JPS621529B2 - - Google Patents

Info

Publication number
JPS621529B2
JPS621529B2 JP57180022A JP18002282A JPS621529B2 JP S621529 B2 JPS621529 B2 JP S621529B2 JP 57180022 A JP57180022 A JP 57180022A JP 18002282 A JP18002282 A JP 18002282A JP S621529 B2 JPS621529 B2 JP S621529B2
Authority
JP
Japan
Prior art keywords
liquid
fluorine
exhaust gas
absorption liquid
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57180022A
Other languages
Japanese (ja)
Other versions
JPS5969130A (en
Inventor
Ko Yamashita
Tatsuo Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP57180022A priority Critical patent/JPS5969130A/en
Publication of JPS5969130A publication Critical patent/JPS5969130A/en
Publication of JPS621529B2 publication Critical patent/JPS621529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は弗素系成分含有排ガスの処理方法に係
り、弗素系成分を含有した排ガスを簡易な工程で
効率よく安価に処理することのできる方法を得よ
うとするものである。 弗素系成分含有排ガスは、アルミニウム用電解
炉、窯業製品用焼成炉及び溶解炉、肥料用反応設
備、ステンレス酸洗設備等から発生するが、これ
らの設備からの排ガス中には、HF、F2の他にそ
れぞれの設備によりSOx、HCl等の有害物質や
CO2が含まれ、さらにシリカ分や鉄分等のダスト
なども含まれることがある。 このような弗素系成分含有排ガスを処理する従
来技術としては、排ガスをNaOH水溶液で洗浄
することによつて、前記排ガス中の弗素を除去し
た後、弗素を含有する洗浄液にCa(OH)2あるい
はCa(OH)2+CaCl2を添加して、CaF2を沈殿除
去する方法(いわゆるダブルアルカリプロセ
ス)、排ガスをCa(OH)2+CaCl2溶液、Mg
(OH)2+MgCl2溶液もしくはBa(OH)2+BaCl2
液を接触させて処理する方法(モノアルカリプロ
セス)(特開昭50−113482号 公報参照)があ
る。ところが前記の方法はダブルアルカリプロ
セスのため、その処理工程が複雑であり、この工
程の複雑さを避けるためには洗浄液として、Ca
(OH)2スラリを使用することが考えられるが、
Ca(OH)2の溶解度が小さいこと、Ca系生成沈殿
物との共沈によるCa(OH)2のロス、さらには
CO2吸収によるロスおよび有害物質吸収能の低下
等のために実用性に乏しいという問題がある。ま
た前記の方法は、上記の方法の改良として、
Ca(OH)2スラリ使用法の問題点を解決すべく提
案されたもので、CaCl2溶液におけるCa(OH)2
の溶解度が単なる水に対する溶解度よりはるかに
大きくなることに着目しており、CaCl230%溶液
100gに対してCa(OH)2を最高0.76g溶解した状
態で使用するものであつて、特開昭50−113482号
公報記載の実施例の説明及び図面の第2図、第3
図においてはCaCl2;30wt%溶液にCa(OH)2
0.3〜0.5wt%を含有する吸収液によつて排ガス処
理しているが、前記吸収液〔Ca(OH)20.5wt
%〕のPHは、8.9で安定であるとされており、排
ガスの処理が少なくともPH7以上のアルカリ領域
の吸収液によつて行われることは明らかであつ
て、弗素系成分の除去がPH7以上の吸収液によつ
て行われる以上、この方法における弗素系成分の
吸収除去反応は、 Ca(OH)2+2F-+2H+→CaF2+2H2O であることは明らかであり、副反応として Ca(OH)2+CO2→CaCO3+H2O が若干進行し、ある程度CaCO3が生成すること
は否めない。したがつて前記の方法は、弗素系
成分除去剤として多く使用されるCa(OH)2が高
価であるとともにその一部がCaCO3として損失
されること、さらに、高濃度のCaCl2溶液を使用
するので長期操業においては、Cl-によつて装置
が腐食する等の不利がある。 本発明は前記したような実情に鑑み検討を重ね
て創案されたものであつて、弗素系成分含有排ガ
スを、塩化カルシウムを含有したPH4.0〜5.5の吸
収液と接触させて脱弗処理し、該脱弗処理後の処
理液に二水石膏(CaSO4・2H2O)や半水石膏
(CaSO4・1/2H2O)又は無水石膏(CaSO4)のよう な脱弗剤を添加してPHを4.0〜5.5にした塩化カル
シウム含有吸収液を再生し、該再生吸収液を前記
弗素系成分含有排ガス処理に循環使用することに
より上述したような弗素系成分含有排ガスを簡易
な工程で効率よく、又安価に処理することに成功
した。 即ち斯様な本発明について更に説明すると、本
発明者らは、先に炭酸カルシウムにより効率良く
脱弗処理することについて特許第1046547号(特
公昭55−41810)を提案したが、本発明において
は、前記先願発明における炭酸カルシウムより
も、はるかに安価な二水石膏(CaSO4・2H2O)
を用いるものであつて、近年、石膏の需要が減少
するのとは逆に、脱硫装置の普及等により副生石
膏が増加しており、その価格は極めて安価であ
り、本発明においてはこの安価な二水石膏を脱弗
剤として利用するものである。 前記した弗素系成分含有排ガス中の弗素系成分
は上記吸収液中のCaCl2と反応し、次の(1)式のよ
うな化学反応によつてCaF2として沈殿する。 CaCl2+2F-→CaF2+2Cl- ……(1) 然してCl-を含んだ前記脱弗処理後の処理液に
はCaSO4・2H2Oが添加され、次の(2)式のような
化学反応によつてCaCl2が再生される。 CaSO4+2Cl-→CaCl2+SO4 2- ……(2) なお、弗素系成分含有排ガス流入以前の新吸収
液として0.05%以上、好ましくは0.1〜0.5%の
CaCl2水溶液にHClを添加してPH4.0〜5.5好まし
くは4.5±0.5に調整したものを用い、前記排ガス
流入以後の再生吸収液は、PH4.0〜5.5、好ましく
は4.5±0.5を保持するようにCaSO4・2H2Oを添
加しながら操作したものを用いる。 前記新吸収液のCaCl2濃度を0.05%以上とした
のは、0.05%未満では脱弗処理後の吸収液中のF
濃度が高くなるからであり、また、0.5%以下と
したのは、0.5%以上含有させても脱弗率に大き
な変化はみられず、経済性を考慮したためであ
る。又前記吸収液のPHを、4.0以上としたのは、
4.0未満では前記(1)式の反応が効率よく行われな
いからであり、また5.5以下としたのは、5.5以上
では前記(2)式の反応が円滑に行われないからであ
る。 更に前記吸収液のPHが4.5±0.5で処理が行われ
る場合、排ガス中の弗素除去率は、たとえばガス
中のF濃度が100ppm程度の場合、98%以上の高
い値が得られ、脱弗処理後の排ガス中のF濃度は
Fとして2.0mg/Nm3以下となる。また前記PHの範
囲(4.0〜5.5)は酸性領域であるため、前記吸収
液中には前記排ガス中のダストよりの成分(シリ
カ分や金属分)はほとんどが溶解し沈殿物として
得られるCaF2の純度はきわめて高いものが得ら
れる。 添附図面は、本発明を実施するための装置の1
例を示す概要図であり、図示されるように、1は
吸収塔であつて、この吸収塔1において、弗素系
成分含有排ガス2は、吸収液と接触して弗素分が
除去された後、処理排ガス3として外部に排出さ
れる。前記脱弗処理後の処理液4は、前記吸収塔
1の下部からCaSO4・2H2Oの供給槽5に導か
れ、この供給槽5において、CaSO4・2H2O6お
よび工水7が前記処理液4に添加されてCaCl2
再生され、この結果得られたCaCl2溶液は、吸収
液循環ポンプ8を介して前記吸収塔1の上部に、
再生吸収液として循環供給される。なお、前記ポ
ンプ8からのCaCl2溶液の一部はシツクナー9に
導かれ、このシツクナー9からの沈殿濃縮液(弗
化カルシウム含有)は固液分離機10に導かれ、
この固液分離機10においてCaF211が回収さ
れるとともに液が前記シツクナー9からの上澄み
液と一緒に前記供給槽5に炉液として戻されるよ
うになつており、前記固液分離機10からの液の
一部を抜出し口12から抜き取ることにより吸収
液の重金属、シリカ分等の濃縮を防止すると共に
再生液中のSO4 2-濃度を抑制することができ、こ
の抜出し液を中和処理した後、沈澱生成物を除去
してから系外抜出液として放流するようになつて
いる。この系外抜出液は一般的に吸収液の8分の
1〜10分の1程度で上記目的を有効に達成せしめ
ることができ、又前記シツクナー9は前記吸収塔
1と供給槽5との間に設置してもよい。 なお上記のように抜出し口12から系外に抜出
された液は消石灰等の添加により石膏を再生する
ことができ、該石膏は循環使用が可能である。 本発明によるものの具体的な実施例について述
べると以下の通りである。 実施例 1 処理すべき原ガスとして空気にSiF4およびF2
を混合希釈(SiF4:F2=1:2モル比)して、
F濃度23〜27mg/Nm3の弗素系成分含有ガスを合
成した。この原ガス20N/minを供試ガスとし
て、添附図面に示す装置により脱弗処理を行つ
た。吸収塔1として、多孔板(開孔率18%)一段
式吸収塔(内径25.8mmφ)を用い、吸収液量1.7
、吸収液中のCaCl2濃度0.05%、L/G2.5/m3
にて、吸収液のPHがそれぞれ3.5〜6.0の設定値を
保持するようにCaSO4・2H2Oを供給してガス中
弗素の除去処理を行つた。結果は第1表に示す通
りである。
The present invention relates to a method for treating exhaust gas containing fluorine-based components, and is intended to provide a method that can efficiently and inexpensively treat exhaust gas containing fluorine-based components through simple steps. Fluorine-based component-containing exhaust gas is generated from aluminum electrolytic furnaces, ceramic product firing and melting furnaces, fertilizer reaction equipment, stainless steel pickling equipment, etc., and the exhaust gas from these equipment contains HF, F2, etc. In addition, each equipment releases harmful substances such as SOx and HCl.
It contains CO 2 and may also contain dust such as silica and iron. Conventional technology for treating such fluorine-based component-containing exhaust gas includes removing fluorine from the exhaust gas by cleaning the exhaust gas with an aqueous NaOH solution, and then adding Ca(OH) 2 or A method of precipitating and removing CaF 2 by adding Ca(OH) 2 + CaCl 2 (so-called double alkali process), converting exhaust gas to Ca(OH) 2 + CaCl 2 solution, Mg
There is a method (mono-alkali process) in which a (OH) 2 +MgCl 2 solution or a Ba(OH) 2 +BaCl 2 solution is brought into contact with each other (mono-alkali process) (see JP-A-50-113482). However, since the above method uses a double alkali process, the treatment process is complicated, and in order to avoid the complexity of this process, Ca
(OH) 2 It is possible to use slurry, but
The solubility of Ca(OH) 2 is low, the loss of Ca(OH) 2 due to co-precipitation with Ca-based precipitates, and
There are problems in that it is impractical due to loss due to CO 2 absorption and a decrease in the ability to absorb harmful substances. The above method also includes, as an improvement of the above method,
This was proposed to solve the problems of using Ca(OH) 2 slurry, and Ca(OH) 2 in CaCl 2 solution.
We focused on the fact that the solubility of CaCl 2 is much greater than the solubility in water.
It is used in a state in which a maximum of 0.76g of Ca(OH) 2 is dissolved per 100g.
In the figure, CaCl 2 ; Ca(OH) 2 in a 30wt% solution;
Exhaust gas is treated with an absorption liquid containing 0.3 to 0.5wt%, but the absorption liquid [Ca(OH) 2 0.5wt%]
%] is said to be stable at 8.9, and it is clear that the treatment of exhaust gas is carried out using an absorption liquid in the alkaline region with a pH of 7 or higher, and that fluorine-based components can be removed using an absorbent with a pH of 7 or higher. Since it is carried out using an absorption liquid, it is clear that the absorption and removal reaction of fluorine-based components in this method is Ca(OH) 2 +2F - +2H + →CaF 2 +2H 2 O, and as a side reaction Ca(OH) ) 2 +CO 2 →CaCO 3 +H 2 O progresses slightly, and it is undeniable that CaCO 3 is generated to some extent. Therefore, in the above method, Ca(OH) 2 , which is often used as a fluorine-based component removal agent, is expensive and a portion of it is lost as CaCO 3 , and furthermore, a highly concentrated CaCl 2 solution is used. Therefore, in long-term operation, there are disadvantages such as equipment corrosion due to Cl - . The present invention was devised after repeated studies in view of the above-mentioned circumstances, and involves defluoridation treatment by bringing exhaust gas containing fluorine-based components into contact with an absorption liquid containing calcium chloride and having a pH of 4.0 to 5.5. , Add a defluoridating agent such as gypsum dihydrate (CaSO 4 2H 2 O), gypsum hemihydrate (CaSO 4 1/2H 2 O) or anhydrite (CaSO 4 ) to the treated solution after the defluorination treatment. By regenerating the calcium chloride-containing absorption liquid with a pH of 4.0 to 5.5 and recycling the regenerated absorption liquid for the treatment of the fluorine-containing exhaust gas, the above-mentioned fluorine-containing exhaust gas can be removed in a simple process. We succeeded in processing efficiently and inexpensively. That is, to further explain such the present invention, the present inventors previously proposed Patent No. 1046547 (Japanese Patent Publication No. 55-41810) regarding efficient defluorination treatment using calcium carbonate, but in the present invention, , dihydrate gypsum (CaSO 4 2H 2 O), which is much cheaper than calcium carbonate in the prior invention.
In recent years, while the demand for gypsum has been decreasing, by-product gypsum has been increasing due to the spread of desulfurization equipment, etc., and its price is extremely low. Gypsum dihydrate is used as a defluoridant. The fluorine-based component in the fluorine-based component-containing exhaust gas described above reacts with CaCl 2 in the absorption liquid, and is precipitated as CaF 2 through a chemical reaction as shown in the following equation (1). CaCl 2 +2F - →CaF 2 +2Cl - ...(1) However, CaSO 4 2H 2 O is added to the treated solution containing Cl - after the defluorination treatment, and the chemical reaction as shown in the following equation (2) The reaction regenerates CaCl2 . CaSO 4 +2Cl - →CaCl 2 +SO 4 2- ...(2) In addition, the new absorption liquid before the inflow of the flue gas containing fluorine components should be 0.05% or more, preferably 0.1 to 0.5%.
Using a CaCl 2 aqueous solution with HCl added to adjust the pH to 4.0 to 5.5, preferably 4.5±0.5, the regenerated absorption liquid after the exhaust gas inflow maintains a pH of 4.0 to 5.5, preferably 4.5±0.5. Use a sample that was operated while adding CaSO 4 .2H 2 O. The reason why the CaCl 2 concentration of the new absorption solution was set to 0.05% or more is because if it is less than 0.05%, F in the absorption solution after defluorination treatment will be reduced.
This is because the concentration becomes high, and the reason why it is set to 0.5% or less is because there is no significant change in the defluorination rate even if the content is 0.5% or more, and economic efficiency was taken into consideration. In addition, the pH of the absorption liquid was set to 4.0 or higher because
This is because if it is less than 4.0, the reaction of the above formula (1) will not be carried out efficiently, and the reason why it is set to be 5.5 or less is because if it is 5.5 or more, the reaction of the above formula (2) will not be carried out smoothly. Furthermore, when the PH of the absorption liquid is 4.5±0.5, the fluorine removal rate in the exhaust gas is as high as 98% or more when the F concentration in the gas is about 100 ppm. After that, the F concentration in the exhaust gas becomes 2.0 mg/Nm 3 or less as F. Furthermore, since the PH range (4.0 to 5.5) is an acidic region, most of the components (silica and metals) from the dust in the exhaust gas are dissolved in the absorption liquid, and CaF 2 is obtained as a precipitate. can be obtained with extremely high purity. The attached drawings show one of the apparatuses for carrying out the present invention.
This is a schematic diagram showing an example, and as shown, 1 is an absorption tower, and in this absorption tower 1, a fluorine-based component-containing exhaust gas 2 is brought into contact with an absorption liquid to remove the fluorine content, and then It is discharged to the outside as treated exhaust gas 3. The treated liquid 4 after the defluorination treatment is led from the lower part of the absorption tower 1 to a supply tank 5 for CaSO 4 .2H 2 O, and in this supply tank 5, CaSO 4 .2H 2 O 6 and the engineered water 7 are CaCl 2 is regenerated by being added to the treatment liquid 4, and the resulting CaCl 2 solution is sent to the upper part of the absorption tower 1 via an absorption liquid circulation pump 8.
It is circulated and supplied as a regenerated absorption liquid. A portion of the CaCl 2 solution from the pump 8 is led to a thickener 9, and the precipitated concentrate (containing calcium fluoride) from the thickener 9 is led to a solid-liquid separator 10.
In this solid-liquid separator 10, CaF 2 11 is recovered and the liquid is returned to the supply tank 5 as furnace liquid together with the supernatant liquid from the thickener 9. By withdrawing a part of the liquid from the extraction port 12, it is possible to prevent the concentration of heavy metals, silica, etc. in the absorption liquid, and to suppress the SO 4 2- concentration in the regenerated liquid, and this extracted liquid is subjected to neutralization treatment. After that, the precipitated product is removed and then discharged as an effluent outside the system. The liquid extracted from the system can generally effectively achieve the above purpose with about 1/8 to 1/10 of the absorption liquid, and the thickener 9 is used to connect the absorption tower 1 and the supply tank 5. It may be installed in between. In addition, as mentioned above, the liquid extracted out of the system from the extraction port 12 can be added with slaked lime or the like to regenerate gypsum, and the gypsum can be recycled. Specific embodiments according to the present invention will be described below. Example 1 SiF 4 and F 2 in air as raw gas to be treated
Mix and dilute (SiF 4 :F 2 = 1:2 molar ratio),
A fluorine-based component-containing gas with an F concentration of 23 to 27 mg/Nm 3 was synthesized. Using this raw gas at 20 N/min as a test gas, defluorination treatment was performed using the apparatus shown in the attached drawing. As absorption tower 1, a single-stage absorption tower (inner diameter 25.8 mmφ) with a perforated plate (porosity 18%) was used, and the amount of absorbed liquid was 1.7.
, CaCl 2 concentration in absorption liquid 0.05%, L/G2.5/m 3
Then, fluorine in the gas was removed by supplying CaSO 4 .2H 2 O so that the pH of the absorption liquid was maintained at the set value of 3.5 to 6.0. The results are shown in Table 1.

【表】 この結果によれば原ガス中F23〜27mg/Nm3のと
き、吸収液のCaCl2濃度0.05%、L/G2.5/m3
でPH4.0〜5.5ならば脱弗率98%以上で、しかもそ
の際の処理排ガス中のFは1mg/Nm3以下が得ら
れ、吸収液炉液中のF濃度は5〜9mg/であつ
た。またPH3.5および6.0では吸収液炉液中Fが15
mg/以上となつた。なお、この場合において前
記したCaSO4・2H2Oを供給しガス中弗素を除去
した後に固液分離した吸収液を上記弗素除去部に
戻すに当たり、吸収液の9分の1程度を系外に抜
出して処理したところ再生液中おける硫酸根濃度
を適切に抑制した状態で処理することができた。 実施例 2 原ガスとして、空気にSiF4およびF2を混合希
釈(SiF4:F2=1:1モル比)して、F濃度98
〜101mg/Nm3の弗素系成分含有ガスを合成した。
この原ガス20N/minを供試ガスとして、添附図
面に示す装置により脱弗処理を行つた。吸収塔1
は実施例1に同じものを用い、吸収液中のCaCl2
濃度0.20%、L/G2.5/m3ににてPHがそれぞれ
4.0〜5.5を保持するようにCaSO4・2H2Oを供給
してガス中弗素の除去処理を行なつた結果は第2
表に示す通りである。
[Table] According to this result, when F23 to 27mg/Nm 3 in the raw gas, CaCl 2 concentration in the absorption liquid is 0.05%, L/G2.5/m 3
If the pH is 4.0 to 5.5, the defluorination rate is 98% or more, and the F in the treated exhaust gas is 1 mg/ Nm3 or less, and the F concentration in the absorbent furnace liquid is 5 to 9 mg/. Ta. In addition, at pH 3.5 and 6.0, F in the absorbent furnace liquid is 15
mg/ or more. In this case, when returning the solid-liquid-separated absorption liquid to the fluorine removal section after supplying the above-mentioned CaSO 4 2H 2 O and removing fluorine in the gas, about one-ninth of the absorption liquid is removed from the system. When extracted and processed, it was possible to appropriately suppress the concentration of sulfate groups in the regenerated solution. Example 2 As a raw gas, SiF 4 and F 2 were mixed and diluted with air (SiF 4 :F 2 = 1:1 molar ratio) to obtain an F concentration of 98
A gas containing fluorine components of ~101 mg/Nm 3 was synthesized.
Using this raw gas at 20 N/min as a test gas, defluorination treatment was performed using the apparatus shown in the attached drawing. Absorption tower 1
The same one as in Example 1 was used, and CaCl 2 in the absorption liquid
PH at concentration 0.20%, L/G2.5/ m3 , respectively
The results of removing fluorine in the gas by supplying CaSO 4 2H 2 O to maintain the 4.0 to 5.5 are as follows.
As shown in the table.

【表】 即ちこの結果によれば、原ガス中F98〜101mg/
Nm3のとき、吸収液のCaCl2濃度0.20%、L/
G2.5/m3でPH4.0〜5.5ならば、脱弗率98%以上
で、しかもその際の処理排ガス中のFは2mg/N
m3以下が得られ、吸収液炉液中のF濃度は6〜8
mg/であつた。 なお脱弗剤としては二水石膏だけでなく、半水
石膏(CaSO4・1/2H2O)あるいは無水石膏
(CaSO4)によつても同等の結果を得ることができ
る。又、この場合において実施例1の場合と同様
に固液分離した吸収液をその弗素除去部に戻すに
当たつて吸収液の8分の1程度を系外に抜き出し
て処理したところ再生液中における硫酸根濃度の
抑制された状態で処理できたことは実施例1と同
じである。 以上説明したように、この発明においては、脱
弗を行うCaCl2を低廉に入手し得る二水石膏
(CaSO4・2H2O)の添加によつて再生し、これを
(再生)吸収液として循環使用するので、きわめ
て、経済的に排ガス処理が行われ、しかも吸収液
のPHを酸性領域として処理を行うので不純物は大
部分が前記吸収液中に溶解し、きわめて純度の高
い沈殿物(CaF2)が得られ、さらに、CaCl2濃度
は低いと共に再生液中に硫酸根濃度の有効に抑制
された状態で処理し得るのでClなどによる装置
の腐食等の問題を回避できるので工業的効果の大
きい発明である。
[Table] That is, according to this result, F98 to 101mg/
When Nm 3 , CaCl 2 concentration of absorption liquid is 0.20%, L/
If the pH is 4.0 to 5.5 at G2.5/ m3 , the defluorination rate is 98% or more, and the F in the treated exhaust gas is 2mg/N.
m 3 or less, and the F concentration in the absorbent furnace liquid is 6 to 8.
It was mg/. Note that equivalent results can be obtained not only with dihydrate gypsum but also with hemihydrate gypsum (CaSO 4 1/2H 2 O) or anhydrite gypsum (CaSO 4 ) as a defluoridation agent. In addition, in this case, when the solid-liquid separated absorption liquid was returned to the fluorine removal section in the same manner as in Example 1, about one-eighth of the absorption liquid was extracted from the system and treated. As in Example 1, the treatment was possible with the concentration of sulfate roots suppressed. As explained above, in this invention, CaCl 2 to be defluorinated is regenerated by adding dihydrate gypsum (CaSO 4 2H 2 O), which can be obtained at low cost, and this is used as a (regenerated) absorption liquid. Since the exhaust gas is recycled, it is extremely economical to treat the exhaust gas, and since the pH of the absorption liquid is treated in the acidic range, most of the impurities are dissolved in the absorption liquid, resulting in very high purity precipitate (CaF). 2 ) is obtained, and furthermore, the CaCl 2 concentration is low and the treatment can be performed with the concentration of sulfate radicals effectively suppressed in the regenerating solution, so problems such as corrosion of equipment due to Cl etc. can be avoided, resulting in a high industrial effect. This is a great invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示すものであつて、
本発明を実施する装置の1例を示した概要図であ
る。 然してこの図面において、1は吸収塔、2は弗
素系成分含有ガス、3は処理排ガス、4は処理
液、5は供給槽、6は二水石膏、7は工水、8は
吸収液循環ポンプ、9はシツクナー、10は固液
分離機、11はCaF2、12は系外抜出液を示す
ものである。
The drawings illustrate embodiments of the invention,
1 is a schematic diagram showing an example of an apparatus implementing the present invention. However, in this drawing, 1 is an absorption tower, 2 is a fluorine-based component-containing gas, 3 is a treated exhaust gas, 4 is a treated liquid, 5 is a supply tank, 6 is dihydrate gypsum, 7 is industrial water, and 8 is an absorption liquid circulation pump. , 9 is a thickener, 10 is a solid-liquid separator, 11 is CaF 2 , and 12 is a liquid extracted from the system.

Claims (1)

【特許請求の範囲】[Claims] 1 弗素系成分含有排ガスを、塩化カルシウムを
含有したPH4.0〜5.5の吸収液と接触させて脱弗処
理し、該脱弗処理後の処理液に二水石膏や半水石
膏又は無水石膏のような脱弗剤を添加してPHを
4.0〜5.5にした塩化カルシウム含有吸収液を再生
し、該再生吸収液を前記弗素系成分含有排ガス処
理に循環使用すると共に該再生吸収液の一部を固
液分離して前記塩化カルシウム含有吸収液再生部
に戻し、しかもこのような戻し液の一部を系外抜
出液として抜取ることを特徴とする弗素系成分含
有排ガスの処理方法。
1 Fluorine-containing exhaust gas is brought into contact with an absorption liquid containing calcium chloride with a pH of 4.0 to 5.5 to remove fluoride, and the treated liquid after the defluorination treatment is treated with gypsum dihydrate, gypsum hemihydrate, or gypsum anhydride. Adjust the pH by adding a defluoridating agent such as
The calcium chloride-containing absorption liquid with a concentration of 4.0 to 5.5 is regenerated, the regenerated absorption liquid is recycled for the treatment of the fluorine-containing exhaust gas, and a part of the regenerated absorption liquid is separated into solid-liquid to produce the calcium chloride-containing absorption liquid. A method for treating exhaust gas containing fluorine-based components, characterized in that the returned liquid is returned to a regeneration section, and a part of the returned liquid is extracted as a liquid extracted from the system.
JP57180022A 1982-10-15 1982-10-15 Treatment of waste gas containing fluorine-containing component Granted JPS5969130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57180022A JPS5969130A (en) 1982-10-15 1982-10-15 Treatment of waste gas containing fluorine-containing component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180022A JPS5969130A (en) 1982-10-15 1982-10-15 Treatment of waste gas containing fluorine-containing component

Publications (2)

Publication Number Publication Date
JPS5969130A JPS5969130A (en) 1984-04-19
JPS621529B2 true JPS621529B2 (en) 1987-01-14

Family

ID=16076090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180022A Granted JPS5969130A (en) 1982-10-15 1982-10-15 Treatment of waste gas containing fluorine-containing component

Country Status (1)

Country Link
JP (1) JPS5969130A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357183A (en) * 1976-11-05 1978-05-24 Nippon Kokan Kk <Nkk> Treating method for exhaust gas containing fluorine-including component

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357183A (en) * 1976-11-05 1978-05-24 Nippon Kokan Kk <Nkk> Treating method for exhaust gas containing fluorine-including component

Also Published As

Publication number Publication date
JPS5969130A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
US6284208B1 (en) Method for removing mercury and sulfur dioxide from gases
US3961021A (en) Method for removing sulfur dioxide from combustion exhaust gas
EP3368192B1 (en) Process and system for removing sulfur dioxide from flue gas
US4331640A (en) Process for removing sulfur dioxide from an exhaust gas containing the same
US4231995A (en) Ammonia double-alkali process for removing sulfur oxides from stack gases
JP5222242B2 (en) Incinerator exhaust gas removal method
CN111377474B (en) Method and equipment for purifying calcium fluoride from carbonate-removed fluorine-containing solid waste
JPS5829251B2 (en) Wet flue gas desulfurization gypsum recovery method
CN111392754B (en) Method and equipment for purifying calcium chloride from fluorine-containing solid waste
US3959441A (en) Desulfurization process
JPS621529B2 (en)
JP4869294B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP3681184B2 (en) Seawater-based wet flue gas desulfurization method and apparatus
JP3174665B2 (en) Flue gas desulfurization method
JP3504427B2 (en) Exhaust gas desulfurization method
CA1100122A (en) Removal of noxious contaminants from gas
KR102174956B1 (en) High-throughput two-stage dry apparatus for removing acidic gas
US3031262A (en) Recovery of oxides of sulfur and fluorides from gas mixtures
JPH0618612B2 (en) Wet treatment method for exhaust gas
JPS6254529B2 (en)
JP4341104B2 (en) Wet flue gas desulfurization equipment
JPS5898126A (en) Desulfurization of stack gas
JP3902861B2 (en) Exhaust gas desulfurization method
JPS5969131A (en) Treatment of waste gas containing fluorine-containing component
JPS618115A (en) Desulfurization treatment of waste gas by liquid