JPS6215283B2 - - Google Patents

Info

Publication number
JPS6215283B2
JPS6215283B2 JP10382977A JP10382977A JPS6215283B2 JP S6215283 B2 JPS6215283 B2 JP S6215283B2 JP 10382977 A JP10382977 A JP 10382977A JP 10382977 A JP10382977 A JP 10382977A JP S6215283 B2 JPS6215283 B2 JP S6215283B2
Authority
JP
Japan
Prior art keywords
rolling
rolling mill
stand
tension
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10382977A
Other languages
Japanese (ja)
Other versions
JPS5437051A (en
Inventor
Susumu Nomura
Masao Mikami
Hiroyuki Shiozaki
Ichiroku Chiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10382977A priority Critical patent/JPS5437051A/en
Publication of JPS5437051A publication Critical patent/JPS5437051A/en
Publication of JPS6215283B2 publication Critical patent/JPS6215283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、冷間における連続圧延機に関する。 金属板の圧延に際し発生する圧延荷重を減少さ
せることは、圧延機の小型化、ロール摩耗の減
少、高強度材の圧延の容易化、板の形状の良好化
等多くの利点がある。 上記目的を達成するため、従来は上下のワーク
ロールが等径、等速の4段圧延機を複数台並べた
形式の連続圧延機を使用し、1台あたりの圧下率
を下げることにより圧延荷重を減少させている
が、該連続圧延機にあつては生産性は高いが設備
費が高く、又高張力鋼のごとき硬い材料や低炭素
鋼でも薄物で加工硬化した材料では、ワークロー
ルのロール偏平により圧延荷重が増えるが材料の
圧下は進まない、いわゆる圧延限界に達しやす
く、圧延が困難となる。 更に高張力鋼の硬い材料の圧延には、小径ワー
クロールを有する多段ロール圧延機が用いられて
いるが、圧延速度が小さいので生産性は低く、又
ロール本数が多いのでロールコストも高くつく。 一方、圧延荷重を減少させる圧延法として近年
RD圧延法(Rolling Drawing法)が開発された。
このRD圧延法は第1図に示すごとく、相隣接す
るロールa,bの回転速度を異速のV0,V1
し、金属板Sの入側の厚さをh0、出側の厚さをh1
とするとき、h/h=V/Vなる関係を保つよ
うにし、 ロールギヤツプの前方張力tfと後方張力tbとの
差を利用して圧延する異速圧延方法であり、小さ
な圧延荷重で大きな圧下を行い得る。 この異速圧延法を連続圧延機に応用し、前記等
径、等速のワークロールを有する多段ロール圧延
機による連続圧延機の欠点を除去すべく第2図や
第3図に示すごとき連続圧延機が最近開発された
が、該連続圧延機には、次のような欠点がある。 (i) 板を巻付けるための通板作業が面倒で、ロー
ル冷却がしにくいうえ、高速圧延に向かないの
で生産性が悪い。 (ii) 異速圧延であるため、ロールギヤツプの前方
張力tfを後方張力tbより大きく取る必要があ
るが、圧延機出側に近付くにつれて張力値が高
くなり、板破断のため圧延が不可能となるおそ
れがある。 (iii) 高強度材を圧延する場合は、小径ロールの方
が望ましいが、第2図や第3図に示す圧延機に
小径ロールを使用するとロールのたわみ変形が
大きくなり、圧延された板の形状が悪くなる。 なお第2図及び第3図中a,b,c,d,e,
a′,b′,c′,d′,e′はロール、sは金属板であ
る。 本発明は従来の連続圧延機が有する上述の欠点
を除去することを目的としてなしたもので、複数
台の圧延機を連続的に配設して圧延する連続圧延
機において、少くとも最も下流側の圧延機を上下
のワークロールの周速比が略1の等速圧延機と
し、且つ圧延機の入側板厚と出側板厚の比が上下
のワークロールの周速比に略等しくしかも前方張
力が後方張力より大きくなるように圧延する異速
圧延機を、前記最も下流側の等速圧延機も含めて
上下のワークロールの周速比が略1の等速圧延機
の上流側に少なくとも1台設けたことを特徴とす
るものである。 次に、斯かる本発明がなされた基本的根拠につ
いて説明する。 若しも複数の圧延機の全スタンドを異速圧延機
にできれば、通常圧延に比較して異速圧延の効果
を最大限に使用することができる。しかし、1台
の異速圧延機を考えたときロールギヤツプの後方
張力tb、前方張力tf、材料の変形抵抗をk、入
側の板厚h0、出側の板厚h1との間には、異速圧延
を達成するためには、 tf−tb=klo(h0/h1) ……(i) の関係を保たねばならない。ただし(i)式中lo
自然対数である。従つて、ストレートパス型の異
速圧延機をnスタンド連続的に並べる圧延機間の
張力は後段になる程高くなる。No.スタンドで
の各変数の値をサイフイツクで表わすと、各ス
タンドにおいて(i)式が成立する必要があるから、 tf1−tb1=k1lo(h01/h11) …(ii) 〓 tfi−tbi=kio(h0i/h1i) …(iii) tfi+1−tbi+1 =ki+1o(h0i+1/h1i+1) …(iv) 〓 tfo−tbo=koo(h0o/h1o) …(v) となる。しかるに、第iスタンドの前方張力t
fiは第i+1スタンドの後方張力tbi+1に等し
いから、 tfi=tbi+1(i=1〜n−1) …(vi) である。 結局1〜nスタンドが全てRD圧延を行う異速
圧延機である場合、(ii)〜(v)式の辺々を夫々加算
し、(iv)式の関係を用いると、 となり、仮にkiが一定でKであるとすると、 が得られる。 斯かる圧延では、板切れのため最終スタンド
(第nスタンド)出側張力tfoはtfo<kの必
要があるので(実際の圧延では、tfo<0.3kに
とられることが多いが理論上このように考え
る)、 lo(h01/h1o)<1となり、ゆえに、h
01/h1o<2.718となる。 従つて、全延びは約272%(全圧下率63.2%)
以下に抑えなければならない。例えば第4図の6
スタンドの圧延機で全スタンドを異速圧延機と
し、各スタンドの圧下率が等しいと仮定すると、
1スタンド当りの板の伸びε(=h0i/h1
i)は、ε=2.72からε=1.18となり、圧下率で
表わすと(1−1/ε)×100=15.4%となる。1スタ ンド当り圧下率15%は通常の従来型の圧延機の半
分程度の圧下率であり異速圧延の効果は全く発揮
できないことが分かる。従つて、張力から生ずる
制約によつて異速圧延機を連続的に並べることは
実用的ではないことが分かる。 以上の考察は本出願の発明者による異速圧延に
対する研究から導かれたものであり、この考察に
基いてタンデム圧延機の中に配置した等速圧延機
の上流側に少くとも1台異速圧延機を用いること
を考え出したのである。 通常の等速圧延機では異速圧延機のように(i)式
のような張力関係は要求されないので異速圧延機
の間に通常の圧延機を入れると前後の異速圧延機
では互いに影響を与えることなく張力を設定でき
ることになる。つまり異速圧延機の間に通常の圧
延機を入れると異速圧延機間の張力関係(後段ス
タンドになるほど張力を高く設定する必要があ
る)を断ち切ることができ異速圧延機の効果を十
分発揮することができる。 本発明はこのような考え方に基いて成されたも
のである。 第4図は6スタンドダンデム圧延機を示し図中
1は上ワークロール、2は下ワークロール、3は
上控ロール、4は下控ロール、sは金属板であ
る。 No.1〜No.6の各スタンドのうち少なくとも1ス
タンドをRD圧延法による異速圧延機とするが、
どのスタンドをRD圧延法による圧延機とするか
は任意であり、第1表のごとき組合せが考えられ
る。要するに通常の等速圧延機の上流側に異速圧
延機を設置すれば良い。なお異速圧延法は第1図
で説明したように入側板厚と出側板厚の比が上下
のワークロール1,2の周速比に略等しくなり且
つ前方張力が後方張力より大きくなるように圧延
するものである。
The present invention relates to a cold continuous rolling mill. Reducing the rolling load generated when rolling a metal plate has many advantages, such as downsizing the rolling mill, reducing roll wear, facilitating rolling of high-strength materials, and improving the shape of the plate. In order to achieve the above objective, conventionally a continuous rolling mill is used in which multiple 4-high rolling mills are arranged in which the upper and lower work rolls have the same diameter and speed, and by reducing the rolling reduction rate per machine, the rolling load However, although continuous rolling mills have high productivity, equipment costs are high, and when working with hard materials such as high-strength steel or thin work-hardened materials such as low carbon steel, the roll of the work roll is Although the rolling load increases due to flattening, the reduction of the material does not progress; the so-called rolling limit is easily reached, and rolling becomes difficult. Furthermore, multi-roll mills with small-diameter work rolls are used to roll hard materials such as high-strength steel, but the rolling speed is low, resulting in low productivity, and the large number of rolls increases roll costs. On the other hand, in recent years, rolling methods have been developed to reduce the rolling load.
The RD rolling method (Rolling Drawing method) was developed.
In this RD rolling method, as shown in Fig. 1, the rotational speeds of adjacent rolls a and b are set to different speeds V 0 and V 1 , and the thickness of the metal sheet S on the entry side is h 0 and the thickness on the exit side is sawo h 1
This is a different speed rolling method in which the relationship h 0 /h 1 =V 1 /V 0 is maintained, and the difference between the front tension t f and the rear tension t b of the roll gap is used for rolling. A large reduction can be achieved with rolling load. This variable speed rolling method was applied to a continuous rolling mill, and in order to eliminate the drawbacks of a continuous rolling mill using a multi-roll rolling mill having work rolls of equal diameter and constant speed, continuous rolling as shown in Figures 2 and 3 was carried out. Although a continuous rolling mill has recently been developed, the continuous rolling mill has the following drawbacks. (i) The threading process for winding the plate is troublesome, it is difficult to cool the rolls, and it is not suitable for high-speed rolling, resulting in poor productivity. (ii) Because it is rolling at different speeds, it is necessary to make the front tension t f of the roll gap larger than the rear tension t b , but the tension value increases as it approaches the exit side of the rolling mill, and rolling becomes impossible due to plate breakage. There is a risk that this will occur. (iii) When rolling high-strength materials, it is preferable to use small-diameter rolls, but if small-diameter rolls are used in the rolling mills shown in Figures 2 and 3, the deflection deformation of the rolls will increase, resulting in The shape becomes worse. Note that a, b, c, d, e, in Figures 2 and 3
a', b', c', d', and e' are rolls, and s is a metal plate. The present invention was made for the purpose of eliminating the above-mentioned drawbacks of conventional continuous rolling mills. The rolling mill is a constant speed rolling mill in which the circumferential speed ratio of the upper and lower work rolls is approximately 1, and the ratio of the inlet side plate thickness and the outlet side plate thickness of the rolling mill is approximately equal to the circumferential speed ratio of the upper and lower work rolls, and the forward tension is A different speed rolling mill that rolls so that the tension is greater than the rear tension is installed at least 1 on the upstream side of the constant velocity rolling mill in which the circumferential speed ratio of the upper and lower work rolls is approximately 1, including the most downstream constant velocity rolling mill. It is characterized by the provision of a stand. Next, the basic basis on which the present invention was made will be explained. If all the stands of a plurality of rolling mills can be made into different speed rolling mills, the effects of different speed rolling can be utilized to the fullest compared to normal rolling. However, when considering one different speed rolling mill, the difference between the rear tension t b of the roll gap, the front tension t f , the deformation resistance of the material k, the thickness h 0 on the entry side, and the thickness h 1 on the exit side. In order to achieve different speed rolling, the relationship t f −t b = klo (h 0 /h 1 )...(i) must be maintained. However, in formula (i), l o is a natural logarithm. Therefore, the tension between the rolling mills in which n stands of straight path type different speed rolling mills are consecutively arranged becomes higher as the stage progresses. If the value of each variable at No. stand is expressed in a sci-fi, equation (i) must hold true at each stand, so t f , 1 − t b , 1 = k 1 lo (h 0 , 1 / h 1 , 1 ) …(ii) 〓 t f , i −t b , i = k i lo (h 0 , i /h 1 , i ) …(iii) t f , i+1 − t b , i +1 = k i+1 l o (h 0 , i+1 /h 1 , i+1 ) …(iv) 〓 t f , o −t b , o = k o l o (h 0 , o /h 1 , o ) …(v). However, the forward tension t of the i-th stand
Since f , i is equal to the rear tension t bi+1 of the i+1-th stand, t f , i = t b , i+1 (i=1 to n-1)...(vi). After all, if stands 1 to n are all different speed rolling mills that perform RD rolling, then by adding up the sides of equations (ii) to (v), respectively, and using the relationship of equation (iv), we get: So, if k i is constant and K, then is obtained. In such rolling, the exit tension t f , o of the final stand (nth stand) needs to be t f , o < k (in actual rolling, t f , o < 0.3k) due to plate cutting. (though it is often considered this way in theory), l o (h 0 , 1 / h 1 , o ) < 1, and therefore h
0 , 1 /h 1 , o <2.718. Therefore, the total elongation is approximately 272% (total reduction rate 63.2%)
Must be kept below. For example, 6 in Figure 4
Assuming that all stands are different speed rolling mills and the rolling reduction ratio of each stand is equal,
Elongation of board per stand ε(=h 0 , i /h 1 ,
i ) becomes ε=1.18 from ε 6 =2.72, and when expressed in terms of rolling reduction ratio, it becomes (1-1/ε)×100=15.4%. It can be seen that the rolling reduction rate of 15% per stand is about half that of a normal conventional rolling mill, and the effect of different speed rolling cannot be exhibited at all. Therefore, it can be seen that it is not practical to consecutively arrange different speed rolling mills due to constraints caused by tension. The above consideration was derived from research on different speed rolling by the inventor of the present application, and based on this consideration, at least one different speed rolling mill is installed upstream of a constant speed rolling mill placed in a tandem rolling mill. He came up with the idea of using a rolling mill. A normal constant speed rolling mill does not require a tension relationship like equation (i) like a different speed rolling mill, so if a normal rolling mill is inserted between different speed rolling mills, the different speed rolling mills before and after will affect each other. This means that the tension can be set without applying any pressure. In other words, if a normal rolling mill is installed between different speed rolling mills, the tension relationship between the different speed rolling mills (the later the stand is, the higher the tension needs to be) can be broken, and the effects of the different speed rolling mills can be fully utilized. able to demonstrate. The present invention has been made based on this idea. FIG. 4 shows a six-stand tandem rolling mill, and in the figure, 1 is an upper work roll, 2 is a lower work roll, 3 is an upper backing roll, 4 is a lower backing roll, and s is a metal plate. At least one stand among each stand No. 1 to No. 6 shall be a different speed rolling mill using the RD rolling method,
It is arbitrary which stand is used as the rolling mill for the RD rolling method, and the combinations shown in Table 1 are possible. In short, a different speed rolling mill may be installed upstream of a normal constant speed rolling mill. As explained in Fig. 1, the different speed rolling method is performed so that the ratio of the inlet side plate thickness and the outlet side plate thickness is approximately equal to the circumferential speed ratio of the upper and lower work rolls 1 and 2, and the front tension is larger than the rear tension. It is rolled.

【表】【table】

【表】 なお第1表中RDはRD圧延法による異速圧延
機、NRは上ワークロール1と下ワークロール2
とが等径、等速の通常の圧延機(通常型の等速圧
延機)である。 上記連続圧延機においては、異速圧延機で、第
1図の場合と同様h/h=V/Vの関係が成立
し且つロ ールギヤツプの出側張力tfと入側張力tbの張力
差を利用した圧延を行い、通常型の等速圧延機で
通常の圧下による圧延を行う。 次に、上述の連続圧延機で圧延した場合の効果
について詳細に説明する。 今、ワークロール径500mm、No.iスタンド入側
圧延材は加工硬化した1.15mmの鋼板の場合につい
てNo.i、No.i+1両スタンドが等速圧延機であつ
た場合に比べNo.iは上述の異速圧延機、No.i+1
は等速圧延機である場合にNo.i、No.i+1両スタ
ンドでの合計圧下率がどの程度改善されるかを調
べた。ただし単位板幅当りの圧延力は0.5ton/mm
程度に揃えて比較する。 (イ) 両スタンドが通常型の等速圧延機(NR)の
場合。 張力(Kg/mm2)はtbi=10、tfi=tbi+
=25、tfi+1=20とすると、圧延力を
0.5ton/mmに保つとき、No.iスタンドの圧下率
は15%、No.i+1スタンドの圧下率は23%で両
スタンドでの合計圧下率は34.6%である。 (ロ) 上流側スタンドが異速圧延機(RD)、下流側
スタンドが通常型の等速圧延機の場合。 張力(Kg/mm2)はtbi=10、tfi=tbi+
=40、tfi+1=5とする。異速圧延は前方張
力を高くしたほうが圧下率をとれるためtfi
=40とする。tfi+5=5としたのはNo.i+1
スタンドにおける前(tfi+1)後(tbi+1
fi)張力の平均値を(イ)と同じ値にするため
である。圧延力を0.5ton/mmに設定すると、
No.iスタンドの圧下率は35%、No.i+1スタン
ドの圧下率は28%であり、両スタンドでの合計
圧下率は53.2%である。 (ハ) 両スタンドが通常型の等速圧延機で、張力条
件が(ロ)と同じ場合。 張力をtfi-1=10、tfi=tbi+1=40、
fi+1=5とした場合の各スタンドの圧下率
は、No.iスタンド20%、No.i+1スタンド23
%、合計38.4%である。 上記の結果をまとめると第2表のようになる。
[Table] In Table 1, RD is a different speed rolling mill using the RD rolling method, and NR is an upper work roll 1 and a lower work roll 2.
This is a normal rolling mill with constant diameter and constant speed (normal type uniform speed rolling mill). In the continuous rolling mill described above, the relationship h 0 /h 1 =V 1 /V 0 holds true as in the case of FIG. 1, and the exit tension t f and the entry tension t b of the roll gap are different speed rolling mills. Rolling is performed using the tension difference between the two, and rolling is performed using normal reduction in a normal constant velocity rolling mill. Next, the effect of rolling with the above-mentioned continuous rolling mill will be explained in detail. Now, regarding the case where the work roll diameter is 500mm and the rolled material at the entrance of No.i stand is a work-hardened steel plate of 1.15mm, compared to the case where both No.i and No.i + 1 stands are constant speed rolling mills, No.i is Different speed rolling mill mentioned above, No.i+1
investigated how much the total rolling reduction of No.i and No.i+1 stands could be improved when using a constant velocity rolling mill. However, the rolling force per unit plate width is 0.5ton/mm
Compare by level. (b) When both stands are regular constant velocity rolling mills (NR). Tension (Kg/mm 2 ) is t b , i = 10, t f , i = t b , i+
1 = 25, t f , i+1 = 20, the rolling force is
When maintaining the pressure at 0.5 ton/mm, the rolling reduction rate of the No.i stand is 15%, the rolling reduction rate of the No.i+1 stand is 23%, and the total rolling reduction rate of both stands is 34.6%. (b) When the upstream stand is a variable speed rolling mill (RD) and the downstream stand is a regular constant speed rolling mill. Tension (Kg/mm 2 ) is t b , i = 10, t f , i = t b , i+
1 = 40, t f , i+1 = 5. In different speed rolling, the reduction ratio can be obtained by increasing the forward tension, so t f , i
=40. t f , i+5 = 5 is No.i+1
Before (t f , i+1 ) after (t b , i+1 =
t f , i ) This is to make the average value of the tension the same as in (a). When the rolling force is set to 0.5ton/mm,
The rolling reduction ratio of the No.i stand is 35%, the rolling reduction ratio of the No.i+1 stand is 28%, and the total rolling reduction ratio of both stands is 53.2%. (c) When both stands are regular constant speed rolling mills and the tension conditions are the same as (b). The tension is t f , i-1 = 10, t f , i = t b , i+1 = 40,
When t f , i+1 = 5, the rolling reduction ratio of each stand is No.i stand 20%, No.i+1 stand 23
%, totaling 38.4%. Table 2 summarizes the above results.

【表】 従つて、No.iスタンドに異速圧延機を配置する
ことによりNo.iとNo.i+1スタンドの合計圧下率
を19〜15%増加させることができる。 上述の合計圧下率の増加はNo.i,No.i+1スタ
ンドの異速圧延効果であるが、高圧下率のRD圧
延は、前方張力を高くする必要があり、これは異
速圧延と等速圧延を組合わせることによりはじめ
て可能となる。 又No.iスタンドに異速圧延機を設置し、第iス
タンドの圧下率をなるべく大きくとる場合には、
第iスタンドの前方張力tfi=tbi+1は(i)式
の関係から大きくとる必要がある。 従つて、RD圧延法による異速圧延では前方張
力を通常の等速圧延で採用されている値より大き
くとる必要が生じるが、RD圧延法では次の理由
から高目の前方張力でも圧延が可能である。 (イ) No.iスタンドを出た板の平担度は該スタンド
での圧延荷重が高ければ高いほど悪くなり、ワ
ークロールベンデイング等の形状制御手段で制
御することが困難となる。又板の形状が悪いと
次スタンドであるNo.i+1スタンドで板の絞り
込み等のトラブルを起し易い。本例ではNo.iス
タンドはRD圧延法による異速圧延であり等速
圧延に比べて高圧下としても圧延力は低く抑え
ることができるので形状制御手段の能力を十分
発揮でき、従つて多少張力が上つても板破断や
次スタンドの通常圧延機での絞り込み等の心配
がない。 (ロ) No.i+1が等速圧延なので、No.1スタンド出
側張力tfiが多少高くてもNo.i+1スタンド
の出側張力tfi+1は圧下率によらずに板破断
等の心配のない張力値に設定が可能であり、異
速圧延機が連続している場合のように後段スタ
ンド間ほど高張力にする必要がないのでNo.iと
No.i+1スタンド間の張力を高めた影響を他の
スタンド間張力に及ぼさずにすむ。 上記第1表の組合わせに示す連続圧延機は異速
圧延機の設置位置によつて下記のごとき効果が生
ずる。 (I) No.1スタンドを異速圧延機にした場合。 No.1スタンドを異速圧延機とすると、異速
圧延によりNo.1スタンドの圧延荷重が減少す
るが、No.1スタンドの圧延荷重を、通常型の
等速圧延機の場合と同じ値まで許容するなら、
No.1スタンド入側の板厚を本発明の連続圧延
機においては、すべてが通常型の等速連続圧延
機の場合より大きく取ることができることにな
り、ホツトストリツプの仕上げ板厚をより厚く
できるから熱間圧延及び酸洗工程において省エ
ネルギー、省コストになる。 又本連続圧延機の出側板速度が一定、すなわ
ち生産量が一定の場合は、No.1スタンド入側
の板厚を厚くできると、巻戻しリールの速度を
下げられ、更に完全連続式タンデム圧延機に本
連続圧延機を組込むと、連続圧延機入側で圧延
用コイルを順次溶接する金属板溶接機と連続圧
延機との間に必要な、金属板をループさせて蓄
積するループ装置の容量を減らすことができ、
設備費、専有面積を削減することができる。 更に製品の品質に関しては、No.1スタンド
で大きな圧下をかけられることになり、No.2
スタンド以降での圧下率配分を減少させること
ができ、後段スタンドの圧延荷重を下げられ
る。そのため後段の各スタンドでロール系の弾
性変形量が減少し、結局製品の板クラウン、板
形状を改善することができる。 () 中間スタンドを異速圧延機とした場合。 圧下率を多く取れるので、スタンド数の減少
を図れる。又スタンド数を同じにした場合に
は、圧延機1台あたりの圧延荷重を減少できる
ので板形状が向上する。 本発明の連続圧延機の上記効果のうち、スタン
ド数減少についての具体例について述べれば次の
とおりである。 すなわち、通常型のタンデム圧延機に異速圧延
機を1台以上通常型圧延機と置換えて組込むと、
異速圧延機の圧下率は大きく取れるので、スタン
ド数を減らしても各スタンドの圧延荷重を通常型
タンデム圧延機と同じに抑えることができるが、
例えば第4図に示す配置の連続圧延機において
は、低炭素鋼を入側元圧2.3mmから出側板厚0.21
mmまで次のパススケジユールで圧延する。 2.3mm→1.8mm→1.16mm→0.8mm→0.5mm→0.3mm→
0.21mm これに対しNo.1スタンド、No.4スタンドを異
速圧延機、No.2スタンド、No.3スタンド、No.5
スタンドを通常型とする第1表の組合せNo.7の
圧延機では、 2.3mm→1.4mm→0.8mm→0.58mm→0.3mm→0.21mm なるスケジユールで圧延できるので、6スタンド
通常型圧延機よりも1スタンド減らすことができ
る。 第5図は2スタンドタンデム圧延機の実施例を
示し、No.1スタンドをRD圧延法による異速圧延
機とし、No.2スタンドを通常型の等速圧延機と
したものの例である。この場合も異速圧延機の入
側と出側では第4図の場合と同様h/h=V/V
の関係 が成立し且つロールギヤツプの出側張力tfと入
側張力tbの張力差を利用した圧延を行い、通常
型の等速圧延機で通常の圧下による圧延を行う。
このように圧延を行うと、第4図の実施例での
「(I)No.1スタンドを異速圧延機にした場合。」
における効果が生じる。 なお、本発明の連続圧延機は上述の実施例に限
定されるものではなく、最下流のスタンド以外な
らどのスタンドを異速圧延機としても実施できる
こと、その他、本発明の要旨を逸脱しない範囲内
で種々変更を加え得ること、等は勿論である。 本発明の連続圧延機によれば、最下流の圧延機
を上下のワークロールの周速比が略1の等速圧延
機とし、且つ圧延機の入側板厚と出側板厚の比が
上下のワークロールの周速比と略等しくしかも前
方張力が後方張力より大きくなるように圧延する
異速圧延機を、最下流の等速圧延機をも含めて等
速圧延機の上流側に少なくとも1台設けているた
め、下記のごとき種々の優れた効果を奏し得る。 () トータルの圧下率を大きくとれるため、ホ
ツトストリツプの仕上げ板厚をより厚くでき、
従つて熱間圧延や酸洗工程において省エネルギ
ー、省コストを図ることができる。 () 異速圧延機下流側のスタンドの圧延荷重が
下げられるためロール系の弾性変形量を減少さ
せることができ、従つて圧延材の板クラウン、
板形状が改善されて平担度の良好な製品を得る
ことができる。
[Table] Therefore, by arranging a different speed rolling mill in the No.i stand, the total rolling reduction ratio of the No.i and No.i+1 stands can be increased by 19 to 15%. The above-mentioned increase in total rolling reduction is due to the different speed rolling effect of No.i and No.i+1 stands, but RD rolling with a high reduction ratio requires a high forward tension, which is due to the difference between different speed rolling and constant speed rolling. This becomes possible only by combining rolling. Also, when installing a different speed rolling mill on the No. i stand and making the rolling reduction of the i-th stand as large as possible,
The forward tension t f , i =t b , i+1 of the i-th stand needs to be set large based on the relationship expressed by equation (i). Therefore, in different speed rolling using the RD rolling method, it is necessary to set the forward tension higher than the value used in normal constant speed rolling, but with the RD rolling method, rolling is possible even with a higher forward tension for the following reasons. It is. (a) The higher the rolling load in the stand, the worse the flatness of the plate leaving the No.i stand becomes, and it becomes difficult to control it with shape control means such as work roll bending. Also, if the shape of the board is bad, problems such as the board being squeezed in the next stand, No. i + 1 stand, are likely to occur. In this example, the No.i stand performs different speed rolling using the RD rolling method, and compared to constant speed rolling, the rolling force can be kept low even under high rolling pressure, so the ability of the shape control means can be fully demonstrated, and therefore, the ability of the shape control means can be fully utilized. Even if the rolling stock rises, there is no need to worry about the plate breaking or being squeezed by the normal rolling mill in the next stand. (b) Since No. i + 1 is rolled at a constant speed, even if the No. 1 stand exit tension t f , i is somewhat high, the exit tension t f , i + 1 of No. It is possible to set the tension to a value that does not cause any risk of breakage, etc., and there is no need to set the tension as high as between the later stands, which is the case when different speed rolling mills are used consecutively.
The effect of increasing the tension between No.i+1 stands does not affect the tension between other stands. The continuous rolling mills shown in the combinations in Table 1 have the following effects depending on the installation position of the different speed rolling mills. (I) When No. 1 stand is used as a different speed rolling mill. If the No. 1 stand is used as a different speed rolling mill, the rolling load on the No. 1 stand will decrease due to different speed rolling, but the rolling load on the No. 1 stand will be reduced to the same value as in the case of a regular constant speed rolling mill. If you allow it,
In the continuous rolling mill of the present invention, the plate thickness at the entry side of the No. 1 stand can be made larger than in the case of a conventional constant speed continuous rolling mill, and the finished plate thickness of the hot strip can be made thicker. Saves energy and costs in hot rolling and pickling processes. In addition, if the plate speed at the exit side of this continuous rolling mill is constant, that is, if the production volume is constant, if the plate thickness at the entrance side of No. 1 stand can be made thicker, the speed of the unwinding reel can be lowered, and furthermore, fully continuous tandem rolling can be achieved. When this continuous rolling mill is installed in a machine, the capacity of the loop device that loops and accumulates metal sheets, which is required between the continuous rolling machine and the metal plate welding machine that sequentially welds rolling coils on the inlet side of the continuous rolling machine, increases. can reduce
Equipment costs and exclusive area can be reduced. Furthermore, regarding the quality of the product, the No. 1 stand will put a large pressure on the product, while the No. 2
It is possible to reduce the distribution of rolling reduction after the stand, and the rolling load on the subsequent stand can be reduced. Therefore, the amount of elastic deformation of the roll system in each of the subsequent stands is reduced, and the plate crown and plate shape of the product can be improved. () When the intermediate stand is used as a different speed rolling mill. Since the rolling reduction ratio can be increased, the number of stands can be reduced. Further, when the number of stands is the same, the rolling load per rolling mill can be reduced, and the shape of the plate can be improved. Among the above-mentioned effects of the continuous rolling mill of the present invention, a specific example of the reduction in the number of stands is as follows. In other words, if one or more different speed rolling mills are installed in a regular tandem rolling mill in place of the regular rolling mill,
Since the rolling reduction ratio of a different speed rolling mill can be large, even if the number of stands is reduced, the rolling load on each stand can be kept to the same level as a normal tandem rolling mill.
For example, in a continuous rolling mill with the arrangement shown in Fig. 4, low carbon steel is rolled from a raw pressure of 2.3 mm at the input side to a thickness of 0.21 mm at the outlet side.
Roll to mm on the following pass schedule. 2.3mm→1.8mm→1.16mm→0.8mm→0.5mm→0.3mm→
0.21mm In contrast, No. 1 stand, No. 4 stand are different speed rolling machines, No. 2 stand, No. 3 stand, No. 5
The rolling mill of combination No. 7 in Table 1, which uses regular stands, can roll at a schedule of 2.3 mm → 1.4 mm → 0.8 mm → 0.58 mm → 0.3 mm → 0.21 mm, so it is faster than a 6-stand regular rolling mill. can also be reduced by one stand. FIG. 5 shows an example of a two-stand tandem rolling mill, in which the No. 1 stand is a variable speed rolling mill using the RD rolling method, and the No. 2 stand is a normal type constant speed rolling mill. In this case as well, h 0 /h 1 =V 1 /V at the entrance and exit sides of the different speed rolling mill, as in the case of Fig. 4.
0 is established, and rolling is performed using the tension difference between the exit tension t f and the entry tension t b of the roll gap, and rolling is performed by normal reduction in a normal constant velocity rolling mill.
When rolling is performed in this way, "(I) When the No. 1 stand is used as a different speed rolling mill" in the embodiment shown in FIG.
The effect of The continuous rolling mill of the present invention is not limited to the above-mentioned embodiments, and any stand other than the most downstream stand may be used as a different speed rolling mill, and other modifications may be made within the scope of the invention. Of course, various changes can be made. According to the continuous rolling mill of the present invention, the most downstream rolling mill is a constant velocity rolling mill in which the circumferential speed ratio of the upper and lower work rolls is approximately 1, and the ratio of the inlet side plate thickness to the outlet side plate thickness of the rolling mill is the same as that of the upper and lower work rolls. At least one different speed rolling mill that rolls so that the front tension is approximately equal to the circumferential speed ratio of the work rolls and larger than the rear tension is installed on the upstream side of the constant velocity rolling mill, including the most downstream uniform velocity rolling mill. Because of this, various excellent effects such as those described below can be achieved. () Since the total rolling reduction ratio can be increased, the finished thickness of the hot strip can be made thicker.
Therefore, energy and cost savings can be achieved in hot rolling and pickling steps. () Since the rolling load of the stand on the downstream side of the variable speed rolling mill is lowered, the amount of elastic deformation of the roll system can be reduced, and the plate crown of the rolled material can be reduced.
The plate shape is improved and a product with good flatness can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はRD圧延法の原理の説明図、第2図及
び第3図はRD圧延法による連続圧延機の例の説
明図、第4図は本発明の連続圧延機の一実施例の
説明図、第5図は本発明の連続圧延機の他の実施
例の説明図である。 1は上ワークロール、2は下ワークロール、3
は上控ロール、4は下控ロール、sは金属板を示
す。
Fig. 1 is an explanatory diagram of the principle of the RD rolling method, Figs. 2 and 3 are explanatory diagrams of an example of a continuous rolling mill using the RD rolling method, and Fig. 4 is an explanatory diagram of an embodiment of the continuous rolling mill of the present invention. 5 are explanatory diagrams of other embodiments of the continuous rolling mill of the present invention. 1 is the upper work roll, 2 is the lower work roll, 3
4 indicates the upper backing roll, 4 indicates the lower backing roll, and s indicates the metal plate.

Claims (1)

【特許請求の範囲】[Claims] 1 複数台の圧延機を連続的に配設して圧延する
連続圧延機において、少くとも最も下流側の圧延
機を上下のワークロールの周速比が略1の等速圧
延機とし、且つ圧延機の入側板厚と出側板厚の比
が上下のワークロールの周速比に略等しくしかも
前方張力が後方張力より大きくなるように圧延す
る異速圧延機を、前記最も下流側の等速圧延機も
含めて上下のワークロールの周速比が略1の等速
圧延機の上流側に少なくとも1台設けたことを特
徴とする連続圧延機。
1. In a continuous rolling mill in which a plurality of rolling mills are arranged continuously for rolling, at least the most downstream rolling mill is a constant velocity rolling mill in which the circumferential speed ratio of the upper and lower work rolls is approximately 1, and A variable speed rolling mill that rolls so that the ratio of the plate thickness on the inlet side and the plate thickness on the outlet side of the machine is approximately equal to the circumferential speed ratio of the upper and lower work rolls, and the front tension is greater than the rear tension, is used in the uniform speed rolling mill on the most downstream side. A continuous rolling mill characterized in that at least one continuous rolling mill is provided upstream of a constant velocity rolling mill in which the circumferential speed ratio of the upper and lower work rolls including the mill is approximately 1.
JP10382977A 1977-08-30 1977-08-30 Continuous rolling mill Granted JPS5437051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10382977A JPS5437051A (en) 1977-08-30 1977-08-30 Continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10382977A JPS5437051A (en) 1977-08-30 1977-08-30 Continuous rolling mill

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11729285A Division JPS6114005A (en) 1985-05-30 1985-05-30 Continuous rolling mill

Publications (2)

Publication Number Publication Date
JPS5437051A JPS5437051A (en) 1979-03-19
JPS6215283B2 true JPS6215283B2 (en) 1987-04-07

Family

ID=14364299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10382977A Granted JPS5437051A (en) 1977-08-30 1977-08-30 Continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS5437051A (en)

Also Published As

Publication number Publication date
JPS5437051A (en) 1979-03-19

Similar Documents

Publication Publication Date Title
JP2799275B2 (en) Plating equipment and its operation method
US3709017A (en) Method of rolling metal sheet articles between the driven rolls of the roll mill
JPH082449B2 (en) Plate material manufacturing method and apparatus in which a continuous multi-stage rolling device is succeeding a plate material continuous casting device
CN106944479B (en) A kind of thin strip single chassis tandem mill and implementation method
US5660070A (en) Cold rolling mill with tension bridle
US1946240A (en) Hot rolling steel strips
GB1593439A (en) Rolling mill
JPS6215283B2 (en)
US2025002A (en) Method of rolling sheet metals
JP2000197905A (en) Extrusion rolling device and method thereof
US3664166A (en) Method and device for the continuous rolling of thin strips
US4414832A (en) Start-up and steady state process control for cooperative rolling
JP3637901B2 (en) Cold rolling method for metal sheet
JP3411163B2 (en) Determination of Rolling Order of Steel Sheet in Hot Rolling Continuous Process
CN110369515A (en) A kind of change specification threading control method of aluminium hot rolling tandem mill unit sheet band
JP3182820B2 (en) Hot rolling equipment
JP4284396B2 (en) High area reduction rolling method
JP2014180677A (en) Production device and production method for different thickness steel plate having plate thickness difference in plate width direction
US5992201A (en) Rolling and shearing process and apparatus background
JPH0456681B2 (en)
JPS58184003A (en) Tandem rolling method
JP2004358515A (en) Precision rolling method
RU2354465C1 (en) Cold rolling method for carbon strip steel and related mill
JPH01258802A (en) Method for hot finish rolling
JPH04284902A (en) Device for hot-finish-rolling metallic plate and method therefor