited to that of the above-mentioned embodiment, and all of them may be the vertical probe 8 or the oblique angle. The probe 9 may be used, or another combination is possible. Further, in the above embodiment, when the inner cylinder body 1 constituting the probe holder 10 is made of plastic having excellent wear resistance and mechanical characteristics, the probe holder 10 rotating at high speed is assumed. Even if the test material 30 comes into contact with the test material 30, damage to the test material 30 can be avoided. Therefore, the gap size (height of the water column WP) between the probe holder 10 and the test material 30 can be set smaller. Since the influence of centrifugal force is further reduced, a more stable water column WP can be formed, and even if the water column WP is deformed to have a water film shape, the acoustic coupling with the test material 30 is properly performed. It has the advantage that it can be maintained and the ultrasonic waves can be transmitted efficiently.

【0017】[0017]

【考案の効果】[Effect of the device]

以上説明したように、本考案によれば、超音波探触子と搬送される被検材との 間に安定した水柱が形成されるので、信号対雑音比の優れた微小欠陥検出や肉厚 測定を行なうことができ、探触子ホルダに装着する超音波探触子として垂直探触 子や斜角探触子等の各種探触子を使用することができるので、被検材の全周面の 欠陥検出や管材の肉厚の測定を正確に且効率良く行なうことができるという従来 にない実用性十分の超音波探触子保持装置を提供することができる。 As described above, according to the present invention, a stable water column is formed between the ultrasonic probe and the material to be inspected. Since various types of probes such as vertical probes and beveled probes can be used as ultrasonic probes mounted on the probe holder, it is possible to perform measurements, so that the entire circumference of the test material can be measured. It is possible to provide an ultrasonic probe holding device of unprecedented practicality that can detect a surface defect and measure the wall thickness of a pipe material accurately and efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of an embodiment of the present invention.

【図2】図1の実施例における超音波探触子の配置を示
す図である。
FIG. 2 is a diagram showing an arrangement of ultrasonic probes in the embodiment of FIG.

【図3】図1の実施例における垂直探触子の具体的構成
を示す図である。
FIG. 3 is a diagram showing a specific configuration of a vertical probe in the embodiment of FIG.

【図4】図1の実施例における斜角探触子の具体的構成
を示す図である。
FIG. 4 is a diagram showing a specific configuration of the bevel probe in the embodiment of FIG.

【図5】従来例を示す説明図である。FIG. 5 is an explanatory diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 内筒体 2 外筒体 3 結合剤収容室としての水室 8 超音波探触子としての垂直探触子 8A 本体部 8B ノズルブロック 9 超音波探触子としての斜角探触子 9A 本体部 9B ノズルブロック 10 探触子ホルダ 12 結合剤導入口としての給水口 15 超音波振動子 16 ノズル 17 連通口 18 ノズル 19 連通口 30 被検材 1 Inner Cylinder 2 Outer Cylinder 3 Water Chamber as Binder Storage Chamber 8 Vertical Probe as Ultrasonic Probe 8A Main Body 8B Nozzle Block 9 Beveled Probe as Ultrasonic Probe 9A Main Body Part 9B Nozzle block 10 Probe holder 12 Water inlet as binder inlet 15 Ultrasonic transducer 16 Nozzle 17 Communication port 18 Nozzle 19 Communication port 30 Test material

───────────────────────────────────────────────────── フロントページの続き (72)考案者 山代 篤志 東京都大田区南蒲田2丁目16番46号 株式 会社トキメツク内 (72)考案者 渡辺 広光 東京都大田区南蒲田2丁目16番46号 株式 会社トキメツク内 (72)考案者 後藤 智信 東京都大田区南蒲田2丁目16番46号 株式 会社トキメツク内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Atsushi Yamashiro Atsushi Yamashiro 2-16-46 Minami Kamata, Ota-ku, Tokyo Within Tokimetsuku Co., Ltd. (72) Hiromitsu Watanabe 2-16-46 Minami Kamata, Ota-ku, Tokyo Stocks Company Tokimetsu (72) Inventor Toshinobu Goto 2-16-46 Minami Kamata, Ota-ku, Tokyo

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 丸棒材等の被検材より幾分大きな内径を
有する内筒体とこの内筒体に外方より被冠され当該内筒
体との間に結合剤収容室を形成する外筒体とから成り駆
動手段により回転駆動される探触子ホルダを有し、この
探触子ホルダの一部に前記結合剤収容室に音響結合剤を
導入する結合剤導入口が形成され、前記探触子ホルダに
1または2以上の超音波探触子が保持され、当該各探触
子が超音波を送受波する超音波振動子を内蔵する本体部
とこの本体部の先端に設けられた超音波の伝搬経路を成
すノズルブロックとにより構成され、該ノズルブロック
が前記結合材収容室を貫通した状態で且その先端が前記
内筒体に嵌合した状態で前記探触子が探触子ホルダに取
り付けられ、前記ノズルブロックに先端が前記内筒体の
内周面に開口するとともに連通口を介して前記結合材収
容室に連通したノズルが穿設されていることを特徴とし
た超音波探触子保持装置。
1. A binder accommodating chamber is formed between an inner cylindrical body having an inner diameter somewhat larger than that of a test material such as a round bar, and the inner cylindrical body being externally capped with the inner cylindrical body. A probe holder which is composed of an outer cylinder and is rotationally driven by a drive means, and a binder introducing port for introducing an acoustic binder into the binder accommodating chamber is formed in a part of the probe holder; One or more ultrasonic probes are held in the probe holder, and each probe is provided at a main body part containing an ultrasonic transducer for transmitting and receiving ultrasonic waves, and at the tip of the main body part. And a nozzle block that forms an ultrasonic wave propagation path, and the probe is probed with the nozzle block penetrating the binder storage chamber and with its tip fitted to the inner cylinder. When attached to a child holder and the tip of the nozzle block opens to the inner peripheral surface of the inner cylinder, An ultrasonic probe holding device, characterized in that a nozzle communicating with the binder storage chamber through a communication port is bored.
【請求項2】 前記超音波探触子の内少なくとも一つ
が、当該超音波探触子を構成するノズルを介して送受波
される超音波の伝搬方向が前記被検材表面に対して垂直
方向となる垂直探触子であることを特徴とした請求項1
記載の超音波探触子保持装置。
2. At least one of the ultrasonic probes has a propagation direction of ultrasonic waves transmitted and received through a nozzle constituting the ultrasonic probe in a direction perpendicular to the surface of the material to be inspected. 2. A vertical probe as follows.
The ultrasonic probe holding device described.
【請求項3】 前記超音波探触子の内少なくとも一つ
が、当該超音波探触子を構成するノズルを介して送受波
される超音波の伝搬方向が被検材表面に対して斜め方向
となる斜角探触子であることを特徴とした請求項1記載
の超音波探触子保持装置。
3. At least one of the ultrasonic probes has a propagation direction of ultrasonic waves transmitted / received through a nozzle forming the ultrasonic probe is oblique with respect to the surface of the test material. The ultrasonic probe holding device according to claim 1, wherein the ultrasonic probe holding device is a bevel probe.
【請求項4】 前記内筒体がプラスチック材により形成
されていることを特徴とした請求項1記載の超音波探触
子保持装置。
4. The ultrasonic probe holding device according to claim 1, wherein the inner cylinder is made of a plastic material.
JP1991098035U 1991-10-31 1991-10-31 Ultrasonic transducer Expired - Lifetime JP2541958Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991098035U JP2541958Y2 (en) 1991-10-31 1991-10-31 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991098035U JP2541958Y2 (en) 1991-10-31 1991-10-31 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JPH0540873U true JPH0540873U (en) 1993-06-01
JP2541958Y2 JP2541958Y2 (en) 1997-07-23

Family

ID=14208793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991098035U Expired - Lifetime JP2541958Y2 (en) 1991-10-31 1991-10-31 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP2541958Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526766A (en) * 2003-06-02 2006-11-24 ワンスティール トレーディング ピーティーワイ リミテッド Ultrasound inspection of tubes
JP2009236613A (en) * 2008-03-26 2009-10-15 Asahi Kasei Chemicals Corp Inspection apparatus of piping and inspection method of the same
WO2014119436A1 (en) * 2013-02-01 2014-08-07 三菱重工業株式会社 Ultrasonic flaw detection jig, ultrasonic flaw detection method, and manufacturing method for ultrasonic flaw detection jig

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072562U (en) * 1983-10-24 1985-05-22 新日本製鐵株式会社 Ultrasonic probe device
JPS6212865U (en) * 1985-07-09 1987-01-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072562U (en) * 1983-10-24 1985-05-22 新日本製鐵株式会社 Ultrasonic probe device
JPS6212865U (en) * 1985-07-09 1987-01-26

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526766A (en) * 2003-06-02 2006-11-24 ワンスティール トレーディング ピーティーワイ リミテッド Ultrasound inspection of tubes
JP2009236613A (en) * 2008-03-26 2009-10-15 Asahi Kasei Chemicals Corp Inspection apparatus of piping and inspection method of the same
WO2014119436A1 (en) * 2013-02-01 2014-08-07 三菱重工業株式会社 Ultrasonic flaw detection jig, ultrasonic flaw detection method, and manufacturing method for ultrasonic flaw detection jig
JP2014149241A (en) * 2013-02-01 2014-08-21 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection tool, ultrasonic flaw detection method, and manufacturing method for ultrasonic flaw detection tool
US10067098B2 (en) 2013-02-01 2018-09-04 Mitsubishi Heavy Industries, Ltd. Ultrasonic flaw detection jig, ultrasonic flaw detection method and method of manufacturing ultrasonic flaw detection jig

Also Published As

Publication number Publication date
JP2541958Y2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US5007291A (en) Ultrasonic inspection apparatus with centering means for tubular members
US8166823B2 (en) Membrane-coupled ultrasonic probe system for detecting flaws in a tubular
US4685334A (en) Method for ultrasonic detection of hydrogen damage in boiler tubes
US5005417A (en) Detecting flaws formed in surfaces of rotating members with ultrasonic waves
JPH04221758A (en) Ultrasonic inspecting probe for bolt and operating method thereof
JP2503000Y2 (en) Rotating probe ultrasonic flaw detector
US8161818B2 (en) Device for detecting a flaw in a component
JPH0540873U (en) Ultrasonic probe holding device
JP3761292B2 (en) Ultrasonic measurement method of welded part with wheel assembly
JPH09257764A (en) Manual scanning type ultrasonic flaw detection apparatus
KR20200061419A (en) Automatic rotating ultrasonic inspection system using brushless
JP3352653B2 (en) Ultrasonic flaw detector for pipes
JPH0232249A (en) Ultrasonic flaw detection probe
JP2994852B2 (en) Ultrasonic probe for boiler tube flaw detection
JP3634699B2 (en) Orifice cassette in probe holder of ultrasonic flaw detector
JPH0798303A (en) Ultrasonic automatic crack detector
US3349607A (en) Ultrasonic flaw detection in small diameter metal tubing
JPH01145565A (en) Ultrasonic flaw detector
JPS62153744A (en) Probe rotating type ultrasonic flaw detection apparatus
JP2587077Y2 (en) Ultrasonic flaw detector for pipes
JP3638814B2 (en) Automatic ultrasonic flaw detector
RU2084889C1 (en) Method of ultrasonic test of articles having complex shape of bodies of revolution carrying pressed-on parts
JPH1038864A (en) Ultrasonic flaw detector
JPH0518695Y2 (en)
CN207336442U (en) A kind of probe installing structure of supersonic detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970218