JPS62153546A - Anomaly detector for engine - Google Patents

Anomaly detector for engine

Info

Publication number
JPS62153546A
JPS62153546A JP60298397A JP29839785A JPS62153546A JP S62153546 A JPS62153546 A JP S62153546A JP 60298397 A JP60298397 A JP 60298397A JP 29839785 A JP29839785 A JP 29839785A JP S62153546 A JPS62153546 A JP S62153546A
Authority
JP
Japan
Prior art keywords
sensor
engine
concentration
exhaust
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60298397A
Other languages
Japanese (ja)
Inventor
Kiyotaka Kobayashi
清孝 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP60298397A priority Critical patent/JPS62153546A/en
Publication of JPS62153546A publication Critical patent/JPS62153546A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To speedily detect the anomaly and deterioration of an engine control system on the basis of the output of exhaust sensors for detecting the concentration of the exhaust harmful components in exhaust gas which are installed onto the downstream side of catalyst. CONSTITUTION:An NOX sensor 15 which utilizes SnO2 and a CO sensor 16 are installed into an exhaust system 12 on the downstream side of a three- component catalyst 14. During the air fuel ratio control by the detection signal of an O2 sensor 13, a control unit 25 reads each output signal of the NOX sensor 15 and the CO sensor 16 during the stationary operation, and compares these output values with the judgment levels corresponding to the number N of revolution and the fundamental injection time TP. When the NOX concentration or CO concentration is higher than each judgment level, the control unit 25 drives an anomaly alarm means.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエンジンの異常検出装置に関し、特にエンジン
の運転状態を制御するエンジン制御システムの異常を検
出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an engine abnormality detection device, and more particularly to a device for detecting an abnormality in an engine control system that controls the operating state of an engine.

〔従来の技術〕[Conventional technology]

近年、特開昭54−57029号公報に示されるように
酸素濃度センサ(以下「Otセンサ」という)を具備し
、エンジンの空燃比を制御する制御装置が数多く提案さ
れている。
In recent years, many control devices have been proposed that are equipped with an oxygen concentration sensor (hereinafter referred to as "Ot sensor") and control the air-fuel ratio of an engine, as disclosed in Japanese Patent Application Laid-Open No. 54-57029.

このような空燃比制御装置は排気系に設けられた0□セ
ンサが排気ガス中の残留酸素濃度に応じて第3図(a)
に示す如く出力し、この出力により理論空燃比(空燃比
すなわちA/F=約15)を検出して、この検出信号よ
りエンジンに供給される混合気の空燃比を理論空燃比へ
とフィードバック制御するものである。
In such an air-fuel ratio control device, a 0□ sensor installed in the exhaust system adjusts the temperature according to the residual oxygen concentration in the exhaust gas as shown in Figure 3 (a).
The stoichiometric air-fuel ratio (air-fuel ratio, i.e., A/F = approximately 15) is detected using this output, and the air-fuel ratio of the air-fuel mixture supplied to the engine is feedback-controlled to the stoichiometric air-fuel ratio based on this detection signal. It is something to do.

そして、この空燃比制御装置は触媒、特に三元触媒と組
み合せることで、排気ガス中の有害成分、例えばNoX
、Co、HCを極めて効率よく浄化できるものである。
By combining this air-fuel ratio control device with a catalyst, especially a three-way catalyst, it can eliminate harmful components in exhaust gas, such as NoX.
, Co, and HC can be purified extremely efficiently.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記空燃比制御装置により空燃比のフィ
ードバック制御が行われていたとしても、02センサ自
体が経年変化等により出力特性が外れていたり、またエ
ンジンに与える混合気量を制御する制御手段(例えば燃
料噴射システムの場合には燃料制御用コンピュータ及び
燃料噴射弁、また気化器の場合には気化器本体及び空燃
比フィードバック制御用コンピュータなど)の制御特性
が外れていたり、さらには排気ガス浄化用触媒の浄化性
能が低下したりしている場合には、効果的な排気ガス浄
化が達成されず、その結果排気ガス中の有害成分(NO
X 、Co、HC)が基準レベルより多量に大気中へ排
出される恐れがある。
However, even if feedback control of the air-fuel ratio is performed by the air-fuel ratio control device, the output characteristics of the 02 sensor itself may deviate due to aging etc., or the control means for controlling the amount of air-fuel mixture given to the engine (e.g. In the case of a fuel injection system, the control characteristics of the fuel control computer and fuel injection valve, or in the case of a carburetor, the carburetor body and air-fuel ratio feedback control computer, etc.) may be incorrect, or the exhaust gas purification catalyst may be out of order. If the purification performance of the exhaust gas deteriorates, effective exhaust gas purification will not be achieved, resulting in
X, Co, HC) may be emitted into the atmosphere in larger amounts than the standard level.

本発明の目的は、上記点に鑑み、エンジン制御システム
に何らかの劣化や異常が生じて大気中に排出される排気
ガス中の有害成分の濃度が設定範囲を越える場合には、
速かにその状態を検出できるようにしたエンジンの異常
検出装置を提供することにある。
In view of the above points, an object of the present invention is to prevent the concentration of harmful components in the exhaust gas discharged into the atmosphere from exceeding a set range due to some kind of deterioration or abnormality in the engine control system.
An object of the present invention is to provide an engine abnormality detection device capable of quickly detecting the state.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では、第7図に示すようにエンジンの運転
状態に応じてエンジンに与える混合気量を制御する制御
手段及び排気系に排気ガス浄化用触媒を有するエンジン
制御システムにおいて、前記触媒の下流側に設けられ排
気ガス中の排出有害成分濃度を検出する排気センサと、
この排気センサにより検出される排気ガス中の排出有害
成分濃度が設定範囲を越えていることを検出する検出手
段とを備えることを特徴とする。
Therefore, in the present invention, as shown in FIG. 7, in an engine control system having a control means for controlling the amount of air-fuel mixture given to the engine according to the operating state of the engine, and an exhaust gas purifying catalyst in the exhaust system, an exhaust sensor installed on the side to detect the concentration of harmful components discharged in the exhaust gas;
The present invention is characterized by comprising a detecting means for detecting that the concentration of exhaust harmful components in the exhaust gas detected by the exhaust sensor exceeds a set range.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。本
例は本発明を燃料噴射システムに適用した場合の例であ
るが、もちろん空燃比フィードバック制御方式の気化器
にも適用できる。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. This example is an example in which the present invention is applied to a fuel injection system, but of course it can also be applied to a carburetor using an air-fuel ratio feedback control method.

第1図は、空燃比制御装置の設けられる内燃エンジンの
概略的な構成を示すもので、エンジン1の吸気系にはポ
テンショメータ18をもつエアフロj−’;’2、スロ
ットル弁3、スロットル弁開度を検出するスロットルセ
ンサ4、吸気温センサ′17等が設けられている。この
吸気系から吸入された空気は、サージタンク5を介して
吸気マニホールド6に供給され、電気パルス信号に応じ
て作動する燃料噴射弁7から噴射される燃料と混合され
所定の空燃比の混合気としてエンジン1の燃焼室8に供
給されている。
FIG. 1 shows a schematic configuration of an internal combustion engine equipped with an air-fuel ratio control device. The intake system of an engine 1 includes an air flow j-';'2 with a potentiometer 18, a throttle valve 3, and a throttle valve opening. A throttle sensor 4, an intake air temperature sensor '17, and the like are provided to detect the temperature. The air taken in from this intake system is supplied to an intake manifold 6 via a surge tank 5, and is mixed with fuel injected from a fuel injection valve 7 activated in response to an electric pulse signal to form an air-fuel mixture with a predetermined air-fuel ratio. It is supplied to the combustion chamber 8 of the engine 1 as a fuel.

そしてこの燃焼室8では、燃料と空気との混合気がシリ
ンダヘッド9に設けられた点火プラグ10により点火燃
焼され、その燃焼ガスは排気系11を介して排気系12
に排出される。
In this combustion chamber 8, a mixture of fuel and air is ignited and burned by a spark plug 10 provided in a cylinder head 9, and the combustion gas is passed through an exhaust system 11 to an exhaust system 12.
is discharged.

この排気系12には、固体電解質、例えばZr01を利
用した排気ガス中の残留酸素濃度に応じた電圧信号を発
生する酸素濃度センサ(0□センサ)13が設けられて
おり、第3図(alに示すごとく、この0□センサ13
の出力信号により空燃比が検出される。また排気系12
の02センサ13の設けられた位置の下流側には、排気
ガス中に含まれる有害成分、例えばHC,Go、NOX
等の浄化を行う三元触媒14が設けられている。さらに
三元触媒14の下流側の排気系12には半導体、例えば
SnO2を利用した、NOx濃度に応じて抵抗値が変化
するNOXセンサ15、および同じく例えばSnO2を
利用した、CO濃度に応じて抵抗値が変化するCOセン
サ16が設けられており、N OXセンサ15およびC
Oセンサ16の抵抗値は第4図(a)、 (b)に示す
如く、NOx?74度D (NOx >およびCo?f
fi度D (Co)に応じて変化することが知られてお
り、この抵抗値変化を電圧信号V9および■ゎとして検
出し、この出力信号■8および■、より三元触媒14の
下流側のNOx濃度濃度NOX)およびCO濃度D (
Co)が検出される。
This exhaust system 12 is provided with an oxygen concentration sensor (0□ sensor) 13 that uses a solid electrolyte, for example, Zr01, and generates a voltage signal according to the residual oxygen concentration in the exhaust gas. As shown in , this 0□ sensor 13
The air-fuel ratio is detected by the output signal of. Also, the exhaust system 12
On the downstream side of the position where the 02 sensor 13 is installed, harmful components contained in the exhaust gas, such as HC, Go, NOX, etc.
A three-way catalyst 14 is provided for purification. Furthermore, the exhaust system 12 on the downstream side of the three-way catalyst 14 includes an NOX sensor 15 that uses a semiconductor, for example, SnO2, and whose resistance value changes depending on the NOx concentration, and a resistor that also uses, for example, SnO2 and whose resistance value changes according to the CO concentration. A CO sensor 16 whose value changes is provided, and a NO OX sensor 15 and a C
As shown in FIGS. 4(a) and 4(b), the resistance value of the O sensor 16 is NOx? 74 degrees D (NOx > and Co?f
It is known that the resistance value changes depending on the fi degree D (Co), and this change in resistance value is detected as voltage signals V9 and ■ゎ, and these output signals ■8 and ■ are used for the downstream side of the three-way catalyst 14. NOx concentration NOX) and CO concentration D (
Co) is detected.

また、エンジン1のシリンダブロック19にはエンジン
冷却水温を検出する水温センサ20が設けられ、またイ
グナイタ21からの点火信号を各気筒に分配するディス
トリビュータ22には気筒判別センサ23、回転角セン
サ24が内蔵されている。そして、上記エンジン1の各
運転状況を検出する上記のエアフローメータ2.0□セ
ンサ13、NoXセンサ15、COセンサ16、水温セ
ンサ20、気筒判別センサ23、および回転角センサ2
4等からの検出信号は、制御ユニット25に供給される
。制御ユニット25は、例えばマイクロコンピュータを
用いて構成されるもので、第2図はその構成を示してい
る。すなわち、演算処理を実行する中央処理装置(以下
rcPtJJという)27に対して一時記憶等を行うラ
ンダム・アクセス・メモリ (以下rRAMjという)
28、プログラムメモリ等に使用されるリード・オンリ
ー・メモリ (以下rROMJという)29を備え、C
PU27、RAM28、ROM29等はデータバス30
によって接続されている。このデータバス30には、入
出カポ−)31,32、出力ボート26.33.34が
接続されており、入出力ボート31にはポテンショメー
タ18.02センサ15、COセンサ16、水温センサ
20からの信号をマルチプレクサ36を介して取出し、
A/D変換器37でデジタル信号に変換して供給する。
Further, the cylinder block 19 of the engine 1 is provided with a water temperature sensor 20 that detects the engine cooling water temperature, and the distributor 22 that distributes the ignition signal from the igniter 21 to each cylinder is provided with a cylinder discrimination sensor 23 and a rotation angle sensor 24. Built-in. The air flow meter 2.0□ sensor 13, NoX sensor 15, CO sensor 16, water temperature sensor 20, cylinder discrimination sensor 23, and rotation angle sensor 2 detect each operating condition of the engine 1.
The detection signal from the 4th etc. is supplied to the control unit 25. The control unit 25 is configured using, for example, a microcomputer, and FIG. 2 shows its configuration. That is, a random access memory (hereinafter referred to as rRAMj) that performs temporary storage etc. for the central processing unit (hereinafter referred to as rcPtJJ) 27 that executes arithmetic processing.
28, read-only memory (hereinafter referred to as rROMJ) 29 used as program memory, etc.
PU27, RAM28, ROM29, etc. are connected to data bus 30.
connected by. This data bus 30 is connected to input/output ports 31, 32, and output boats 26, 33, and 34. take out the signal via multiplexer 36;
The A/D converter 37 converts it into a digital signal and supplies it.

気筒判別センサ23および回転角センサ24からの信号
は、波形整形回路38で波形整形され入出力ボート32
に供給され、さらにスロットルセンサ4からの検出信号
は入力回路40で適宜A/D変換されて入出力ボート3
2に供給される。出力ポート26,33.34のそれぞ
れからの出力信号は駆動回路35,41.42を介して
、イグナイタ21、燃料噴射弁7、異常警告手段39に
供給され、点火制御、燃料噴射量、報知の制御が行われ
る。43はクロック発振臼であり、CPU27等に対し
タイミングクロック信号を与える。
The signals from the cylinder discrimination sensor 23 and the rotation angle sensor 24 are waveform-shaped by a waveform shaping circuit 38 and sent to the input/output port 32.
Further, the detection signal from the throttle sensor 4 is appropriately A/D converted by the input circuit 40 and sent to the input/output board 3.
2. The output signals from the output ports 26, 33.34 are supplied to the igniter 21, the fuel injection valve 7, and the abnormality warning means 39 via the drive circuits 35, 41.42, and are used for ignition control, fuel injection amount, and notification. Control takes place. 43 is a clock oscillation mill, which provides a timing clock signal to the CPU 27 and the like.

以下に上記構成についての作動を述べる。The operation of the above configuration will be described below.

まず制御ユニット25のCPU27は、エアフロメータ
2中のポテンショメータ18からの検出信号より得られ
た吸入空気量と回転角センサ24の検出信号より得られ
たエンジン回転数とにより、ROM29内に予め記憶さ
れているマツプから基本噴射時間TPを読み出す。
First, the CPU 27 of the control unit 25 uses the intake air amount obtained from the detection signal from the potentiometer 18 in the air flow meter 2 and the engine rotational speed obtained from the detection signal from the rotation angle sensor 24 to store information in the ROM 29 in advance. The basic injection time TP is read from the map.

さらに、各センサからの検出信号に応じて基本噴射時間
TPを補正することにより、燃料噴射時間TAUを算出
する。
Furthermore, the fuel injection time TAU is calculated by correcting the basic injection time TP according to the detection signals from each sensor.

TAU=TP*に ここで、Kは補正係数である。TAU=TP* Here, K is a correction coefficient.

この補正係数にの中には、暖機増量や始動増量や加速増
量を含む補正係数に1の他に、0□センサ13の検出信
号に基づく空燃比フィードバック補正係数に2などを含
む。
These correction coefficients include, in addition to 1 for correction coefficients including warm-up increase, start-up increase, and acceleration increase, and 2 for air-fuel ratio feedback correction coefficients based on the detection signal of the 0□ sensor 13.

このようにして決定された燃料噴射時間TAUに対応す
る燃料噴射信号が噴射弁7に駆動回路42を介して出力
され、エンジン回転と同期して噴射弁7が燃料噴射時間
TAUだけ開かれて、エンジン1の吸気マニホールド6
内に燃料が噴射される。
A fuel injection signal corresponding to the fuel injection time TAU determined in this way is output to the injection valve 7 via the drive circuit 42, and the injection valve 7 is opened for the fuel injection time TAU in synchronization with the engine rotation. Engine 1 intake manifold 6
Fuel is injected inside.

このように燃料が噴射されることで、所定の空燃比の混
合気が燃焼室8内へと供給される。
By injecting fuel in this manner, an air-fuel mixture with a predetermined air-fuel ratio is supplied into the combustion chamber 8.

以上がエンジン制御システムの概略説明であり、次に本
発明の特徴部分について説明する。
The above is a general description of the engine control system, and next, the features of the present invention will be described.

上記の如くエンジン制御システムが構成され動作してい
たとしても、0□センサ13の出力特性や、その他セン
サや燃料噴射弁7を含む制御システムの制御特性が外れ
ていたり、また排気ガス浄化用触媒の浄化性能が低下し
ている場合には、排気ガスの浄化が十分達成されず、そ
の結果排気ガス中の有害成分(NOX、C○、HC)が
予め定めた基準レベルを越えて多量に大気中に排出され
る恐れがある。
Even if the engine control system is configured and operating as described above, the output characteristics of the 0□ sensor 13 and the control characteristics of the control system including other sensors and fuel injection valves 7 may be incorrect, or the exhaust gas purification catalyst If the purification performance of the exhaust gas is degraded, sufficient purification of the exhaust gas will not be achieved, and as a result, a large amount of harmful components (NOX, C○, HC) in the exhaust gas will exceed the predetermined standard level and enter the atmosphere. There is a risk of being ejected inside.

そこで、本実施例では、大気中に排出される直前の排出
ガス中の有害成分濃度を検出すべく、三元触媒14の下
流側にNoXセンサ15及びCOセンサ16を設け、両
センサ15,16の出力を監視して、有害成分の濃度が
設定範囲を越える場合には速やかにその旨を報知し、運
転者に修復の機会を与えるようにしている。
Therefore, in this embodiment, a NoX sensor 15 and a CO sensor 16 are provided downstream of the three-way catalyst 14 in order to detect the concentration of harmful components in the exhaust gas just before it is discharged into the atmosphere. The system monitors the output of the system, and if the concentration of harmful components exceeds a set range, it will immediately notify the driver and give the driver an opportunity to take corrective action.

具体的には、CPU27はタイマー処理にて第5図に示
すような異常判定ルーチンを行わせる。
Specifically, the CPU 27 causes an abnormality determination routine as shown in FIG. 5 to be performed by timer processing.

まず02センサ13の検出信号による空燃比フィードバ
ック制御中で、かつエンジンが定常運転中の(つまり過
渡運転中でない)とき(ステップ101.102)には
、ステップ103に進む。
First, if air-fuel ratio feedback control is being performed based on the detection signal of the 02 sensor 13 and the engine is in steady operation (that is, not in transient operation) (steps 101 and 102), the process proceeds to step 103.

このステップ103ではNoXセンサ15及びCOセン
サ16の出力信号V、、V、を読込み、次のステップ1
04にてそれらの値V、、VCからNOX濃度濃度(N
OX )及びCO濃濃度 (Co)を求める。一方、現
在のエンジンの運転状2.Gを、例えばエンジン回転数
Nと基本噴射時間TPとから特定し、両パラメータ(N
、TP)を関数としNoxfNt度の判定レベルラップ
、及びCO濃濃度判定レベルマツプを予め設定しておく
In this step 103, the output signals V, , V, of the NoX sensor 15 and CO sensor 16 are read, and the next step 1
04, NOX concentration (N
OX) and CO concentration (Co). On the other hand, the current engine operating condition 2. G is specified from, for example, the engine speed N and the basic injection time TP, and both parameters (N
, TP) as a function, and a determination level lap of NoxfNt degree and a CO concentration determination level map are set in advance.

そこでステップ105では、その直前に求めたパラメー
タN、TPに基づいてNox濃度の判定レベル[)o+
及びCO濃濃度判定レベルD。2を読取る。続いてステ
ップ106,107では、検出したN Ox濃度D (
NOX )が判定レベルD61より低く、かつCO濃濃
度 (Co)が判定レベルDogより低いとき、つまり
第3図中斜線で示した領域にあるときには、排出有害成
分濃度が許容範囲内にあると判定しくYES)異常判定
ルーチンを終了する。
Therefore, in step 105, the determination level of Nox concentration [)o+
and CO concentration determination level D. Read 2. Subsequently, in steps 106 and 107, the detected NOx concentration D (
When NOx) is lower than the judgment level D61 and the CO concentration (Co) is lower than the judgment level Dog, that is, when it is in the shaded area in Figure 3, it is determined that the discharged harmful component concentration is within the permissible range. (Yes) The abnormality determination routine ends.

一方、第3図中斜線で示した領域外のとき、つまりNo
X濃度濃度(NOx )が判定レベルDotより高いと
き、またはCO濃濃度 (Co)が判定レベルI)oz
より高いときには異常と判定しくステップ106,10
7)、ステップ108においてその旨を不揮発メモリ 
(RAM28の一部)に記憶すると共に、出力ボート2
6.駆動回路35を介して異常警告手段39を駆動し、
運転者に対しその旨を報知する。
On the other hand, when it is outside the area indicated by diagonal lines in Fig. 3, that is, No.
When the X concentration (NOx) is higher than the judgment level Dot, or the CO concentration (Co) is at the judgment level I)oz
If it is higher than that, it is determined that it is abnormal and steps 106 and 10
7) In step 108, the non-volatile memory
(part of RAM 28) and output port 2.
6. Drives the abnormality warning means 39 via the drive circuit 35,
The driver will be notified to that effect.

なお、異常警告手段39としては、ランプ点灯。Incidentally, as the abnormality warning means 39, a lamp is lit.

音声や文字警告等の種々の手段を利用できる。Various means such as voice and text warnings can be used.

ここで、N Ox ?M度及びco?fs度の判定レベ
ルの決定を、エンジン回転数Nと基本噴射時間TPとか
ら行っているが、その他吸入空気iQや吸気管圧力Pm
との組合せ、または上記N、 TP、 Q。
Here, NOx? M degree and co? The determination level of fs degree is determined based on engine speed N and basic injection time TP, but other factors such as intake air iQ and intake pipe pressure Pm
or a combination with the above N, TP, Q.

Pmのいずれか1つを用いて1次元的に決定する構成で
もよい。
The configuration may be one-dimensionally determined using any one of Pm.

また、上記実施例ではN Ox ?fi度及びcoty
4度の両者が所定の条件を満足するとき(つまり第3図
中の斜線領域にあるとき)を正常と判定するようにして
いたが、例えば第6図に示す如くNOxとCOのいずれ
か一方の濃度が設定範囲内にあるか否かを判定するよう
にしく従って判定レベルを夫々2個り。+ H、D o
 z L (D o + H> D o z L )設
ける必要がある)、その設定範囲内(DozL””Do
tH)にあれば正常、他方、範囲外であれば異常として
所定処理するようにしてもよい。
Moreover, in the above embodiment, NOx? fi degree and coty
Normality was determined when both NOx and CO satisfied predetermined conditions (that is, in the shaded area in Figure 3), but for example, as shown in Figure 6, either NOx or CO There are two determination levels for each determination level. + H, D o
z L (D o + H > D o z L ), within its setting range (D o
If it is within the range (tH), it is considered normal, whereas if it is outside the range, it is considered abnormal and a predetermined process may be performed.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明では、排気浄化用触媒の下流側に
設けた排気センサからの検出信号を利用し、エンジン制
御システムに何らかの劣化や異常が生じて大気中に排出
される排気ガス中の有害成分の濃度が設定範囲を越える
場合には、速かにその状態を検出できるようにし、例え
ばその旨を運転者に報知することによってエンジン制御
システムの修復を促すことが可能になる。
As described above, the present invention utilizes the detection signal from the exhaust sensor installed downstream of the exhaust purification catalyst to detect harmful substances in the exhaust gas that are emitted into the atmosphere when some kind of deterioration or abnormality occurs in the engine control system. If the concentration of a component exceeds a set range, the condition can be quickly detected and, for example, the driver can be notified of this, thereby prompting repair of the engine control system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を備えたエンジンとその周辺装置
の構成を示す概略構成図、第2図は第1図中の制御ユニ
ットの構成を示すブロック図、第3図は空燃比に対する
02センサ出力、および排出有害成分濃度の変化を示す
グラフ、第4図はNo。 センサ及びCOセンサの特性を示す特性図、第5図およ
び第6図は本発明実施例による作動を示すプログラムの
フローチャート、第7図は本発明の概略構成を示すブロ
ック図である。 1・・・エンジン、2・・・エアフローメータ、7・・
・燃料噴射弁、12・・・排気系、13・・・0□セン
サ、14・・・三元触媒、15・・・NOXセンサ、1
6・・・COセンサ、26・・・mlJ ?卸ユニット
、27・・・CPU、28・・・RAM、29・・・R
OM。
FIG. 1 is a schematic configuration diagram showing the configuration of an engine equipped with the configuration of the present invention and its peripheral equipment, FIG. 2 is a block diagram showing the configuration of the control unit in FIG. 1, and FIG. 3 is a 02 No. 4 is a graph showing changes in sensor output and discharged harmful component concentration. A characteristic diagram showing the characteristics of the sensor and the CO sensor, FIGS. 5 and 6 are flow charts of a program showing the operation according to the embodiment of the present invention, and FIG. 7 is a block diagram showing the schematic configuration of the present invention. 1...Engine, 2...Air flow meter, 7...
・Fuel injection valve, 12... Exhaust system, 13... 0□ sensor, 14... Three-way catalyst, 15... NOX sensor, 1
6...CO sensor, 26...mlJ? Wholesale unit, 27...CPU, 28...RAM, 29...R
OM.

Claims (1)

【特許請求の範囲】 エンジンの運転状態に応じてエンジンに与える混合気量
を制御する制御手段及び排気系に排気ガス浄化用触媒を
有するエンジン制御システムにおいて、 前記触媒の下流側に設けられ排気ガス中の排出有害成分
濃度を検出する排気センサと、この排気センサにより検
出される排気ガス中の排出有害成分濃度が設定範囲を越
えていることを検出する検出手段とを備えることを特徴
とするエンジンの異常検出装置。
[Scope of Claims] An engine control system including a control means for controlling the amount of air-fuel mixture given to the engine according to the operating state of the engine, and an exhaust gas purifying catalyst in the exhaust system, wherein the exhaust gas purifying catalyst is provided on the downstream side of the catalyst. An engine comprising: an exhaust sensor that detects the concentration of harmful components discharged in the exhaust gas; and a detection means that detects that the concentration of harmful components discharged in the exhaust gas detected by the exhaust sensor exceeds a set range. Anomaly detection device.
JP60298397A 1985-12-27 1985-12-27 Anomaly detector for engine Pending JPS62153546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298397A JPS62153546A (en) 1985-12-27 1985-12-27 Anomaly detector for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298397A JPS62153546A (en) 1985-12-27 1985-12-27 Anomaly detector for engine

Publications (1)

Publication Number Publication Date
JPS62153546A true JPS62153546A (en) 1987-07-08

Family

ID=17859169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298397A Pending JPS62153546A (en) 1985-12-27 1985-12-27 Anomaly detector for engine

Country Status (1)

Country Link
JP (1) JPS62153546A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374540A (en) * 1989-08-17 1991-03-29 Mitsubishi Electric Corp Air-fuel ratio controller for internal combustion engine
EP0530655A2 (en) * 1991-08-31 1993-03-10 LAMTEC Mess- und Regeltechnik für Feuerungen GmbH & Co. KG Method and apparatus for controlling an internal combustion engine and testing its catalytic converter
US6092368A (en) * 1996-03-01 2000-07-25 Hitachi, Ltd. Function diagnostic system for an exhaust gas purifying apparatus in an internal combustion engine
US6309536B1 (en) 1997-10-14 2001-10-30 Ngk Spark Plug Co., Ltd. Method and apparatus for detecting a functional condition on an NOx occlusion catalyst
WO2003083274A1 (en) * 2002-03-29 2003-10-09 Isuzu Motors Limited METHOD OF DECIDING ON CATALYST DETERIORATION AND MEANS FOR DECIDING ON CATALYST DETERIORATION IN NOx PURGING SYSTEM
JP2012251466A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Exhaust gas control apparatus for internal combustion engine
JP2016205860A (en) * 2015-04-16 2016-12-08 文雄 井上 Testing machine for emergency power generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374540A (en) * 1989-08-17 1991-03-29 Mitsubishi Electric Corp Air-fuel ratio controller for internal combustion engine
EP0530655A2 (en) * 1991-08-31 1993-03-10 LAMTEC Mess- und Regeltechnik für Feuerungen GmbH & Co. KG Method and apparatus for controlling an internal combustion engine and testing its catalytic converter
US6092368A (en) * 1996-03-01 2000-07-25 Hitachi, Ltd. Function diagnostic system for an exhaust gas purifying apparatus in an internal combustion engine
US6309536B1 (en) 1997-10-14 2001-10-30 Ngk Spark Plug Co., Ltd. Method and apparatus for detecting a functional condition on an NOx occlusion catalyst
WO2003083274A1 (en) * 2002-03-29 2003-10-09 Isuzu Motors Limited METHOD OF DECIDING ON CATALYST DETERIORATION AND MEANS FOR DECIDING ON CATALYST DETERIORATION IN NOx PURGING SYSTEM
JP2012251466A (en) * 2011-06-01 2012-12-20 Toyota Motor Corp Exhaust gas control apparatus for internal combustion engine
US9005558B2 (en) 2011-06-01 2015-04-14 Toyota Jidosha Kabushiki Kaisha Method and apparatus for exhaust gas control of an internal combustion engine
JP2016205860A (en) * 2015-04-16 2016-12-08 文雄 井上 Testing machine for emergency power generator

Similar Documents

Publication Publication Date Title
JP2827719B2 (en) O2 sensor failure determination method
JP2586218B2 (en) Control device for internal combustion engine
US5684248A (en) Device for determining the degree of deterioration of a catalyst
EP0770767B1 (en) Catalyst deterioration detection device for internal combustion engine
JP2876544B2 (en) Catalyst temperature sensor deterioration detection device
JP3316066B2 (en) Failure diagnosis device for exhaust gas purification device
JPH04116241A (en) Performance monitor of hc sensor in internal combustion engine
JPS62153546A (en) Anomaly detector for engine
KR940004347B1 (en) Fuel control system
JPH02125941A (en) Air-fuel ratio control device of engine
JP4210940B2 (en) Abnormality diagnosis device for intake system sensor
JPH0763045A (en) Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine
JPH0465224B2 (en)
JPS6254976B2 (en)
JPH11132031A (en) Catalyst degradation detecting device for internal combustion engine
JP2503391B2 (en) Air-fuel ratio control device
JP4604361B2 (en) Control device for internal combustion engine
JP3959832B2 (en) Air-fuel ratio control device for internal combustion engine
JP2004204716A (en) Air-fuel ratio subfeedback control abnormality detector
JPH01138359A (en) Anomaly detecting device in egr system
JP2560275B2 (en) Air-fuel ratio control device
JP2006112286A (en) Catalyst temperature estimation device for internal combustion engine
JP2697057B2 (en) Abnormality diagnosis device for internal combustion engine
JP2007100556A (en) Catalyst deterioration detecting device of internal combustion engine
JP2003293831A (en) Malfunction detector for oxygen concentration sensor