JPS62153730A - Method for testing gap corrosion fatigue - Google Patents

Method for testing gap corrosion fatigue

Info

Publication number
JPS62153730A
JPS62153730A JP29577385A JP29577385A JPS62153730A JP S62153730 A JPS62153730 A JP S62153730A JP 29577385 A JP29577385 A JP 29577385A JP 29577385 A JP29577385 A JP 29577385A JP S62153730 A JPS62153730 A JP S62153730A
Authority
JP
Japan
Prior art keywords
test piece
fatigue
gap
corrosion
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29577385A
Other languages
Japanese (ja)
Inventor
Kenzo Miura
三浦 健蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP29577385A priority Critical patent/JPS62153730A/en
Publication of JPS62153730A publication Critical patent/JPS62153730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To perform a dynamic gap corrosion test without generating mechanical damage, by mounting a nonmetal soft elastomer to a fatigue test piece to generate a local gap on the surface of said test piece and loading repeating stress to the local gap while corrosive water is injected in said gap. CONSTITUTION:Rotary shafts 12 are mounted to both ends of the test piece 10 of a member receiving repeating stress under an environment easy to generate local corrosion like the implanted member of the turbine blade of an exhaust gas energy recovery apparatus and rotated by a rotary machine. A wt. 16 is suspended from the shaft 12 through a bearing 14 and repeating compression and tensile stresses are applied to the test piece 10. An O-ring 30 comprising neoprene rubber is mounted to the test piece 10 repeating stress is loaded to said test piece 10 while corrosive water 18 from a tank 20 is heated by a heating part 24 and injected to the test piece 10. By this method, the evaluation of fatigue strength can be performed only with respect to the effect of gap corrosion on fatigue strength without generating the mechanical damage in the test piece.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は腐食を疲労の共存する環境下で使用される実機
部材の特に隙間腐食に与える影響を評価できる隙間腐食
疲労試験方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crevice corrosion fatigue testing method that can evaluate the influence of actual machine parts, particularly on crevice corrosion, used in an environment where corrosion and fatigue coexist.

〔従来技術〕[Prior art]

従来、繰り返し応力を受ける部材の強度判定には疲労試
験が用いられており、試験片に一定の応力またはひずみ
振幅を与え、破壊までの応力またはひずみの繰り返し数
との関連を求めることによって、実機に使用される材料
の許容応力の評価に採用している。
Conventionally, fatigue tests have been used to determine the strength of members that are subjected to repeated stress.Fatigue tests are performed by applying a constant stress or strain amplitude to a test piece and determining the relationship between the number of repetitions of stress or strain until failure. It is used to evaluate the allowable stress of materials used in

ところで、疲労強度は腐食作用がない場合に比べ、腐食
と疲労の共存作用のもとでは著しく低下することが認め
られており、このため、試験片を腐食環境下において疲
労試験を行って材料の強度評価に採用することも行われ
ている。
By the way, it has been recognized that fatigue strength is significantly lower under the coexistence of corrosion and fatigue than when there is no corrosion. Therefore, fatigue strength of test pieces is conducted in a corrosive environment to determine the strength of the material. It is also used for strength evaluation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の試験方法では、実機に採用される
部材が排ガスエネルギ回収装置のタービンブレードの植
込み部の如く、局部腐食が発生し易い環境下で繰り返し
応力を受ける部材に対しての実際的な局部腐食疲労強度
の評価ができない問題があった。すなわち、材料の局部
腐食に関しては試験片にメタルを接着して人為的に局部
隙間を導入し、腐食液中に浸漬して行う静的な腐食試験
法が採用し得るものの、同時に疲労試験を行おうとする
場合には局部隙間以外に他の機械的損傷を生じ、結局、
疲労試験と局部腐食を分別して行い、個別の評価値をも
とにして総合判断する以外に方法がなかった。したがっ
て、隙間腐食など局部腐食を伴なう疲労試験法が確立さ
れていないため、疲労強度に及ぼす隙間腐食の影響につ
いてのみの疲労強度の評価ができなかった。
However, in the conventional test method, the parts used in the actual machine are subjected to repeated stress in an environment where local corrosion is likely to occur, such as the implanted part of the turbine blade of an exhaust gas energy recovery device. There was a problem that corrosion fatigue strength could not be evaluated. In other words, for local corrosion of materials, a static corrosion test method in which a metal is glued to the test piece to artificially introduce local gaps and immersed in a corrosive liquid can be adopted, but fatigue tests can also be performed at the same time. If you try to do so, it will cause other mechanical damage in addition to the local gap, and eventually
There was no other way than to conduct fatigue tests and local corrosion separately and make a comprehensive judgment based on the individual evaluation values. Therefore, since a fatigue test method that involves localized corrosion such as crevice corrosion has not been established, it has not been possible to evaluate fatigue strength based solely on the influence of crevice corrosion on fatigue strength.

本発明者は、塩分を含んだ排ガスのエネルギ回収装置の
タービンブレード植込み部に生じた亀裂発生事例を検討
したところ、ロータに組み込まれる植込み部の隙間に多
数の腐食ビットが観察され、亀裂がこれらの腐食ビット
を起点として発生していたことが認められたことから、
隙間腐食が疲労強度に与える影響を評価すべき試験法を
確立すべきとの新しい知見を得たものである。
The present inventor investigated cases of cracks occurring in the implanted parts of turbine blades of energy recovery equipment for exhaust gas containing salt, and found that a large number of corroded bits were observed in the gaps between the implanted parts incorporated into the rotor. It was recognized that the problem originated from the corroded bit of the
This new finding points to the need to establish a test method to evaluate the effect of crevice corrosion on fatigue strength.

〔問題点を解決するための手段および作用〕上記従来の
問題点に着目し、本発明の隙間腐食試験方法は、疲労試
験片に非金属軟質弾性体を装着することにより試験片表
面に局部隙間を発生させ、当該試験片に腐食水を注水し
つつ繰り返し応力を負荷させることにより隙間腐食を伴
なう疲労強度を評価するように構成した。
[Means and effects for solving the problems] Focusing on the above-mentioned conventional problems, the crevice corrosion testing method of the present invention creates local gaps on the surface of the test piece by attaching a non-metallic soft elastic body to the fatigue test piece. The test piece was configured to evaluate fatigue strength accompanied by crevice corrosion by repeatedly applying stress while pouring corrosive water onto the test piece.

斯かる構成により、機械的損傷を生じさせることなく、
試験片に隙間を発生させ繰り返し応力を負荷させた動的
隙間腐食試験を行わせることができ、疲労強度に及ぼす
隙間腐食の影響についてのみ疲労強度の評価を行うこと
ができる。
With such a configuration, without causing mechanical damage,
A dynamic crevice corrosion test can be performed in which gaps are created in the test piece and stress is applied repeatedly, and fatigue strength can be evaluated only with respect to the influence of crevice corrosion on fatigue strength.

〔実施例〕〔Example〕

以下に、本発明に係る隙間腐食疲労試験方法の実施例を
図面を参照して詳細に説明する。
EMBODIMENT OF THE INVENTION Below, the Example of the crevice corrosion fatigue test method based on this invention is described in detail with reference to drawings.

第1図には隙間腐食疲労試験方法を実施するための装置
構成を示す。試験機は回転曲げ試験機を採用しており、
試験片10の両端に回転シャフト12を取付け、図示し
ない回転機によって回転させるようにしている。回転シ
ャフト12には軸受14を介して荷重を加えるように重
り16が吊り下げられ、この重り16の作用と同転作用
により。
FIG. 1 shows the equipment configuration for carrying out the crevice corrosion fatigue test method. The testing machine uses a rotating bending tester.
Rotating shafts 12 are attached to both ends of the test piece 10, and the test piece 10 is rotated by a rotating machine (not shown). A weight 16 is suspended from the rotating shaft 12 via a bearing 14 so as to apply a load, and the action of this weight 16 and the same rotation action are used.

試験片10に圧縮と引張の正負等大値開の繰り返し応力
を加えるようにしている。
The test piece 10 is subjected to repeated stress of compression and tension, both positive and negative, with large values.

また、試験片10に腐食水を注水するために、腐食水循
環装置が設けられている。腐食水]−8はタンク20に
溜められ、タンク20からポンプ22を介して加熱部2
4に送給されて実機での使用温度に加熱される。加熱さ
れた腐食水18は供給管26を介して前記試験片1oに
注水される。
Further, a corrosive water circulation device is provided to inject corrosive water into the test piece 10. The corrosive water]-8 is stored in a tank 20 and sent from the tank 20 to the heating section 2 via a pump 22.
4 and heated to the operating temperature in the actual machine. The heated corrosive water 18 is poured into the test piece 1o via the supply pipe 26.

注水後の腐食水18は集水部28を経てタンク20に戻
される構造となっている。
The corrosive water 18 after being injected is returned to the tank 20 through a water collecting section 28.

ここで、前記試験片1oに局部隙間を形成するために、
実施例では非金属軟質弾性体としてのネオプレンゴムか
らなるO−リング30を装着している。第2図に示すよ
うに、試験片10に○−リング30を装着することによ
り、試験片10の外表面には0−リング30の内周面と
の間に微少な隙間32が円周方向に沿って形成される。
Here, in order to form a local gap in the test piece 1o,
In the embodiment, an O-ring 30 made of neoprene rubber as a non-metallic soft elastic body is attached. As shown in FIG. 2, by attaching the O-ring 30 to the test piece 10, a small gap 32 is created between the outer surface of the test piece 10 and the inner peripheral surface of the O-ring 30 in the circumferential direction. formed along the

したがって、斯かるO−リング3Qを装着した試験片1
0に腐食水18を注水させることによってttj2I?
t!32に局部腐食を発生させることができる。そして
、試験片10自体に繰り返し応力を負荷させた場合であ
っても、○−リング3oが試験片10から分離せず、隙
間32の形成位置も変動することがないので、疲労試験
を実施しつつ局部腐食を発生させることが可能となるの
である。
Therefore, test piece 1 equipped with such O-ring 3Q
By injecting corrosive water 18 into 0, ttj2I?
T! 32 can cause local corrosion. Even when repeated stress is applied to the test piece 10 itself, the ○-ring 3o does not separate from the test piece 10 and the position of the gap 32 does not change, so the fatigue test is carried out. This makes it possible to cause local corrosion at the same time.

次に、具体的な実験例について説明する。Next, a specific experimental example will be explained.

試験片10としては、排ガスエネルギ回収装置に用いら
れている5US630,12Cr−5N i 、 13
 Cr −3、5N iを採用し、試験部径φ14nw
mのJIS14号試験片を用いた。また、O−リング3
0としては内径d=1.3.8no、太さW=2.4m
mのネオブレンゴム製のものを用い、試験片10に装着
して隙間32を形成した。
As the test piece 10, 5US630, 12Cr-5N i, 13 used in an exhaust gas energy recovery device was used.
Adopts Cr-3, 5N i, test part diameter φ14nw
A JIS No. 14 test piece of m was used. Also, O-ring 3
0 is inner diameter d=1.3.8no, thickness W=2.4m
A material made of neoprene rubber having a diameter of 1.5 m was used and was attached to the test piece 10 to form a gap 32.

疲労試験機として容量98.IN−mの回転曲げ試験機
を用い、繰り返し速度を3400cpI11とした。ま
た、試験片10に注水する腐食液としては第1表に示す
成分の2種類の液A、Bを用い、第1図に示す腐食液循
環装置で連続注水させるようにした。
Capacity 98. as a fatigue tester. Using an IN-m rotary bending tester, the repetition rate was set to 3400 cpI11. Two types of solutions A and B having the components shown in Table 1 were used as the corrosive liquid to be injected into the test piece 10, and the water was continuously injected using the corrosive liquid circulation device shown in FIG.

上述のような仕様で50℃の腐食液A、B中におけるS
 U S 630 、 12 Cr −5N i 、 
 13Cr−3,5Niの疲労試験結果を第3〜8図に
示す。これらは各々大気中の場合、O−リング30を装
着しない場合と比較して同時に図示したものである。
S in corrosive liquids A and B at 50°C with the above specifications.
US 630, 12Cr-5Ni,
The fatigue test results for 13Cr-3,5Ni are shown in Figures 3-8. These are shown simultaneously in comparison with the case in the atmosphere and the case without the O-ring 30 attached.

第3〜4図から、0−リング30を装着しない場合、5
US630では大気中の結果と同様、明瞭な疲労限度が
認められた(A液:549MPa。
From Figures 3 and 4, if the 0-ring 30 is not installed, 5
Similar to the results in the atmosphere, a clear fatigue limit was observed in US630 (Liquid A: 549 MPa.

B液: 441MPa)、O−リング30を装着して人
工的に隙間32を導入した場合、5US630の疲労強
度はばらつきがあるが著しく低下し、B液中で繰り返し
応力T a = 294 M P a(=0.54σW
)に対し、破数繰り返し数Nf= 4 、 8 X 1
0’cyclesであった。0−リング装着試験片10
の亀裂進展部には腐食ビットが存在した。
B liquid: 441 MPa), when an O-ring 30 is attached and a gap 32 is artificially introduced, the fatigue strength of 5US630 is significantly reduced although there are variations, and the repeated stress T a = 294 MPa in B liquid (=0.54σW
), the number of broken number repetitions Nf = 4, 8 x 1
It was 0'cycles. 0-ring mounting test piece 10
There were corroded bits in the crack propagation area.

次に、第5〜6図から、O−リング30を装着しない場
合、A液に比べcQ−濃度の高いB液中で12Cr−5
Niの疲労強度は低下するが、いずれも疲労限度は認め
られた(A液:392MPa。
Next, from FIGS. 5 and 6, when the O-ring 30 is not installed, 12Cr-5
Although the fatigue strength of Ni decreased, fatigue limits were observed in both cases (Liquid A: 392 MPa.

B液:177MPa)。○−リング装着試験片10の疲
労強度は5US630の場合と同様低下し、亀裂起点部
には腐食ビットが存在した。
B liquid: 177 MPa). The fatigue strength of the ◯-ring attached test piece 10 decreased as in the case of 5US630, and corroded bits were present at the crack starting point.

第7〜8図から、O−リング30を装着しない場合、A
液に比べB液中で13Cr−3,5Niの疲労強度は大
きく低下するが、いずれも疲労限度は認められた(A液
: 363MPa、B液:127MPa)。0−リング
装着試験片10の疲労限度はA液中で著しく低下し、5
US630゜12Cr−5Niの場合と同様、亀裂起点
部にはいずれも腐食ビットが存在した。
From Figures 7 and 8, when O-ring 30 is not installed, A
Although the fatigue strength of 13Cr-3,5Ni in liquid B was significantly lower than that in liquid B, fatigue limits were observed in both cases (liquid A: 363 MPa, liquid B: 127 MPa). The fatigue limit of the 0-ring attached test piece 10 was significantly lowered in liquid A, and 5
As in the case of US630°12Cr-5Ni, corroded bits were present at all crack starting points.

これら3種類の試験片に対する比較結果を第2表に示す
、なお、平滑とはO−リングを装着しない場合である。
Comparison results for these three types of test pieces are shown in Table 2. Note that "smooth" refers to the case where no O-ring is attached.

−:データなし    * 外挿値 上衣から明らかなように、0−リング30を装着して試
験片10の外表面に局部隙間32を形成し、腐食液18
を注水することによって局部腐食を発生させつつ、疲労
試験を行うと、疲労強度が著しく低下することが理解で
き、局部腐食のみの疲労強度に与える影響を判定評価で
きる。したがって、実部材に応力集中部、欠陥、隙間な
どの各種の局部腐食発生源が存在するが、実動環境下に
おいて実機部材が局部腐食感受性を有する場合に。
-: No data *As is clear from the extrapolated value, the O-ring 30 is attached to form a local gap 32 on the outer surface of the test piece 10, and the corrosive liquid 18
If a fatigue test is performed while causing local corrosion by injecting water, it can be seen that the fatigue strength decreases significantly, and it is possible to judge and evaluate the effect of only local corrosion on fatigue strength. Therefore, although there are various sources of local corrosion such as stress concentration areas, defects, and gaps in actual parts, when the actual parts are susceptible to local corrosion under the actual operating environment.

上述の方法によって、隙間腐食発生を考慮した試験を行
い、疲労強度の実際的評価が実現できるのである。
By using the method described above, it is possible to carry out tests that take into account the occurrence of crevice corrosion, and to achieve a practical evaluation of fatigue strength.

なお、上記実施例では回転曲げ疲労試験を行う場合につ
き説明したが、その他の引表圧縮疲労試験などに適用で
きるのはいうまでもない。
In addition, although the above-mentioned example explained the case where a rotary bending fatigue test was performed, it goes without saying that it can be applied to other pull-out compression fatigue tests.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、試験片10に○
−リングなどの非金属軟質弾性部材を装着して人工的に
隙間を導入し、これに腐食液を注水しつつ疲労試験を行
うことができるので、機械的損傷を生じさせることなく
、隙間腐食の影響についてのみ評価できるという効果が
得られる。
As explained above, according to the present invention, the test piece 10 has
- It is possible to artificially introduce a gap by attaching a non-metallic soft elastic member such as a ring, and then perform a fatigue test while pouring corrosive liquid into the gap, thereby preventing crevice corrosion without causing mechanical damage. This has the effect of being able to evaluate only the impact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は隙間腐食疲労試験を行うための装置樋成図、第
2図は試験片の側面図、第3〜第8図は5US630,
12Cr−5Ni、13Cr−3,5Niからなる試験
片に対する異なる腐食液中で行われた疲労試験結果図で
ある。 10・・・試験片、     18・・腐食液、30・
・・O−リング、   32・・隙間。
Figure 1 is a diagram of the equipment for performing a crevice corrosion fatigue test, Figure 2 is a side view of the test piece, Figures 3 to 8 are 5US630,
FIG. 3 is a diagram showing the results of fatigue tests conducted in different corrosive liquids on test pieces made of 12Cr-5Ni and 13Cr-3,5Ni. 10...Test piece, 18...Corrosion liquid, 30...
・・O-ring, 32・・Gap.

Claims (1)

【特許請求の範囲】[Claims] (1)疲労試験片に非金属軟質弾性体を装着することに
より試験片表面に局部隙間を発生させ、当該試験片に腐
食水を注水しつつ繰り返し応力を負荷させることにより
隙間腐食を伴なう疲労強度を評価することを特徴とする
隙間腐食疲労試験方法。
(1) By attaching a nonmetallic soft elastic body to a fatigue test piece, local gaps are generated on the surface of the test piece, and by repeatedly applying stress while pouring corrosive water to the test piece, crevice corrosion occurs. A crevice corrosion fatigue test method characterized by evaluating fatigue strength.
JP29577385A 1985-12-27 1985-12-27 Method for testing gap corrosion fatigue Pending JPS62153730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29577385A JPS62153730A (en) 1985-12-27 1985-12-27 Method for testing gap corrosion fatigue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29577385A JPS62153730A (en) 1985-12-27 1985-12-27 Method for testing gap corrosion fatigue

Publications (1)

Publication Number Publication Date
JPS62153730A true JPS62153730A (en) 1987-07-08

Family

ID=17824976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29577385A Pending JPS62153730A (en) 1985-12-27 1985-12-27 Method for testing gap corrosion fatigue

Country Status (1)

Country Link
JP (1) JPS62153730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651630A (en) * 2015-12-29 2016-06-08 东南大学 Experimental device for simulating cycle tension and compression alternating load of material in fluid environment
CN109507102A (en) * 2018-12-03 2019-03-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) The test method of the damp and hot marine atmosphere performance of the resistance to height of turbo blade alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651630A (en) * 2015-12-29 2016-06-08 东南大学 Experimental device for simulating cycle tension and compression alternating load of material in fluid environment
CN109507102A (en) * 2018-12-03 2019-03-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) The test method of the damp and hot marine atmosphere performance of the resistance to height of turbo blade alloy material

Similar Documents

Publication Publication Date Title
Nykyforchyn et al. Feature of stress corrosion cracking of degraded gas pipeline steels
JPS62153730A (en) Method for testing gap corrosion fatigue
Frost et al. Cyclic stress required to propagate edge cracks in eight materials
Broughton et al. Cyclic fatigue testing of adhesive joints: test method assessment.
Hredil et al. Inner corrosion as a factor of in-bulk steel degradation of transit gas pipelines
Osawa et al. Experimental study on high frequency effect on fatigue strength of welded joints by using plate-bending-vibration type fatigue testing machines
CN111002229A (en) Processing method for strengthening surface of liquid shot blasting
Sitthipong et al. Failure analysis of metal alloy propeller shafts
Asher et al. Role of stress in transgranular stress corrosion cracking of transmission pipelines in near-neutral pH environments
Osawa et al. Development of a new fatigue testing machine for high frequency fatigue damage assessment
JP2018204954A (en) Material strength testing apparatus
WO2020190122A1 (en) A method for evaluating and improving material quality
Huang et al. Corrosion fatigue behaviour of 304 stainless steel under proportional and non‐proportional multiaxial loading condition
Mitelea et al. Susceptibility to Stress Corrosion Cracking in Hydrogen Sulfide Environment of MAG Welded Joints of API 5L x 65M Thermomechanical Treated Steel
Vodă et al. Correlation between mass loss on the cavitation erosion and the fatigue stress level for a martensitic stainless steel
Bereteu et al. Investigation of a camshaft repaired by welding using the vibration signal analysis
Perez Corrosion/fatigue metrics
Shine et al. Fatigue failure of structural steel–analysis using fracture mechanics
Osawa et al. Experimental Study on Fatigue Strength of Ship's Welded Joint under Intermittently High Frequency Superimposed Loads Considering Actual Encountered Condition
Alexander et al. State-of-the-art assessment of today’s composite repair technologies
Dantsevich et al. Dynamics of brittle cracks under the influence of low temperatures
Landgraf Fundamentals of fatigue analysis
RU2465565C1 (en) Manufacturing method of specimens of high-rate metal of oil-gas equipment for cyclic crack resistance testing
Manai Residual Stresses Distribution Posterior to Welding and Cutting Processes
Baudry et al. Low Cycle Fatigue Life of Turbine Generator Retaining Rings Determined by Stress Cycling Tests