JPS62153330A - Copolymer containing dispersed complex gel - Google Patents

Copolymer containing dispersed complex gel

Info

Publication number
JPS62153330A
JPS62153330A JP60293192A JP29319285A JPS62153330A JP S62153330 A JPS62153330 A JP S62153330A JP 60293192 A JP60293192 A JP 60293192A JP 29319285 A JP29319285 A JP 29319285A JP S62153330 A JPS62153330 A JP S62153330A
Authority
JP
Japan
Prior art keywords
dispersed
copolymer
composite gel
monomer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60293192A
Other languages
Japanese (ja)
Other versions
JP2504741B2 (en
Inventor
So Iwamoto
岩本 宗
Noribumi Ito
伊藤 紀文
Kazuo Sugazaki
菅崎 和男
Tetsuyuki Matsubara
松原 徹行
Toshihiko Ando
敏彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60293192A priority Critical patent/JP2504741B2/en
Priority to CA000516616A priority patent/CA1272321A/en
Priority to US06/899,867 priority patent/US4808661A/en
Priority to DE3685707T priority patent/DE3685707T3/en
Priority to EP86306596A priority patent/EP0216524B2/en
Priority to CN90102331A priority patent/CN1041318C/en
Priority to CN86106270A priority patent/CN1009935B/en
Priority to KR1019860007104A priority patent/KR900005838B1/en
Priority to KR1019900010104A priority patent/KR900006041B1/en
Publication of JPS62153330A publication Critical patent/JPS62153330A/en
Priority to US07/248,951 priority patent/US4954571A/en
Application granted granted Critical
Publication of JP2504741B2 publication Critical patent/JP2504741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the title copolymer excellent in heat resistance, impact strength and moldability and useful as a resin material for a large molding of a complicated shape wherein the dispersed phase comprises a specified complex gel. CONSTITUTION:A dispersed gel phase is formed by bulk- or solution- copolymerizing a styrene monomer (a) with an acrylonitrile monomer (b) in the presence of a rubber-like polymer (A). Components (a) and (b) and a maleimide monomer (c) of the formula (wherein R is H, a 1-15 C alkyl, a cyanoalkyl or an aromatic residue) are bulk- or solution-polymerized in the presence of the above dispersed gel phase to form a continuous phase. In this way, a dispersed complex gel-containing copolymer comprising a complex gel comprising 30-70 wt. % component A and 70-30 wt. % total of a copolymer of components (a) and (b) and a copolymer of components (a), (b) and (c).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性、衝繋強度、成形加工性のすぐれた共重
合体に関する。本発明の共重合体は例えば電気機器、電
子機器、自動車等の材料部品等に成形材料として用いら
れる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copolymer with excellent heat resistance, impact strength, and moldability. The copolymer of the present invention can be used, for example, as a molding material for material parts for electrical equipment, electronic equipment, automobiles, and the like.

〔従来の技術〕[Conventional technology]

ビニル系重合体の共重合による耐熱性の改善については
従来数多く行なわれているが、一般的傾向として耐熱性
を向上させると衝撃性が低下するとし・5問題があった
。かかる問題に対して例えば、特開昭58−12904
3、特開昭58−206657等では、NTft俟マレ
イミドとビニル単量体の共重合体とグラフト共重合体と
を特定条件で配合した樹脂組成物が提案されている。か
かる組成物においては。
Many attempts have been made to improve heat resistance through copolymerization of vinyl polymers, but the general tendency is that improving heat resistance results in a decrease in impact resistance, which poses five problems. For example, Japanese Patent Laid-Open No. 58-12904
3. JP-A-58-206657 and the like propose a resin composition in which a copolymer of NTft maleimide and a vinyl monomer and a graft copolymer are blended under specific conditions. In such compositions.

樹脂の耐熱性及びアイゾツト衝撃強度の性能バランスは
従来のスチレン系単量体とアクリロニトリル系単量体の
共重合体とグラフト共重合体より成る樹脂(ABS)よ
り良好に保持されろ。しかしながら、かかる従来の樹脂
においては、特に実用衝撃強度の面で(・まだ改良の余
地があった。
The performance balance of heat resistance and isot impact strength of the resin is maintained better than that of conventional resins (ABS) made of copolymers and graft copolymers of styrene monomers and acrylonitrile monomers. However, such conventional resins still have room for improvement, especially in terms of practical impact strength.

また一方、特開昭47−6891では、高衝撃強度、高
軟化温度の共重合体の重合法として共役ジオレフィンエ
ラストマー1〜20wt%存在下でスチレン、アクリロ
ニトリル、マレイミド系単量体を重合する方法が提案さ
れているが、この方法で製造される共重合体は、高いア
イゾツト衝撃強度、高軟化温度を有するものの実用衝撃
強度については十分ではなかった。
On the other hand, JP-A No. 47-6891 discloses a method of polymerizing styrene, acrylonitrile, and maleimide monomers in the presence of 1 to 20 wt% of a conjugated diolefin elastomer as a method of polymerizing a copolymer with high impact strength and high softening temperature. has been proposed, but although the copolymers produced by this method have high Izod impact strength and high softening temperature, they do not have sufficient practical impact strength.

然るに、近年電気機器、電子機器分野、自動車工業材料
分野等では、耐熱性の樹脂が大型化かつ複雑化した成形
部品として用いられ、樹脂に対して耐熱性のみならず実
用的な衝撃強度の向上及び成形加工性の向上が強く求め
られている。実用衝撃強度とは、成形物を実用に供する
時に発生する落下や衝盤時における衝撃強度であり、特
に耐熱性の高い大形成形物においては肉厚の変化する部
位及び角の形状の部位近辺の部位が衝撃に対して最も弱
く、改良が求められていた。
However, in recent years, heat-resistant resins have been used for larger and more complex molded parts in the electrical equipment, electronic equipment, and automobile industry materials fields, and resins need to be improved not only in heat resistance but also in practical impact strength. There is a strong demand for improvement in moldability and moldability. Practical impact strength refers to the impact strength when a molded product is dropped or struck when it is put into practical use, especially in large molded products with high heat resistance, near areas where the wall thickness changes and areas with corner shapes. This area was the most vulnerable to impact, and improvements were needed.

この実用衝撃強度は、樹脂のアイゾツト衝撃強度とは対
応せず、アイゾツト衝撃強度よりもむしろ、成形物の上
記の部位の落錘衝盤強度に依存する。また、成形加工性
の点においては、一般に樹脂の耐熱性や実用衝撃性を改
良させるために耐熱性付与モノマーとの共重合を行なっ
たり、ゴム性成分の量や分子量を増大するに従って成形
加工時の樹脂の流動性が減少する傾向があり、このよう
な場合成形加工温度の高温化を行うと成形サイクルが低
下し、また大型成形物では成形加工圧力をN DOして
も、金型内に樹脂が十分に充填されず、成形加工そのも
のができなくなるという問題もあった。
This practical impact strength does not correspond to the Izot impact strength of the resin, and depends on the falling weight impact strength of the above-mentioned portion of the molded product rather than the Izot impact strength. In addition, in terms of molding processability, in general, in order to improve the heat resistance and practical impact resistance of the resin, copolymerization with a heat resistance imparting monomer is carried out, and as the amount and molecular weight of the rubbery component is increased, the molding process There is a tendency for the fluidity of the resin to decrease, and in such cases, increasing the molding temperature will slow down the molding cycle, and for large molded products, even if the molding pressure is NDO, there will be a problem in the mold. There was also the problem that the resin was not filled sufficiently, making it impossible to perform the molding process itself.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、大型で複雑な形状の成形物用の樹脂材料とし
て、耐熱性、実用衝撃性及び成形加工性のバランスを著
しく高めた共重合体を掃供することを目的とする。
The object of the present invention is to provide a copolymer with a significantly improved balance of heat resistance, practical impact resistance, and moldability as a resin material for molded articles of large size and complicated shapes.

〔問題点を解決するための手段〕[Means for solving problems]

不発明者らはかかる目的の重大性に鑑み鋭意検討した結
果、分散相が、特殊な複合ゲル(以下MGと略称する)
よりなる新規な共重合体を用いることにより、上記の目
的が達成されることを見出し、本発明を完成するに至っ
た。
In view of the importance of this objective, the inventors conducted extensive studies and found that the dispersed phase is a special composite gel (hereinafter abbreviated as MG).
The inventors have discovered that the above objects can be achieved by using a novel copolymer consisting of the following, and have completed the present invention.

すなわち本発明は。That is, the present invention.

連続相と分散相より成る共重合体であって、(a)  
分散相が複合ゲルよりなり、複合ゲルが(1)ゴム状重
合体、(ト)スチレン系単量体とアクリロニトリル系単
量体の共重合体、(iii)スチレン系単量体とアクリ
ロニトリル系単量体とマレイミド系単量体との共重合体
、の3者を含有し、複合ゲルの総量を100重量部とす
るとき(1)ゴム状重合体が30〜70重量部であり、
後2者(ii)及び(iii)の共重合体合計量が70
〜30重量部であり、更に (b)  連続相が少なくとも、マレイミド系単量体と
スチレン系単量体とアクリロニトリル系単量体との共重
合体より構成される分散複合ゲル含有共重合体である。
A copolymer consisting of a continuous phase and a dispersed phase, comprising (a)
The dispersed phase is composed of a composite gel, and the composite gel is composed of (1) a rubbery polymer, (g) a copolymer of a styrene monomer and an acrylonitrile monomer, and (iii) a styrene monomer and an acrylonitrile monomer. and a copolymer of a maleimide monomer, and when the total amount of the composite gel is 100 parts by weight, (1) the rubbery polymer is 30 to 70 parts by weight,
The total amount of copolymers of the latter two (ii) and (iii) is 70
~30 parts by weight, and (b) the continuous phase is at least a dispersed composite gel-containing copolymer composed of a copolymer of a maleimide monomer, a styrene monomer, and an acrylonitrile monomer. be.

本発明でいう連続相と分散相よりなる共重合体とは、一
方が連続相、他方が分散相よりなり、各相は2種以上の
単量体の重合物より構成されている共重合体である4、
ここで、分散相は電子顕微鏡写真により覗察するとき、
島状に存在するものであり、連続相は泡状に存在するも
のである。
In the present invention, a copolymer consisting of a continuous phase and a dispersed phase is a copolymer in which one side is a continuous phase and the other is a dispersed phase, and each phase is composed of a polymer of two or more types of monomers. 4,
Here, when observing the dispersed phase using an electron microscope photograph,
It exists in the form of islands, and the continuous phase exists in the form of bubbles.

なお、連続相は、メチルエチルケトンとメタノールの7
対3の混合溶剤で溶解される性質を有する部分でもあり
、一方、分散相は該溶剤で溶解されない性質を有する部
分でもある。
The continuous phase consists of methyl ethyl ketone and methanol.
The dispersed phase is also a portion that has the property of being dissolved in the mixed solvent of the third phase, while the dispersed phase is also a portion that has the property of not being dissolved in the solvent.

本発明の分散相は複合ゲル(MG)よりなり、該NiG
は塊状もしくは溶液重合法によって多段工程により生成
されるものである。即ち、該MGは塊状もしくは溶液重
合法によりゴム状重合体存在下でスチレン系単量体及び
アクリロニトリル系単量体を重合せしめて分散ゲル相を
形成しく分散ゲル相形成工程)、次いで、塊状もしくは
溶液重合法により、該分散ゲル相存在下でマレイミド系
単量体、スチレン系単量体及びアクリロニトリル系単量
体を重合せしめることにより製造されるものであり、2
種類の共重合体成分を含有するように形成されたもので
ある。
The dispersed phase of the present invention is composed of a composite gel (MG), and the NiG
is produced in a multi-stage process using bulk or solution polymerization methods. That is, the MG is produced by polymerizing a styrene monomer and an acrylonitrile monomer in the presence of a rubbery polymer by a bulk or solution polymerization method to form a dispersed gel phase (dispersed gel phase formation step). It is produced by polymerizing a maleimide monomer, a styrene monomer, and an acrylonitrile monomer in the presence of the dispersed gel phase by a solution polymerization method, and 2
It is formed to contain different types of copolymer components.

なお、乳化重合法による場合または分散ゲル相の形成以
前にマレイミド系単量体を共重合させた場合には、本発
明による複合ゲルを有する分散相を形成させることが難
しく、従って本発明の目的である実用衝撃強度を向上さ
せることはできない。
In addition, if an emulsion polymerization method is used or if a maleimide monomer is copolymerized before the formation of a dispersed gel phase, it is difficult to form a dispersed phase having a composite gel according to the present invention, and therefore the object of the present invention is not achieved. It is not possible to improve the practical impact strength.

かかるMGの組成は、その総量を100重量部とした場
合、ゴム状重合体30〜70重量部好ましくは30〜5
5重世部であり、共重合体の合計量は70〜30重量部
、好ましくは70〜45重量部である。
The composition of such MG is, when the total amount is 100 parts by weight, 30 to 70 parts by weight of rubbery polymer, preferably 30 to 5 parts by weight.
5 parts by weight, and the total amount of the copolymer is 70 to 30 parts by weight, preferably 70 to 45 parts by weight.

70重量部を越えるとノツチ付アイゾツト衝撃強度まで
も低下し、高衝撃の成形材料としては適さない。MG中
の共重合体は(ii)スチレン系単量体とアクリロニ)
 IJル系単量体との共重合体及び(iii)スチレン
系単量体とアクリロニトリル系単量体とマレイミド系単
量体との共重合体であって、 (ii)は主として複合
ゲル形成工程の中で、分散ゲル相形成工程において形成
される。分散ゲル相形成工程においては、マレイミド系
単量体は用(・られない。分散ゲル相形成工程では、分
散ゲル相の総量を100重量部として、ゴム状重合体が
71〜31重量部、スチレン系単量体とアクリロニトリ
ル系単量体の共重合体29〜69重量部の分散ゲル相が
形成されることが好ましい。分散ゲル相の構造は実施例
1のBの項に記載の方法により分析される。
If it exceeds 70 parts by weight, the notched isot impact strength will drop, making it unsuitable as a high impact molding material. The copolymer in MG is (ii) styrenic monomer and acryloni)
and (iii) a copolymer of a styrene monomer, an acrylonitrile monomer, and a maleimide monomer, and (ii) is mainly a composite gel forming step. It is formed in the dispersed gel phase formation step. In the dispersed gel phase forming step, a maleimide monomer is not used. In the dispersed gel phase forming step, the total amount of the dispersed gel phase is 100 parts by weight, and the rubbery polymer is 71 to 31 parts by weight, the styrene is It is preferable that a dispersed gel phase of 29 to 69 parts by weight of the copolymer of the monomer and the acrylonitrile monomer is formed.The structure of the dispersed gel phase was analyzed by the method described in Section B of Example 1. be done.

以上のように本発明によるMGはゴム状重合体の他に2
種の重合体を含有しなければならない。
As described above, the MG according to the present invention contains not only a rubbery polymer but also two
It must contain a species of polymer.

かかる重合体が1徨の場合実用衝撃強度が低いからであ
る。
This is because if the amount of such polymer is 1, the practical impact strength is low.

本発明のNiGが実用衝撃強度向上効果を発現する理由
は明らかではないが、MG中の共重合体の量及び種類に
実用衝撃強度が依存することよりみて、本発明のMGが
分散相と連続相との接合性及びゴム状重合体の補強効果
の増進に役立っているものと推察される。MG中のゴム
状重合体以外の共重合体の組成は、塊状重合法もしくは
溶液重合法によって調整され得る。一般に重合開始剤(
有機過酸化物)の量が多い程、また重合工程での転化率
が大きい程、更に脱七ノマ一工程での処理温度が高い程
、一方、用いるゴム状重合体については、1.2ビニル
結合の多いポリブタジェンを用いる程、また5%スチレ
ン溶液における溶液粘度の高いゴム状重合体を用いる程
、MG中のゴム状重合体以外の共重合体の含量は増加す
る傾向にあり、当業者においては、適量の調整をトライ
アンドエラー法にて達成できる。
Although the reason why the NiG of the present invention exhibits the effect of improving practical impact strength is not clear, considering that the practical impact strength depends on the amount and type of copolymer in the MG, it is clear that the MG of the present invention is continuous with the dispersed phase. It is presumed that this serves to improve the bondability with the phase and the reinforcing effect of the rubbery polymer. The composition of copolymers other than the rubbery polymer in MG can be adjusted by bulk polymerization or solution polymerization. Generally a polymerization initiator (
The larger the amount of organic peroxide (organic peroxide), the higher the conversion rate in the polymerization process, and the higher the treatment temperature in the first step of de-septanomerization, the more 1.2 vinyl The content of copolymers other than the rubbery polymer in MG tends to increase as polybutadiene with more bonds is used or as the rubbery polymer has a higher solution viscosity in a 5% styrene solution. The appropriate amount of adjustment can be achieved by a trial and error method.

本発明のMGはMGの内部に直径005μ以上好ましく
は0.07μ以上の細胞を1個以上含有し、かかるMG
内部に直径0.05μ以上好ましくは0.07μ以上の
細胞を有するMGの合計量の割り合いが、MGの総量に
対し50重量%以上好ましくは70重量%以上であるこ
とが好ましい。かかる細胞とは、電子顕微鏡写真におけ
るMGの相の中にさらに小島として見出されるものであ
る。この細胞の径と、かかる径の細胞を有するMGの割
り合いとが、上記範囲よりはずれる場合衝撃性が低(・
0かかろ細胞構造をしたMGを形成する為にシま、分散
ゲル相形成工程を塊状もしくは浴液状重合により実施す
ることか有効である。さらに、使用ゴム状重合体の組成
を選定することにより(当業者においては調整され得ろ
。)例えばブタジェン成分中の1,2−ビニル量の多い
程また、ゴム状重合体の5%スチレン@液粘度が高い程
細胞径とMG中の含有率とが高くなる1頃向がある。
The MG of the present invention contains one or more cells with a diameter of 005μ or more, preferably 0.07μ or more inside the MG, and such MG
It is preferable that the proportion of the total amount of MG having cells with a diameter of 0.05μ or more, preferably 0.07μ or more inside is 50% by weight or more, preferably 70% by weight or more based on the total amount of MG. Such cells are those found as islets in the MG phase in electron micrographs. If the diameter of this cell and the proportion of MG having cells with this diameter are outside the above range, the impact resistance will be low (・
In order to form MG having a zero-cell structure, it is effective to carry out the step of forming a dispersed gel phase by bulk or bath liquid polymerization. Furthermore, by selecting the composition of the rubbery polymer used (which can be adjusted by those skilled in the art), for example, the higher the amount of 1,2-vinyl in the butadiene component, the higher the 5% styrene @ solution of the rubbery polymer. There is a tendency that the higher the viscosity, the higher the cell diameter and the content in MG.

かかる細胞径は、1万倍の電子顕微鏡写真に基づいて以
下のように測定される。1万倍の電子顕微鏡写真中の分
散したMGの径を100〜200個測定する。MGの長
径と短径を測定し、MGの径(Di)=(長径士短径)
/2とする。すべてのゲルについてS、=+γπrLl
)i  を算出する(rLは個数)。
The cell diameter is measured as follows based on an electron micrograph at a magnification of 10,000 times. The diameters of 100 to 200 dispersed MGs in an electron micrograph at 10,000 times magnification are measured. Measure the long axis and short axis of the MG, and the diameter of the MG (Di) = (long axis - short axis)
/2. For all gels S, = +γπrLl
) i is calculated (rL is the number).

■ 一方細胞についても長径と短径を測定し、細胞の径=(
細胞の長径+短径)/2として0.05μ以上の細胞の
径を有するMGについて、再度MGの径(di)=(長
径+短径)/2を測定する。
■ On the other hand, the long and short axes of the cells were also measured, and the cell diameter = (
For MG having a cell diameter of 0.05 μ or more, the MG diameter (di) = (longer axis + shorter axis)/2 is measured again.

S2 = 4− : rr rn di2を算出する(
mは個数)。0.05tt以上の細胞を有するMGの重
量%はS2÷S、X100により算出されるものである
。なお径が0.1μ以下のMGについては計算より除く
S2 = 4-: Calculate rr rn di2 (
m is the number). The weight percent of MG having cells of 0.05 tt or more is calculated by S2÷S, X100. Note that MGs with a diameter of 0.1μ or less are excluded from the calculation.

本発明の分散複合ゲル含有共重合体は連続相がマレイミ
ド系単量体、スチレン系単量体及びアクリロニ) IJ
ル系単量体の共重合体を必須成分として含まねばならな
い。マレイミド系単量体、スチレン系単量体、アクリロ
ニトリル系単量体の共重合体は、耐熱性、耐衝撃性のす
ぐれた性能バランスを付与するのに有効である。連続相
を構成する全樹脂の組成については、マレイミド系単量
体1〜30重量%、より好ましくは2〜20重量%、ス
チレン系単量体10〜80重量%より好ましくは20〜
70重量%、アクリロニトリル系単量体15〜50重量
%より好ましくは15〜40重量%である。
The dispersion composite gel-containing copolymer of the present invention has a continuous phase consisting of a maleimide monomer, a styrene monomer, and acrylonitrile (IJ).
It must contain a copolymer of base monomers as an essential component. Copolymers of maleimide monomers, styrene monomers, and acrylonitrile monomers are effective in providing an excellent balance of heat resistance and impact resistance. The composition of the total resin constituting the continuous phase is 1 to 30% by weight of maleimide monomer, more preferably 2 to 20% by weight, and 10 to 80% by weight of styrene monomer, more preferably 20 to 80% by weight.
70% by weight, more preferably 15-40% by weight of the acrylonitrile monomer.

本発明の分散複合ゲル含有共重合体は連続塊状もしくは
連続溶液重合法により製造される。即ち、まず、スチレ
ン系単量体、アクリロニトリル系単量体を溶剤に溶解さ
せ、ゴム状重合体溶液とする。
The dispersed composite gel-containing copolymer of the present invention is produced by a continuous bulk or continuous solution polymerization method. That is, first, a styrene monomer and an acrylonitrile monomer are dissolved in a solvent to form a rubbery polymer solution.

次いで、かかる溶液を連続的に1基以上の攪拌槽に送入
して、分散ゲル相を形成し、形成された分散ゲル相を有
する重合埋合物を連続的に別の反応器に送入し、該反応
器中で重合反応を継続することにより複合ゲルの骨格を
形成する。該骨格を形成した後、更に場合によれば仕上
げの重合をすすめた後通常180〜290℃の温度で反
応混合物より未反応単量体や溶剤を除去して分散複合ゲ
ル含有共重合体をえる。かかる全製造工程において、通
常単量体の重合体への転化率は、反応系への全供給単量
体を基準にして、分散ゲル相生成工程では5〜35重量
%、複合ゲル骨格形成工程では、20〜80重量%、仕
上げ重合の工法においては30〜80重量%の領域にま
で順次高められる。
The solution is then continuously fed into one or more stirred vessels to form a dispersed gel phase, and the polymerized compound with the formed dispersed gel phase is continuously fed into another reactor. Then, by continuing the polymerization reaction in the reactor, a composite gel skeleton is formed. After forming the skeleton and, if necessary, proceeding with final polymerization, unreacted monomers and solvent are removed from the reaction mixture at a temperature of usually 180 to 290°C to obtain a dispersed composite gel-containing copolymer. . In all such manufacturing steps, the conversion rate of monomers to polymer is usually 5 to 35% by weight in the dispersed gel phase formation step, based on the total monomers supplied to the reaction system, and 5 to 35% by weight in the composite gel skeleton formation step. In this case, the content is gradually increased to 20 to 80% by weight, and in the final polymerization method, it is increased to 30 to 80% by weight.

本発明でいうスチレン系単量体とは、スチレン、α−メ
チルスチレン、α−エチルスチレンのような側鎖アルキ
ル置換スチレン、モノクロルスチレン、ジクロルスチレ
ン、ビニルトルエン、ビニルキシレン、0−1−ブチル
スチレン、  p −t −7”チルスチレン、p−メ
チルスチレンのような核ア/L/ キ/L/ ft 換
スチレン、ト’) ”ロムスチレン、テトラブロムスチ
レン等のハロゲン化スチレン及ヒp−ヒドロキシスチレ
ン、0−メトキシスチレン、ビニルナフレタン等が挙げ
られるが、特に好ましくは、スチレ/およびα−メチル
スチレンであり、かかるスチレン系単量体の一種以上が
用いられ得る。
In the present invention, the styrenic monomers include styrene, α-methylstyrene, side chain alkyl-substituted styrene such as α-ethylstyrene, monochlorostyrene, dichlorostyrene, vinyltoluene, vinylxylene, 0-1-butyl Styrene, p-t-7" styrene such as tyrstyrene, p-methylstyrene; , 0-methoxystyrene, vinylnafretane, etc., but particularly preferred are styrene/and α-methylstyrene, and one or more of these styrenic monomers may be used.

本発明でいうアクリロニトリル系単量体とは、アクリロ
ニトリル、メタクリロニトリル、フマロニトリル、マレ
オニトリル、α−クロロアクリロニトリル等が挙げられ
、特にアクリロニトリルが好ましい。かかる単量体の一
種以上が用いられる。
The acrylonitrile monomer referred to in the present invention includes acrylonitrile, methacrylonitrile, fumaronitrile, maleonitrile, α-chloroacrylonitrile, and the like, with acrylonitrile being particularly preferred. One or more such monomers may be used.

アクリロニトリルが好ましく用いられる。Acrylonitrile is preferably used.

本発明でいうマレイミド系単量体とは へ 直 (式中、Rは水素、又は炭素数1〜15のアルキル、シ
クロアルキル、もしくは芳香族残基を表わす。)で示さ
れるものであり、たとえばマレイミド、N−メチルマレ
イミド N−エチルマレイミド、N−プロピルマレイミ
ド、N −t−ブチルマレイミド、N−イノプロピルマ
レイミド、N−シクロヘキシルマレイミド、N−フェニ
ルマレイミド、N−ナフチルマレイミド、N−o−クロ
ルフエエルマレイミド等が挙げられるが、特に好ましく
は、マレイミド、N−メチルマレイミド、N−フェニル
マレイミド、N−シクロヘキシルマレイミド等である。
The maleimide monomer as used in the present invention is a straight monomer (in the formula, R represents hydrogen, or an alkyl, cycloalkyl, or aromatic residue having 1 to 15 carbon atoms), and includes, for example, Maleimide, N-methylmaleimide N-ethylmaleimide, N-propylmaleimide, N-t-butylmaleimide, N-inopropylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-naphthylmaleimide, N-o-chlorphene Examples include elmaleimide, and particularly preferred are maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, and the like.

かかるマレイミド系単量体の一種以上が用いられる。One or more types of such maleimide monomers are used.

本発明においては、分散複合ゲル含有共重合体を構成す
るスチレン系単量体は、スチレン単独もしくはスチレン
とα−メチルスチレンの併用が好ましく用いられ、実用
衝撃強度向上の上では、スチレンとα−メチルスチレン
の組成比は、好ましくは100/ 10〜100/70
、より好ましくは100/15〜100150である。
In the present invention, the styrene monomer constituting the dispersed composite gel-containing copolymer is preferably styrene alone or a combination of styrene and α-methylstyrene. The composition ratio of methylstyrene is preferably 100/10 to 100/70.
, more preferably 100/15 to 100150.

かかる組成比の好ましい理由は明らかではないが、スチ
レンとα−メチルスチレンを特定比率で併用することに
より、複合ゲル中に含有される共重合体の割り合いが増
加するので、かかる成分が実用衝撃強度に寄与するもの
と推察される。
Although the reason why such a composition ratio is preferable is not clear, by using styrene and α-methylstyrene together in a specific ratio, the proportion of the copolymer contained in the composite gel increases, so that such a component has a practical impact. It is presumed that this contributes to strength.

本発明においては、共重合体構成成分のスチレン系単量
体及びアクリロニトリル系単量体の一部を、スチレン系
単量体及びアクリロニトリル系単量体の総和に対して2
0重量%以下の割合いにおいて、メチルメタクリレート
等のメタクリルエステル系単量体、メチルアクリレート
等のアクリル酸エステル系単量体等の一種以上を置き換
えて構成してもよい。
In the present invention, a part of the styrene monomer and acrylonitrile monomer of the copolymer constituent components is set at 2% relative to the total of the styrene monomer and acrylonitrile monomer.
At a proportion of 0% by weight or less, one or more of methacrylic ester monomers such as methyl methacrylate and acrylic ester monomers such as methyl acrylate may be substituted.

本発明でいうゴム状重合体としては、ポリブタジェンゴ
ム、アクリロニトリルーブタジニン共重合体ゴム(NB
R)、スチレンープタジニン共重合体ゴム(SBR)等
のジエン系ゴム、ポリブチルアクリレート、ポリプロピ
ルアクリレート等のアクリル系ゴム、およびエチレン−
プロピレン−ジエン系ゴム(EPDM)等を用(・るこ
とかできる。特に好ましくは、ポリブタジェンゴムおよ
びSBRが用いられる。
The rubbery polymer referred to in the present invention includes polybutadiene rubber, acrylonitrile-butazinine copolymer rubber (NB
R), diene rubbers such as styrene-ptazinine copolymer rubber (SBR), acrylic rubbers such as polybutyl acrylate, polypropyl acrylate, and ethylene-
Propylene-diene rubber (EPDM) or the like can be used. Particularly preferably, polybutadiene rubber and SBR are used.

本発明の共重合体において、分散複合ゲルの比率は4〜
100/70が好ましく、より好ましくは6〜100/
70特に好ましくは6〜10倍である。
In the copolymer of the present invention, the ratio of the dispersed composite gel is 4 to 4.
100/70 is preferable, more preferably 6-100/
70, particularly preferably 6 to 10 times.

かかる分散複合ゲルの比率は、次の方法により測定され
る。共重合体0.41をトルエン/メチルエチルケトン
の混合比7/3液30CHに部分溶解させ、る。
The ratio of such a dispersed composite gel is measured by the following method. Partially dissolve 0.41 of the copolymer in 30CH of a 7/3 mixture of toluene/methyl ethyl ketone.

遠心分離後、溶剤にて膨潤した不溶分の重量を秤量(W
l)する。秤量後、該不溶分を真空乾燥し再度秤量(W
2)する。比率は、w、÷W;で得られる。
After centrifugation, the weight of the insoluble matter swollen with the solvent is weighed (W
l) Do. After weighing, the insoluble matter is vacuum dried and weighed again (W
2) Do. The ratio is given by w, ÷W;

かかる比率は、重合開始剤の量1種類、および脱揮発処
理時の温度、滞留時間に依存するが、更にマレイミド系
単量体の量にも依存する。当業者においては、製造プロ
セスの条件をトライアンドエラー法で選定することによ
り適当な比率を設定できる。かかる比率が4未満では衝
撃強度は著しく低く、また流動性も低い。また11を越
えても実用衝撃強度が小さくなる。
This ratio depends on the amount of one type of polymerization initiator, the temperature and residence time during the devolatilization treatment, and further depends on the amount of maleimide monomer. Those skilled in the art can set appropriate ratios by selecting manufacturing process conditions by trial and error. When the ratio is less than 4, the impact strength is extremely low and the fluidity is also low. Moreover, even if it exceeds 11, the practical impact strength becomes small.

本発明の共重合体において、連続相の共重合体の30℃
、0.5 wt%のジメチルホルムアミド(DMF )
溶液の還元粘度は好ましくは0.5〜hott7!st
、より好ましくは0.6〜0.9 dll ?、特に好
ましくは0.6ご0.85de/yである。かかる値が
1.0を越えると、極端に流動性が悪化し、又0.5未
満では衝撃強度が低下する。還元粘度は次のようにして
測定される。即ち、共重合樹脂をメチル、エチルケトン
/メタ−ノール773の混合溶剤に分散し、遠心分離に
より混合溶剤不溶分を除き、可溶成分を含む溶剤を約2
0倍量のメタノールに投入し、再沈殿させる。この沈殿
物を濾過、乾燥後、ジメチルホルムアミドを用いて還元
粘度を測定する。
In the copolymer of the present invention, 30°C of the copolymer in the continuous phase
, 0.5 wt% dimethylformamide (DMF)
The reduced viscosity of the solution is preferably 0.5 to hot7! st
, more preferably 0.6 to 0.9 dll? , particularly preferably 0.6 to 0.85 de/y. When this value exceeds 1.0, fluidity deteriorates extremely, and when it is less than 0.5, impact strength decreases. Reduced viscosity is measured as follows. That is, the copolymer resin is dispersed in a mixed solvent of methyl, ethyl ketone/methanol 773, the insoluble components are removed by centrifugation, and the solvent containing the soluble components is separated by approximately 2.
Pour into 0 times the volume of methanol and reprecipitate. After filtering and drying this precipitate, the reduced viscosity is measured using dimethylformamide.

本発明の分散複合ゲル含有共重合体には通常のヒンダー
ドフェノール系酸化防止剤、リン系酸化防止剤およびイ
オウ系酸化防止剤等9酸化防止剤を添加して熱安定性を
向上させたり、滑剤を添加して流動性をさらによくする
こともできる。また目的に合わせて、ガラス繊維等の礒
維補強剤、無機充填剤、着色剤、顔料を配合することも
できる。
To the dispersion composite gel-containing copolymer of the present invention, 9 antioxidants such as ordinary hindered phenol antioxidants, phosphorus antioxidants, and sulfur antioxidants are added to improve thermal stability. A lubricant can also be added to further improve fluidity. Depending on the purpose, fiber reinforcing agents such as glass fibers, inorganic fillers, colorants, and pigments can also be blended.

また本発明の樹脂組成物にテトラプロモビスフエ/−/
L’A、7”カブロモビフェニルエーテル、臭素化ポリ
カーボネート等の一般ノ・ロダン化有機化合物系難燃剤
を酸化アンチモンとともに混合することによって難燃化
が可能である。
Furthermore, the resin composition of the present invention may include tetrapromo bisphene/-/.
Flame retardation can be achieved by mixing general rhodanized organic compound flame retardants such as L'A, 7'' cabromobiphenyl ether, and brominated polycarbonate with antimony oxide.

本発明の分散複合ゲル含有共重合体は、ポリ塩化ビニル
、スチレン−アクリロニトリル樹脂、ポリカーボネート
、ポリブチレンテレフタレート。
The dispersed composite gel-containing copolymer of the present invention is polyvinyl chloride, styrene-acrylonitrile resin, polycarbonate, polybutylene terephthalate.

ポリエチレンテレフタレート、ナイロン6、ナイロン6
6、ナイロン12、ポリフェニレンオキシドおよびポリ
フェニレンスルフィド等の樹脂にブレンドして成形に供
することもできる。
Polyethylene terephthalate, nylon 6, nylon 6
6, nylon 12, polyphenylene oxide, polyphenylene sulfide, and other resins for molding.

以下実施例を示して本発明を具体的に説明するがこれら
は、本発明の範囲を限定するものではない。
The present invention will be specifically explained below with reference to Examples, but these are not intended to limit the scope of the present invention.

実施例1.参考例1゜ A0分分散会ゲル含有重合体の製造 5基の直列の攪拌機付反応器の出口に予熱器次いで真空
槽を連結した連続塊状重合装置を用いて、分散複合ゲル
含有重合体を製造した。第1基目の反応器にゴム状重合
体(スチレン成分25重量部、ポリブタジェン75重量
部のブロック5BR)6重量部、エチルベンゼン20 
重量部、スチレン40重量部、αメチルスチレン10i
i部、アクリロニトリル24重量部より成る原料液を連
続的に供給した。第1基目の反応器の撹拌数は350回
転とした。また、第2基目及び第3基目の反応器にそれ
ぞれN−フェニルマレイミドを3重量部及び22重量部
、連続的に供給した。重合開始剤として有機過酸化物を
用い、分子量調節剤としてドデシルメルカプタンを使用
した。予熱器の温度は260〜280℃に保持し、真空
槽の真空度は7Q torr  とした。最終の分散ゲ
ル含有共重合体中のゴム状重合体の量は14重量部とな
る様に反応温度を調整した。
Example 1. Reference Example 1゜Production of a 0-minute dispersion gel-containing polymer A dispersion composite gel-containing polymer was produced using a continuous bulk polymerization device in which a preheater and a vacuum tank were connected to the outlet of five reactors equipped with agitators in series. did. In the first reactor, 6 parts by weight of a rubbery polymer (Block 5BR containing 25 parts by weight of styrene component and 75 parts by weight of polybutadiene) and 20 parts by weight of ethylbenzene.
Parts by weight, 40 parts by weight of styrene, 10i of α-methylstyrene
A raw material solution consisting of i part of acrylonitrile and 24 parts by weight of acrylonitrile was continuously fed. The stirring speed of the first reactor was 350 revolutions. Further, 3 parts by weight and 22 parts by weight of N-phenylmaleimide were continuously supplied to the second and third reactors, respectively. An organic peroxide was used as a polymerization initiator, and dodecyl mercaptan was used as a molecular weight regulator. The temperature of the preheater was maintained at 260 to 280°C, and the degree of vacuum of the vacuum chamber was 7Q torr. The reaction temperature was adjusted so that the amount of rubbery polymer in the final dispersed gel-containing copolymer was 14 parts by weight.

参考例1は市販の超耐熱銘柄のABSを用いて物性評価
の基準サンプルとして用いたものである。
Reference Example 1 uses a commercially available super heat-resistant brand of ABS as a reference sample for physical property evaluation.

B0重合体の分析 (1)分散ゲル相の構造分析及び分散ゲル相の形成確認 第1基目の反応器出口より反応混合物をサンプリングし
、分散ゲル相の構造を分析した、取り出した反応混合物
に200 ppmのパラターシアリブチルカテコールを
添加し、60℃10torrで3時間、100℃10 
torrで3時間、200℃10 torrで2時間、
250℃70torrで2時間処理し、未反応単量体及
び溶剤を除去した。かかる操作で実質的に重合が生起し
ない事を確認した。
Analysis of B0 polymer (1) Structural analysis of the dispersed gel phase and confirmation of the formation of the dispersed gel phase The reaction mixture was sampled from the outlet of the first reactor, and the structure of the dispersed gel phase was analyzed. Add 200 ppm of paratasia butylcatechol and incubate at 60°C and 10 torr for 3 hours at 100°C and 10 torr.
torr for 3 hours, 200℃ 10 torr for 2 hours,
It was treated at 250° C. and 70 torr for 2 hours to remove unreacted monomers and solvent. It was confirmed that polymerization did not substantially occur during this operation.

この処理物1fをメチルエチルケトンとメタトルの7対
3比の混合溶剤30CC中に一昼夜放置した後、不溶分
を遠心分離法にて分離した。不溶分は乾燥後元素分析法
、IR法により分析し、物質収支の値を用いて組成を求
めた。結果を表1に示す。
This treated product 1f was allowed to stand overnight in 30 cc of a mixed solvent of methyl ethyl ketone and methanol at a ratio of 7:3, and then the insoluble matter was separated by centrifugation. Insoluble matter was analyzed by elemental analysis and IR method after drying, and the composition was determined using the mass balance value. The results are shown in Table 1.

上記処理物の電子顕微鏡写真(透過型、1万倍)を撮影
し、分散ゲル相の形成の有無につき観察した。結果を表
1に示す。
An electron micrograph (transmission type, magnification: 10,000 times) of the above-mentioned treated product was taken, and the presence or absence of the formation of a dispersed gel phase was observed. The results are shown in Table 1.

(2)分散多段ゲルの構造分析 最終的に得られた共重合体11をメチルエチルケトンと
メタノール7対3比の混合溶剤30Ce中に一昼夜放置
し、遠心分離法にて不溶分と可溶分に分離した。不溶分
は乾燥後元素分析法、IR法により分析し、製造工程で
の物質収支の値をもちいて組成を求めた。又可溶分はメ
タノール400 CCを用いて再沈殿を行い、連続相の
共重合体を回収し、乾燥後組成分析を行い、更に025
2の共重合体を50CCのジメチルホルムアミドに溶解
し、ウベローテ型粘度計を用いて還元粘度を求めた。ま
た、比率も求めた。
(2) Structural analysis of dispersed multistage gel The finally obtained copolymer 11 was left overnight in a mixed solvent of 30Ce of methyl ethyl ketone and methanol at a ratio of 7:3, and separated into insoluble and soluble components by centrifugation. did. Insoluble matter was analyzed by elemental analysis and IR method after drying, and the composition was determined using the mass balance values in the manufacturing process. In addition, the soluble content was reprecipitated using 400 CC of methanol, the continuous phase copolymer was recovered, and after drying, the composition was analyzed, and further 025
The copolymer of No. 2 was dissolved in 50 CC of dimethylformamide, and the reduced viscosity was determined using an Uberote viscometer. We also calculated the ratio.

最終的に得られた共重合体の電子顕微鏡写真(透過型1
万倍)を撮影し、ゲル内の細胞を観察した。結果を表1
に示す。
Electron micrograph of the finally obtained copolymer (transmission type 1
The cells within the gel were observed. Table 1 shows the results.
Shown below.

C0物性評価 C−1,成    形 得られた共重合体を80℃で3時間乾燥した後、成形温
度240℃、金型温度60℃で射出成形機で成形した。
C0 Physical Property Evaluation C-1, Molding After drying the obtained copolymer at 80°C for 3 hours, it was molded with an injection molding machine at a molding temperature of 240°C and a mold temperature of 60°C.

C2物性の評価 (1)  アイゾツト衝撃強度:  JIS  K  
687]に準じて測定。
Evaluation of C2 physical properties (1) Izod impact strength: JIS K
687].

(2)耐燃性の評価:  ASTM D  1525 
 に準じてビカット軟化点を測定。
(2) Evaluation of flame resistance: ASTM D 1525
Measure the Vicat softening point according to.

(3)成形加工性の評価: 射出成形においてショート
ショットを生じない最低の射出圧力に必要な成形機の油
圧(ショートショット油圧)により評価した。市販のA
BS (R耐熱銘柄、参考例)を基準とし、ショートシ
ョット油圧の差異で評価した。(差異の値が負の場合は
、市販のABS (超耐熱銘柄)よりも油圧が低(、成
形加工時の流動性の良好な材料として評価される。) (4)実用衝撃強度の評価: 射出成形により図1(a
)、図1(b)で示される形状の成形物の3箇所の部位
、部位(1)、部位(2)、部位(3)について、落錘
衝撃強度試験を行った。落錘の先端部R= 6.4 m
1m、荷台の内径25 m/rnとした。部位(1)は
厚みの変化する部位であり、部位(2)は角の近辺の部
位、部位(3)は標準的な部位である。
(3) Evaluation of molding processability: Evaluation was performed based on the oil pressure of the molding machine (short shot oil pressure) required for the lowest injection pressure that does not cause short shots in injection molding. Commercially available A
Based on BS (R heat resistant brand, reference example), evaluation was made based on the difference in short shot oil pressure. (If the difference value is negative, the oil pressure is lower than that of commercially available ABS (super heat resistant brand) (it is evaluated as a material with good fluidity during molding processing) (4) Evaluation of practical impact strength: Figure 1 (a) is made by injection molding.
), a falling weight impact strength test was conducted on three parts of the molded product having the shape shown in FIG. 1(b), part (1), part (2), and part (3). Tip of falling weight R = 6.4 m
1 m, and the inner diameter of the loading platform was 25 m/rn. Part (1) is a part whose thickness changes, part (2) is a part near the corner, and part (3) is a standard part.

C−3,評価の結果を表1に示す。C-3, the evaluation results are shown in Table 1.

実施例 2゜ 用いるゴム状重合体の種類をポリブタジェンとした他は
実施例1.と同様にし、製造評価を行った。結果を表1
に示す。
Example 2゜Example 1 except that the type of rubbery polymer used was polybutadiene. Manufacturing evaluation was performed in the same manner as above. Table 1 shows the results.
Shown below.

比較例 1゜ N−フェニルマレイミドの添加を第1基目の反応器に3
重量部、第2基目の反応器に2.2 重量部に変更した
他は、実施例2と同様に製造・評価を行った。分散ゲル
相にマレイミド単量体を成分とする共重合体が含まれて
おり、複・合ゲルでない、本発明の範囲外の分散ゲル含
有共重合体を得た。物性評価の結果、アイゾツト衝撃強
度、ビガット軟化点、成形加工性は実施例2と同等であ
ったが、実用衝撃強度において劣った。結果を表1に示
す。
Comparative example 1゜N-phenylmaleimide was added to the first reactor.
Production and evaluation were carried out in the same manner as in Example 2, except that the part by weight was changed to 2.2 parts by weight in the second reactor. A copolymer containing a maleimide monomer as a component is contained in the dispersed gel phase, and a copolymer containing a dispersed gel, which is not a composite gel and is outside the scope of the present invention, was obtained. As a result of physical property evaluation, the Izot impact strength, Vigat softening point, and moldability were the same as in Example 2, but the practical impact strength was inferior. The results are shown in Table 1.

比較例 2゜ 用いるゴム状重合体をポリブタジェン3重量部とスチレ
ン成分40重量部、ポリブタジェン60重量部のブロッ
ク5BR3重量部に変更した他は実施例1と同様にして
製造し評価を行った。分散複合ゲルの細胞の径が小さく
、本発明の範囲外の分散複合ゲル含有共重合体を得た。
Comparative Example 2° A rubber-like polymer was produced and evaluated in the same manner as in Example 1, except that the rubbery polymer used was changed to 3 parts by weight of polybutadiene, 40 parts by weight of the styrene component, and 3 parts by weight of Block 5BR, which was 60 parts by weight of polybutadiene. A copolymer containing a dispersed composite gel was obtained in which the cell diameter of the dispersed composite gel was small and was outside the scope of the present invention.

実施例1に比較し実用衝撃強度が劣った。鬼。Compared to Example 1, the practical impact strength was inferior. demon.

比較例 3゜ 第1基目の反応器の攪拌数を90回転とし、予熱器の温
度を290〜310℃に変更した他は実施例2と同様に
して製造し評価を行った。分散複合ゲル中の共重合体含
量が多く、本発明の範囲外の組成物を得た。実施例2に
比較し実用衝撃強度が劣った。
Comparative Example 3 A product was produced and evaluated in the same manner as in Example 2, except that the stirring speed of the first reactor was set to 90 revolutions and the temperature of the preheater was changed to 290 to 310°C. A composition was obtained in which the copolymer content in the dispersed composite gel was high and was outside the scope of the present invention. Compared to Example 2, the practical impact strength was inferior.

比較例 4゜ ポリブタジェンゴムラテックス14重量部存在下で回分
式の乳化重合法でスチレン8重量部、αメチルスチレン
2重量部、アクリロニトリル3重量部を重合せしめた後
、更にNフェニルマレイミド10重量部、スチレン10
重量部、αメチルスチレン2重量部、アクリロニトリル
5重量部を重合せしめた。分散複合ゲル中の共重合体の
含量が少なく、また細胞の径が小さく、本発明の範囲外
の組成物を得た。特に実用衝撃強度が低かった。
Comparative Example 4゜In the presence of 14 parts by weight of polybutadiene rubber latex, 8 parts by weight of styrene, 2 parts by weight of α-methylstyrene, and 3 parts by weight of acrylonitrile were polymerized by a batch emulsion polymerization method, and then 10 parts by weight of N-phenylmaleimide was added. part, styrene 10
parts by weight, 2 parts by weight of α-methylstyrene, and 5 parts by weight of acrylonitrile were polymerized. A composition was obtained in which the content of the copolymer in the dispersed composite gel was small and the cell diameter was small, which was outside the scope of the present invention. In particular, the practical impact strength was low.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如(、本発明の分散複合ゲル含有共重合体
は実用衝撃強度、耐熱性および成形加工性にすぐれ、又
外観もすぐれており、電気機器、電子機器および自動車
等用の部品材料用の用途において、産業上の利用価値は
極めて大きいものである。
As detailed above, the dispersed composite gel-containing copolymer of the present invention has excellent practical impact strength, heat resistance, and moldability, and also has an excellent appearance, and is used as a component material for electrical equipment, electronic equipment, automobiles, etc. Its industrial value is extremely large in terms of industrial applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、落錘衝撃試験に用いた成形物の形状を示す。 (a)は平面図であり、(b)は断面図である。 FIG. 1 shows the shape of the molded product used in the falling weight impact test. (a) is a plan view, and (b) is a sectional view.

Claims (6)

【特許請求の範囲】[Claims] (1)連続相と分散相より成る共重合体であって、(a
)分散相が複合ゲルよりなり、該複合ゲルが(i)ゴム
重合体、 (ii)スチレン系単量体とアクリロニトリル系単量体
との共重合体、 (iii)スチレン系単量体とアクリロニトリル系単量
体とマレイミド系単量体との共重合体、 の3者を含有し、 該複合ゲルの総量を100重量部とするとき(i)ゴム
状重合体が30〜70重量部であり、後2者(ii)及
び(iii)の共重合体合計量が70〜30重量部であ
り、更に、 (b)連続相が少なくとも、マレイミド系単量体とスチ
レン系単量体とアクリロニトリル系単量体との共重合体 より構成される分散複合ゲル含有共重合体。
(1) A copolymer consisting of a continuous phase and a dispersed phase, comprising (a
) The dispersed phase is composed of a composite gel, and the composite gel comprises (i) a rubber polymer, (ii) a copolymer of a styrene monomer and an acrylonitrile monomer, and (iii) a styrenic monomer and acrylonitrile. and a copolymer of a maleimide monomer and a maleimide monomer, and when the total amount of the composite gel is 100 parts by weight, (i) the rubbery polymer is 30 to 70 parts by weight; , the total amount of the latter two copolymers (ii) and (iii) is 70 to 30 parts by weight, and (b) the continuous phase is at least a maleimide monomer, a styrene monomer, and an acrylonitrile monomer. A dispersed composite gel-containing copolymer composed of a copolymer with a monomer.
(2)複合ゲルの内部に直径0.05μ以上の細胞を含
有する複合ゲルの合計量の割り合いが、複合ゲルの総量
に対して50重量%以上である特許請求の範囲第1項記
載の分散複合ゲル含有共重合体。
(2) The ratio of the total amount of the composite gel containing cells with a diameter of 0.05 μ or more inside the composite gel is 50% by weight or more with respect to the total amount of the composite gel. Dispersed composite gel-containing copolymer.
(3)スチレン系単量体がスチレン及びα−メチルスチ
レンである特許請求の範囲第1または2項記載の分散複
合ゲル含有共重合体。
(3) The dispersed composite gel-containing copolymer according to claim 1 or 2, wherein the styrenic monomers are styrene and α-methylstyrene.
(4)スチレンとα−メチルスチレンの比率が100/
10〜100/70である特許請求の範囲第3項記載の
分散複合ゲル含有共重合体。
(4) The ratio of styrene and α-methylstyrene is 100/
The dispersed composite gel-containing copolymer according to claim 3, which has a molecular weight of 10 to 100/70.
(5)複合ゲルの架橋度指数が4〜11倍である特許請
求の範囲第1〜3項のいずれかに記載の分散複合ゲル含
有共重合体。
(5) The dispersed composite gel-containing copolymer according to any one of claims 1 to 3, wherein the composite gel has a crosslinking degree index of 4 to 11 times.
(6)連続相を構成する共重合体の、30℃、0.5w
t%のジメチルホルムアミド溶液における還元粘度が0
.5〜1.0dl/gである特許請求の範囲第1〜4項
のいずれかに記載の分散複合ゲル含有共重合体。
(6) 30°C, 0.5w of the copolymer constituting the continuous phase
Reduced viscosity in t% dimethylformamide solution is 0
.. The dispersed composite gel-containing copolymer according to any one of claims 1 to 4, wherein the dispersion composite gel content is 5 to 1.0 dl/g.
JP60293192A 1985-08-27 1985-12-27 Copolymer composition containing dispersed composite gel Expired - Lifetime JP2504741B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP60293192A JP2504741B2 (en) 1985-12-27 1985-12-27 Copolymer composition containing dispersed composite gel
CA000516616A CA1272321A (en) 1985-08-27 1986-08-22 Rubber dispersed copolymer resin
US06/899,867 US4808661A (en) 1985-08-27 1986-08-25 Rubber dispersed copolymer resin
EP86306596A EP0216524B2 (en) 1985-08-27 1986-08-27 Rubber dispersed copolymer resin
CN90102331A CN1041318C (en) 1985-08-27 1986-08-27 Process for preparing rubber dispersed copolymer resin
CN86106270A CN1009935B (en) 1985-08-27 1986-08-27 Copolymer resin of disperse rubber
DE3685707T DE3685707T3 (en) 1985-08-27 1986-08-27 Copolymer dispersed in rubber.
KR1019860007104A KR900005838B1 (en) 1985-08-27 1986-08-27 Rubber dispersed copolymer resin
KR1019900010104A KR900006041B1 (en) 1985-08-27 1986-11-28 Dispersed multi-component gel containing copolymer
US07/248,951 US4954571A (en) 1985-08-27 1988-09-26 Rubber dispersed copolymer resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293192A JP2504741B2 (en) 1985-12-27 1985-12-27 Copolymer composition containing dispersed composite gel

Publications (2)

Publication Number Publication Date
JPS62153330A true JPS62153330A (en) 1987-07-08
JP2504741B2 JP2504741B2 (en) 1996-06-05

Family

ID=17791607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293192A Expired - Lifetime JP2504741B2 (en) 1985-08-27 1985-12-27 Copolymer composition containing dispersed composite gel

Country Status (1)

Country Link
JP (1) JP2504741B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731914A (en) * 1980-08-06 1982-02-20 Japan Synthetic Rubber Co Ltd Production of impact-resistant resin composition
JPS61162510A (en) * 1985-01-11 1986-07-23 Sumitomo Naugatuck Co Ltd Production of heat-resistant polymer
JPS61236810A (en) * 1985-04-12 1986-10-22 Kanegafuchi Chem Ind Co Ltd Production of thermoplastic resin
JPH0692472A (en) * 1992-07-27 1994-04-05 Tetsuya Ogino Load shift preventing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5731914A (en) * 1980-08-06 1982-02-20 Japan Synthetic Rubber Co Ltd Production of impact-resistant resin composition
JPS61162510A (en) * 1985-01-11 1986-07-23 Sumitomo Naugatuck Co Ltd Production of heat-resistant polymer
JPS61236810A (en) * 1985-04-12 1986-10-22 Kanegafuchi Chem Ind Co Ltd Production of thermoplastic resin
JPH0692472A (en) * 1992-07-27 1994-04-05 Tetsuya Ogino Load shift preventing device

Also Published As

Publication number Publication date
JP2504741B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
EP0164874B1 (en) Process for producing a heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, and thermoplastic resin composition containing the same
KR900005838B1 (en) Rubber dispersed copolymer resin
KR20190031225A (en) Preparation method of modified acrylonitrile-butadiene-styrene resin and modified acrylonitrile-butadiene-styrene resin produced by thereof
US5191023A (en) Block-copolymerized-rubber-modified styrene copolymers
US5574099A (en) Rubber-reinforced styrene resin composition and process for producing the same
EP0393685A1 (en) Imidated copolymers and uses thereof
US5218069A (en) Imidated copolymers and uses thereof
TWI732307B (en) Vinylidene substituted aromatic monomer and cyclic (meth)acrylate ester polymers
JPS6248712A (en) Rubber-dispersed copolymer resin
JPS62153330A (en) Copolymer containing dispersed complex gel
JPH05194676A (en) Rubber modified aromatic vinyl-based copolymer resin and its production
KR100384385B1 (en) Preparation method of rubber-modified styrene-based resin with high gloss and impact resistance
EP0378410B1 (en) Rubber-modified styrene-based copolymer
JPH05247149A (en) Rubber-modified aromatic vinyl coopolymer resin and its production
JPH06166729A (en) Rubber-modified aromatic vinyl copolymer resin and its production
JP2650902B2 (en) Rubber-modified styrene copolymer resin composition
JPH0216139A (en) Styrene copolymer modified with anionically polymerized rubber
JPS59179611A (en) Rubber-modified styrene/acrylonitrile copolymer resin composition
JP2632831B2 (en) Rubber-modified styrenic copolymer composition
KR910008280B1 (en) Rubber - modified styren based copolymer
JP2632830B2 (en) Rubber-modified styrenic copolymer composition
JP2675781B2 (en) Anionic polymer rubber modified styrene copolymer
JPS63241015A (en) Dispersion of graft rubber particle
JPH07206948A (en) Rubber-modified styrene-acrylonitrile resin composition and its production
JPH05255458A (en) Rubber-modified aromatic vinyl copolymer resin and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term