JPS6215279A - Chemical for petroleum third recovery use - Google Patents
Chemical for petroleum third recovery useInfo
- Publication number
- JPS6215279A JPS6215279A JP15432985A JP15432985A JPS6215279A JP S6215279 A JPS6215279 A JP S6215279A JP 15432985 A JP15432985 A JP 15432985A JP 15432985 A JP15432985 A JP 15432985A JP S6215279 A JPS6215279 A JP S6215279A
- Authority
- JP
- Japan
- Prior art keywords
- acrylamide
- weight
- aqueous solution
- polymer
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は油層中への注入性が良く、かつ機械的剪断劣化
特性の改良された石油三次回収薬剤に関−μ z 表
IP、 −+4 j 1〔背景技術〕
石油三次回収用に用いられるアクリルアミド系重合体水
溶液を地下の油層中に圧入して石油を強制的に回収する
場合には、アクリルアミド系重合体は油層温度30〜9
0℃において、高塩濃度にさらされる上に、油層中に圧
入する際に機械的剪断によってアクリルアミド系重合体
水溶液の粘性劣化をひきおこし1石油回収率の低下をま
ねき、甚だしい場合には目的とする用途への使用が不可
能となる場合もある。[Detailed Description of the Invention] [Technical Field] The present invention relates to a tertiary petroleum recovery agent that has good injectability into oil reservoirs and improved mechanical shear degradation characteristics.
IP, -+4 j 1 [Background technology] When an acrylamide polymer aqueous solution used for tertiary oil recovery is injected into an underground oil layer to forcibly recover oil, the acrylamide polymer is used at an oil layer temperature of 30 ~9
At 0°C, in addition to being exposed to high salt concentrations, mechanical shearing during injection into the oil layer causes viscosity deterioration of the acrylamide polymer aqueous solution, resulting in a decrease in oil recovery rate and, in extreme cases, the objective In some cases, it may become impossible to use it for the intended purpose.
従ってアクリルアミド重合体水溶液が熱安定性と#塩性
に優れることはもちろんのこと、高塩濃度下においても
機械的剪断の少ないアクリルアミド重合体水溶液である
ことが要求される。Therefore, it is required that the acrylamide polymer aqueous solution not only has excellent thermal stability and saltiness, but also has low mechanical shear even under high salt concentration.
上記のような苛酷な条件下にある油層中にアクリルアミ
ド系重合体水溶液を圧入すると、一般的には急激に機械
的剪断劣化を引き起し、石油三次回収薬剤として十分な
効力を発揮し得ない。When an acrylamide-based polymer aqueous solution is injected into an oil layer under severe conditions such as those mentioned above, it generally causes rapid mechanical shear deterioration and cannot exhibit sufficient efficacy as a tertiary oil recovery agent. .
石油三次回収薬剤は、効率と経済性とを考慮して非常に
高分子量のアクリルアミド系重合体を用いるのが一般的
であるが、あまりにも高分子量のアクリルアミド系重合
体水溶液を使用すると、岩盤中の油層への注入性が悪く
、場合によって注入困難なことさえある上に、注入出来
ても機械的剪断劣化が大きく、その効力をほとんど発揮
しえない。Tertiary petroleum recovery agents generally use very high molecular weight acrylamide polymers in consideration of efficiency and economy, but if an acrylamide polymer aqueous solution with too high molecular weight is used, Injectability into the oil layer is poor, and in some cases it may even be difficult to inject, and even if it can be injected, it suffers from significant mechanical shear deterioration and is hardly effective.
一方、低分子量のアクリルアミド系重合体の場合は、機
械的剪断劣化は少ないが一定の粘度を保つには高濃度を
用いなければならない。On the other hand, in the case of a low molecular weight acrylamide polymer, mechanical shear deterioration is small, but a high concentration must be used to maintain a constant viscosity.
そこで、これらの特性を改良するためには米国特許第3
,247,171号には、ポリマーを一部架橋化させる
方法が、米国特許第3.744.566号にはカチオン
性ビニルモノマーとして少なくとも1重量%の(3−ア
クリルアミド−3−メチ1ル)ブチルアンモニウムクロ
ライド(AMBTAC)等を含有するアクリルアミド系
重合体を石油三次回収剤に用いる方法が、また米国特許
第4,432,881号には炭素原子8ヶ以上の疎水性
置換基をもつ、水溶性ポリマー(たとえば、アクリルア
ミド−ドデシルアクリレート共重合体)と界面活性剤の
組合せによる石油三次回収薬剤を用いる方法が開示され
ている。Therefore, in order to improve these characteristics, U.S. Patent No.
, 247,171 describes a method for partially crosslinking the polymer, and U.S. Pat. A method of using an acrylamide-based polymer containing butylammonium chloride (AMBTAC) etc. as a tertiary petroleum recovery agent is also described in US Pat. No. 4,432,881. A method using a tertiary petroleum recovery agent in combination with a polymer (eg, acrylamide-dodecyl acrylate copolymer) and a surfactant is disclosed.
しかしながら、これらの方法はいずれも実用化の面から
も、石油三次回収薬剤に対する前述の要求を十分満足す
るものとは云いがたい。However, it is difficult to say that any of these methods fully satisfies the above-mentioned requirements for tertiary petroleum recovery agents from the standpoint of practical application.
本発明の目的は、高塩濃度下で高粘度を示し。 The object of the present invention is to exhibit high viscosity under high salt concentration.
油層中への注入性が良く、かつ機械的剪断劣化の少ない
石油三次回収薬剤の提供にある。An object of the present invention is to provide a tertiary petroleum recovery agent that has good injectability into an oil layer and is less susceptible to mechanical shear deterioration.
本発明の石油三次回収薬剤は
(a)アクリルアミドまたはアクリルアミドを優位量含
量する単量体、
(b)単量体(a)の重量の5〜40%のメタアクリル
酸塩、および
(c)単量体(a)の重量の0〜35%の水溶性アニオ
ン性ビニル単量体
を水溶液ラジカル共重合し、必要ならば、得られた共重
合体ゲルを部分加水分解し、得られたアニオン化度が5
〜35モル%の共重合体ゲルを乾燥し、粉末化した共重
合体粉末からなるものである。The tertiary petroleum recovery agent of the present invention comprises (a) acrylamide or a monomer containing a predominant amount of acrylamide, (b) methacrylate in an amount of 5 to 40% of the weight of monomer (a), and (c) a monomer containing a predominant amount of acrylamide. Aqueous radical copolymerization of 0 to 35% of the weight of polymer (a) of a water-soluble anionic vinyl monomer is carried out, and if necessary, the resulting copolymer gel is partially hydrolyzed, resulting in anionized degree is 5
It consists of copolymer powder obtained by drying ~35 mol% of copolymer gel and pulverizing it.
メタアクリル酸塩は単量体(a)に対して5〜40重量
%、好ましくは10〜30重量%の割合で用いられる。The methacrylate is used in an amount of 5 to 40% by weight, preferably 10 to 30% by weight, based on monomer (a).
メタアクリル酸塩の含有量が5重量%以下では、油層中
への注入性が良く、かつ機械的剪断劣化特性の少ない石
油三次回収薬剤が得られない。又40重量%以上では、
高分子量のアクリルアミド系重合体が得られにくく、得
られても地下層中に含まれる二価以上の金属塩による沈
殿現象が生じる。If the content of methacrylate is 5% by weight or less, a tertiary petroleum recovery agent that has good injectability into an oil layer and low mechanical shear deterioration properties cannot be obtained. Moreover, at 40% by weight or more,
High molecular weight acrylamide polymers are difficult to obtain, and even if they are obtained, precipitation occurs due to divalent or higher valent metal salts contained in underground layers.
メタアクリル酸塩の例は、メタアクリル酸のナトリウム
塩、カリウム塩、アンモニウム塩などである。Examples of methacrylates are sodium, potassium, ammonium salts, etc. of methacrylic acid.
水溶性のアニオン性ビニル単量体の例は、アクリル酸ま
たは2−アクリルアミド−2−メチルプロパンスルホン
酸のナトリウム塩、カリウム塩、アンモニウム塩などお
よびこれらの混合物であり、これら水溶性の7ニオン性
ビニル単量体を。Examples of water-soluble anionic vinyl monomers are sodium salts, potassium salts, ammonium salts, etc. of acrylic acid or 2-acrylamido-2-methylpropanesulfonic acid, and mixtures thereof; vinyl monomer.
単量体(a)に対して、0〜35重量%共存させる。It is allowed to coexist in an amount of 0 to 35% by weight based on monomer (a).
V 1士 ! h・g /7’l ’&
柴徊ト ITI ’7 ・h ”/ kk
l・+l・品 JjLI+を共存させないで、あるいは
共存させて重合し。V1 master! h・g /7'l'&
Shiba Kakuto ITI '7 ・h''/kk
l・+l・product Polymerize without or with JjLI+ coexisting.
ついでアクリルアミド成分又はメタアクリルアミド成分
を部分加水分解することによっても目的を達することが
できる。The objective can also be achieved by subsequently partially hydrolyzing the acrylamide component or methacrylamide component.
上記のようにして得られたアクリルアミド系の共重合体
はアニオン化度が5〜35モル%である。The acrylamide copolymer obtained as described above has an anionization degree of 5 to 35 mol%.
アニオン化度が5モル%以下では、油層の岩盤に水溶性
重合体が吸着現象を起しアクリルアミド系重合体水溶液
の油層中の圧入を困難にするだけでなく、一層機械的剪
断劣化を引き起す、又アニオン化度が35モル%以上で
は、地F層中に含まれる二価以上の金属塩によるアクリ
ルアミド系重合体の沈澱現象が顕著に起るため岩盤中を
詰めてしまい石油三次回収効率が甚だしく悪化し、かつ
機械的剪断劣化も起りやすくなる0以上の理由からアク
リルアミド重合体のアニオン化度は5〜35モル%、好
ましくは10〜30モル%である。If the degree of anionization is less than 5 mol%, the water-soluble polymer will adsorb onto the rock of the oil layer, which will not only make it difficult to inject the acrylamide polymer aqueous solution into the oil layer, but also cause further mechanical shear deterioration. Furthermore, if the degree of anionization is 35 mol% or more, precipitation of acrylamide polymer due to divalent or higher valent metal salts contained in the ground F layer will occur, which will fill the rock and reduce the tertiary oil recovery efficiency. The degree of anionization of the acrylamide polymer is from 5 to 35 mol%, preferably from 10 to 30 mol%, for reasons of 0 or more, which cause severe deterioration and mechanical shear deterioration.
上記単量体(a)〜(c)の、好ましくは20〜40重
量%の水溶液を酸化剤と還元剤からなるレドックス触媒
または/およびアゾ系触媒を用いてラジカル重合して共
重合体ゲルを得、要すれば、この部分加水分解を行ない
、得られたアニオン化度5〜35モル%の共重合体ゲル
を乾燥、粉末化して共重合体粉末を得る。これらの共重
合体の分子量は。A copolymer gel is obtained by radical polymerizing an aqueous solution of preferably 20 to 40% by weight of the above monomers (a) to (c) using a redox catalyst and/or an azo catalyst consisting of an oxidizing agent and a reducing agent. If necessary, this partial hydrolysis is performed, and the resulting copolymer gel having an anionization degree of 5 to 35 mol % is dried and powdered to obtain a copolymer powder. What are the molecular weights of these copolymers?
特には限定されないが、本発明の効果がより良く現われ
るのは、比較的高い分子量をもった共重合体においてで
ある。具体的には少なくとも500万の重量平均分子量
を持つことが好ましい、なお、重量平均分子量の測定は
光散乱法または固有粘度[η]法([η]の値は18−
硝酸ナトリウム水溶液を用い、30℃の恒温槽の中でウ
ベローデ型粘度計またはキャノンフェンスケ型粘度計を
用いて測定した値であり、アクリルアミドホモポリマー
の場合の重量平均分子量は[η] = 3.73 XI
O″I0.68
[MW] (30℃、lN−NaN03)によっ
て求めた値である。)による。Although not particularly limited, the effects of the present invention are better exhibited in a copolymer having a relatively high molecular weight. Specifically, it is preferable to have a weight average molecular weight of at least 5 million. The weight average molecular weight can be measured by the light scattering method or the intrinsic viscosity [η] method (the value of [η] is 18-
This is a value measured using an Ubbelohde viscometer or a Cannon-Fenske viscometer in a constant temperature bath at 30°C using a sodium nitrate aqueous solution, and the weight average molecular weight in the case of an acrylamide homopolymer is [η] = 3. 73 XI
O″I0.68 [MW] (30°C, 1N-NaN03).
本発明に用いる酸化剤と還元剤とからなるレドックス系
触媒は、水溶性過酸化物−水酸性第3級アミン系、水溶
性過酸化物−水溶性亜硫酸塩、水溶性過酸化物−水溶性
亜硫酸塩系などであり。The redox catalyst consisting of an oxidizing agent and a reducing agent used in the present invention includes a water-soluble peroxide-hydroxy tertiary amine system, a water-soluble peroxide-water soluble sulfite, and a water-soluble peroxide-water soluble These include sulfite-based substances.
アゾ系触媒は、水溶性アゾ化合物、たとえば2.2′−
アゾビス(2〜アミジノプロパン)ノ\イドロクロライ
ドや油溶性アゾ化合物、たとえばアゾビスイソブチロニ
トリル、4.4′−アゾビス−4−シアノパレリックア
シッド等をあげることが出来る。The azo catalyst is a water-soluble azo compound, such as 2.2'-
Examples include azobis(2-amidinopropane)hydrochloride and oil-soluble azo compounds such as azobisisobutyronitrile and 4,4'-azobis-4-cyanoparelic acid.
以下に実施例を示してさらに本発明を具体的に説明する
が、これらの実施例は本発明を限定するものと解される
べきではない。EXAMPLES The present invention will be further explained in detail with reference to Examples below, but these Examples should not be construed as limiting the present invention.
実施例1
アクリルアミド(AND) 80重量%、メタアクリル
酸ソーダ(MAANa) 5重量%、アクリル酸ソーダ
(^ANa) 15重量%からなるモノマーの濃度30
重量%の水溶液(pH=7.5) 750部を10℃
に冷却した後。Example 1 Concentration of monomers consisting of 80% by weight of acrylamide (AND), 5% by weight of sodium methacrylate (MAANa), and 15% by weight of sodium acrylate (^ANa) 30
750 parts of aqueous solution (pH=7.5) at 10°C
After cooling to.
1党の断熱箱のに入れ、反応系内をN2ガスにて十分に
脱酸素した。この水溶液に7ゾビスシアノバレリツクア
シツド(AGVA)0.25部をメタノール7.5部に
溶解したものを添加し、さらに重合開始剤として、過硫
酸アンモニウム(APS)0.002部、硫酸第1鉄ア
ンモニウム(FAS)0.004部を添加し、反応開始
温度5℃において断熱重合をした。約5時間で反応が完
結した。The reaction system was placed in a heat-insulated box, and the inside of the reaction system was sufficiently deoxidized with N2 gas. A solution of 0.25 parts of 7zobiscyanovaleric acid (AGVA) dissolved in 7.5 parts of methanol was added to this aqueous solution, and 0.002 parts of ammonium persulfate (APS) and sulfuric acid were added as polymerization initiators. 0.004 part of iron ammonium (FAS) was added, and adiabatic polymerization was carried out at a reaction initiation temperature of 5°C. The reaction was completed in about 5 hours.
得られた重合体ゲルをミートチ冒ツバ−で2〜3mm径
に切断し、乾燥粉砕することにより、標準粘度(SV値
)(I N−NaCJ水溶液中での0.1重量%ポリマ
ー溶液をアダプター付きBBL型粘度計により80rp
mで測定した値)が約4.9cps/25℃の水溶性の
高分子量重合体粉末を得た。The obtained polymer gel was cut into pieces with a diameter of 2 to 3 mm using a meat cutter, and dried and crushed to obtain a standard viscosity (SV value) (IN-NaCJ aqueous solution of 0.1% by weight). 80rp using a BBL type viscometer with
A water-soluble high molecular weight polymer powder having a value measured at m) of about 4.9 cps/25° C. was obtained.
上記のようにして得られたメタアクリル酸ソーダを含有
アクリルアミド系高分子量共重合体粉末を500pP1
1水溶液濃度によるように水に溶解し、20〜25°C
の恒温槽の中に一昼夜放置後、この水溶液の中に2重量
%相当のHa(Jと0.2重量%相当のCa(J2を添
加し、完全に溶解した。500 pP1 of the acrylamide-based high molecular weight copolymer powder containing sodium methacrylate obtained as described above.
1 Dissolved in water as per aqueous concentration, 20-25 °C
After being left in a constant temperature bath for a day and night, 2% by weight of Ha (J) and 0.2% by weight of Ca (J2) were added to the aqueous solution and completely dissolved.
この溶液を200me+hのステンレス金アミで濾過し
、下記の方法により機械的安定性テストを行った。This solution was filtered through a 200me+h stainless steel gold foil, and a mechanical stability test was conducted using the method described below.
機械的安定性テスト方法としては、 3QQaj )
−ルビーカー(φ= 801■)の中に上記ポリマー水
溶液150tjを入れ、板状の2枚羽根(見= 18m
層×h=11mm)を直径8IllIlの棒の両側に6
0°の傾斜に取りつけた撹拌棒を用いて2000rpa
+の高速で5分間撹拌し機械的剪断をポリマー溶液にか
けた。撹拌前後の粘度を、BBL型粘度計(ブルックフ
ィールド粘度)にて測定し、高速撹拌前のポリマー溶液
粘度(η。)から高速撹拌後のポリマー溶液粘度(η)
を差し引いた値を高速撹拌前のポリマー溶液粘度(η。The mechanical stability test method is 3QQaj)
- Put 150tj of the above polymer aqueous solution in a ruby car (φ = 801■) and insert two plate-shaped blades (diameter = 18m).
layer x h = 11 mm) on both sides of a rod with a diameter of 8IllIl.
2000rpa using a stirring bar mounted on a 0° inclination.
Mechanical shear was applied to the polymer solution by stirring at + high speed for 5 minutes. The viscosity before and after stirring was measured using a BBL viscometer (Brookfield Viscosity), and the viscosity of the polymer solution before high-speed stirring (η) was calculated from the viscosity of the polymer solution after high-speed stirring (η).
The value obtained by subtracting the value is the polymer solution viscosity (η) before high-speed stirring.
)で割った値の百分率を機械的シェアー劣化率として求
めてポリマーの機械的安定性の指標とした。) was calculated as the mechanical shear deterioration rate and used as an index of the mechanical stability of the polymer.
機械的安定性のもう一つの評価は、スクリーンビスコメ
ーター法により行った。即ち、ピペット型ガラス管の下
部に100メツシユのステンレス性金網を5枚重ねて取
り付け、球部の上下に標線を付けたスクリーンビスコメ
ーターを通して、上記の高速撹拌前後のポリマー水溶液
を25℃において流通せしめ、その液面が標線間を通過
する流下時間(1)を測定した。同様にしてポリマーを
含まない2重量%NaOとCa口20.2重量%とを含
有する水溶液の流下時間(七〇)を測定し、両者の比(
t / t o )をスクリーンファクターと称して指
標とし、高速撹拌劣化前のスクリーンファクター(SF
o)から高速撹拌劣化後のスクリーンファクター(SF
)を引いたものを、高速撹拌劣化前のスクリーンファク
ター(SFO)で割った値の百分率を機械的シェアー劣
化率として求め、ポリマーの機械的安定性の指標とした
。Another evaluation of mechanical stability was performed by the screen viscometer method. That is, five 100-mesh stainless steel wire meshes were stacked and attached to the bottom of a pipette-shaped glass tube, and the polymer aqueous solution before and after high-speed stirring was passed through a screen viscometer with markings on the top and bottom of the bulb at 25°C. The flow time (1) during which the liquid level passed between the marked lines was measured. Similarly, the flow time (70) of an aqueous solution containing 2% by weight of NaO and 20.2% by weight of Ca was measured, and the ratio between the two (
t / t o ) is called the screen factor and is used as an index, and the screen factor before high-speed stirring deterioration (SF
o) to screen factor after high-speed stirring deterioration (SF
) was divided by the screen factor (SFO) before high-speed stirring deterioration, and the percentage of the value was determined as the mechanical shear deterioration rate, and was used as an index of the mechanical stability of the polymer.
その結果は第1表及び第2表の通りである。The results are shown in Tables 1 and 2.
実施例2
AND 80重量%、NAANa 10重量%、AAN
alO重量%からなるモノマーの濃度30重量%の水溶
液(ph−7,5) 750部を10°Cに冷却した
後、1文の断熱箱に入れ、反応系内をN2ガスにて十分
に脱酸素した。この水溶液に7ゾビスシアノバレリツク
7 シー/ド(ACVA)0.25部をメタ/−ルア、
5部に溶解したものを添加し、さらに重合開始剤として
APS 0.002部、FAS O,004部を添
加し、反応開始温度10℃にて断熱重合をした。約7時
間で反応が完結した。Example 2 AND 80% by weight, NAANa 10% by weight, AAN
After cooling 750 parts of a 30% by weight aqueous solution (pH-7,5) of a monomer consisting of %alO by weight to 10°C, the reaction system was thoroughly degassed with N2 gas. It was oxygen. To this aqueous solution, 0.25 part of 7zobiscyanovaleric 7 seed/de (ACVA) was added to meta/-lua,
Then, 0.002 parts of APS and 0.004 parts of FAS O were added as polymerization initiators, and adiabatic polymerization was carried out at a reaction initiation temperature of 10°C. The reaction was completed in about 7 hours.
得られた重合体ゲルを実施例1と同様に処理を行って水
溶性の高分子量重合体粉末を得た。標準粘度(SV値)
は約4.3cps/25℃であった。以下実施例1と同
様の操作によって機械的安定性テストを行った。The obtained polymer gel was treated in the same manner as in Example 1 to obtain a water-soluble high molecular weight polymer powder. Standard viscosity (SV value)
was approximately 4.3 cps/25°C. A mechanical stability test was then conducted in the same manner as in Example 1.
その結果は第1表及び第2表の通りである。The results are shown in Tables 1 and 2.
実施例3
AND 75重量%1MAANa 20重量%、2−ア
クリルアミド−2−メチルプロパンスルホン酸ソーダ(
AMP!JNa) 5重量%からなるモノマー濃度30
重量%の水溶液(pH−7,5) 750部を20”
Oニ調節シタ後。Example 3 AND 75% by weight 1MAANa 20% by weight, sodium 2-acrylamido-2-methylpropanesulfonate (
AMP! JNa) 5% by weight monomer concentration 30
750 parts of wt% aqueous solution (pH-7,5) 20"
After adjusting the position.
11の断熱箱に入れ、反応系内をN2ガスにて十分に脱
酸素した。この水溶液にA(:VA 0.1部をメタノ
ール7.5部に溶かしたものと、2.2′−アゾビス(
2−アミジノプロパン)ハイドロクロライド(V−50
) 0.3部トNaa p2o7a 10H200,0
1部とを添加し、さらに重合開始剤として、 APS
O,002部。The reaction system was placed in a heat-insulated box No. 11, and the inside of the reaction system was sufficiently deoxidized with N2 gas. This aqueous solution contains 0.1 part of A(:VA dissolved in 7.5 parts of methanol) and 2.2'-azobis(
2-amidinopropane) hydrochloride (V-50
) 0.3 parts Naa p2o7a 10H200,0
and 1 part of APS as a polymerization initiator.
O,002 copies.
FAS O,004部を添加し1反応温度20℃にて
断熱重合した。約5時間で反応が完結した。4 parts of FAS O.000 was added and adiabatic polymerization was carried out at a reaction temperature of 20°C. The reaction was completed in about 5 hours.
得られた重合体ゲルを実施例1と同様に処理を行って水
溶性の高分子重合体粉末を得た。標準粘度(SV値)は
約4 、 lcpg/25℃であった。以下、実施例1
と同様の操作によって機械的安定性テストを行った。そ
の結果は第1表及び第2表の通りである。The obtained polymer gel was treated in the same manner as in Example 1 to obtain a water-soluble polymer powder. The standard viscosity (SV value) was approximately 4, lcpg/25°C. Below, Example 1
A mechanical stability test was conducted using the same procedure as above. The results are shown in Tables 1 and 2.
実施例4
AMo 70重量%、NAANa 30重量%からなる
モノマー濃度30%ノ水溶液(pH−8,0) 75
0部を20℃に調節した後、1文の断熱箱に入れ、反応
系内にN2ガスにて十分に脱酸素した。Example 4 Aqueous solution with a monomer concentration of 30% consisting of 70% by weight of AMo and 30% by weight of NAANa (pH-8.0) 75
After adjusting the temperature of 0 parts to 20° C., the mixture was placed in a heat-insulated box, and the reaction system was sufficiently deoxidized with N2 gas.
APS O,003部、FAS O,008部を添
加し以外は実施例3と全く同じ重合条件で重合し、約5
時間で反応が完結した。Polymerization was carried out under exactly the same polymerization conditions as in Example 3, except that 0.003 parts of APS O and 0.008 parts of FAS O were added.
The reaction was completed in time.
得られた重合体ゲルを実施例1と同様の処理を行って水
溶性重合体粉末を得た。標準粘度(sv値)は約4.2
cps/25℃であった。以下実施例1と同様の操作に
よって機械的安定性テストを行い、その結果は、第1表
及び第2表の通りであった。The obtained polymer gel was treated in the same manner as in Example 1 to obtain a water-soluble polymer powder. Standard viscosity (sv value) is approximately 4.2
cps/25°C. A mechanical stability test was then carried out in the same manner as in Example 1, and the results were as shown in Tables 1 and 2.
実施例5
AND 80重量%、MAANa 40重量%からなる
モノマー濃度30重量%の水溶液(PH−8,0) 7
50部を、20℃に温度調節した後1文の断熱箱に入れ
、反応系内をN2ガスにて十分に脱酸素した。Example 5 Aqueous solution (PH-8,0) with a monomer concentration of 30% by weight, consisting of 80% by weight AND and 40% by weight MAANa 7
After adjusting the temperature to 20° C., 50 parts of the reaction mixture were placed in a heat-insulated box, and the inside of the reaction system was sufficiently deoxidized with N2 gas.
APS O,005部、FAS 0.010部を添
加した以外は、実施例3と全く同じ重合条件で重合し、
約5時間で反応が完結した。Polymerization was carried out under exactly the same polymerization conditions as in Example 3, except that 0.005 parts of APS O and 0.010 parts of FAS were added.
The reaction was completed in about 5 hours.
得られた重合体ゲルを実施例1と同様な処理を行って水
溶性重合体粉末を得た。標準粘度(SV値)は約3.7
cps/25℃であった。以下実施例1と同様の操作に
よって機械的安定性テストを行い、その結果は、第1表
及び第2表の通りであった。The obtained polymer gel was treated in the same manner as in Example 1 to obtain a water-soluble polymer powder. Standard viscosity (SV value) is approximately 3.7
cps/25°C. A mechanical stability test was then carried out in the same manner as in Example 1, and the results were as shown in Tables 1 and 2.
比較例1
AND 80重量%、およびAANa 2部重量%か
らなるモノマー濃度30重量%の水溶液(p)I=7.
5) 750部を5℃に冷却後、1見の断熱箱に入れ
、反応系内をN2ガスにて十分に脱酸素した。この水溶
液にAIBNo、35部をメタノール7.5部とイソプ
ロピルアルコール0.4部に溶解して添加し、さらに重
合開始剤としてAPS O,007部、FAS O
,005部を添加し、重合開始温度5℃にて断熱重合を
行った。反応時間約1時間で反応が完結した。Comparative Example 1 An aqueous solution (p) with a monomer concentration of 30% by weight consisting of 80% by weight of AND and 2 parts by weight of AANa (p)I=7.
5) After cooling 750 parts to 5°C, the mixture was placed in a heat-insulated box, and the inside of the reaction system was sufficiently deoxidized with N2 gas. To this aqueous solution, 35 parts of AIBNo dissolved in 7.5 parts of methanol and 0.4 parts of isopropyl alcohol were added, and 0.007 parts of APS O and 0.007 parts of FAS O were added as polymerization initiators.
,005 parts were added, and adiabatic polymerization was carried out at a polymerization initiation temperature of 5°C. The reaction was completed in about 1 hour.
得られた重合体ゲルを実施例1と同様な方法にヨリ処理
シ、標準粘度(SV値)は約5.0cps/25℃の水
溶液の高分子量重合体を得た。上記のようにして得られ
た重合体を実施例1と同様な方法により高塩濃度下での
水溶液粘度及び機械的剪断安定性について評価した。そ
の結果は、第1表及び第2表の通りである。The obtained polymer gel was treated in the same manner as in Example 1 to obtain an aqueous solution of a high molecular weight polymer having a standard viscosity (SV value) of approximately 5.0 cps/25°C. The polymer obtained as described above was evaluated in the same manner as in Example 1 for aqueous solution viscosity and mechanical shear stability under high salt concentration. The results are shown in Tables 1 and 2.
比較例2
AMo 80重量%、およびAANa20重量%からな
るモノマー濃度30重量%の水溶液(pH=7.5)
750部を5℃に調節した後、19.の断熱箱に入れ
、反応系内をN?ガスにて十分に脱酸素した。この水溶
液にAIBNo、35部をメタノール7.5部とイソプ
ロピルアルコール0.75部に溶解して添加し、さらに
重合開始剤としてAPS O,007部、 FAS
O,005部を添加し2重合開始温度5℃にて断熱重
合を行った0反応時間約1時間で反応が完結した。Comparative Example 2 Aqueous solution with a monomer concentration of 30% by weight (pH = 7.5) consisting of 80% by weight of AMo and 20% by weight of AANa
After adjusting 750 parts to 5°C, 19. Place the reaction system in an insulated box with N? Oxygen was sufficiently removed using gas. To this aqueous solution, 35 parts of AIBNo dissolved in 7.5 parts of methanol and 0.75 parts of isopropyl alcohol were added, and 0.007 parts of APS O and FAS were added as polymerization initiators.
After adding 0.005 parts of O, adiabatic polymerization was carried out at a double polymerization initiation temperature of 5° C. The reaction was completed in about 1 hour.
得られた重合体ゲルを実施例1と同様な方法により処理
し、標準粘度(SV値)は約4.4cps/25℃の水
溶液の高分子量重合体を得た。上記のようにして得られ
た重合体を実施例1と同様な方法により高塩濃度下での
水溶液粘度及び機械的剪断安定性について評価した。そ
の結果は、第1表及び第2表の通りである。The obtained polymer gel was treated in the same manner as in Example 1 to obtain an aqueous solution of a high molecular weight polymer having a standard viscosity (SV value) of approximately 4.4 cps/25°C. The polymer obtained as described above was evaluated in the same manner as in Example 1 for aqueous solution viscosity and mechanical shear stability under high salt concentration. The results are shown in Tables 1 and 2.
比較例3
AMo 80重量%、およびAANa20重量%からな
るモノマー濃度30重量%の水溶液(pH=7.5)
750部を5°Cに調節した後、1Mの断熱箱に入れ
、反応系内をN2ガスにて十分に脱酸素した。この水溶
液にAIBNo、35部をメタノール7.5部とイソプ
ロピルアルコール0.75部に溶解して添加し、さらに
重合開始剤としてAP’S O,020部、 FAS
O,014部を添加し、重合開始温度5℃にて断熱
重合を行った0反応時間約40分間で反応が完結した。Comparative Example 3 Aqueous solution with a monomer concentration of 30% by weight consisting of 80% by weight of AMo and 20% by weight of AANa (pH = 7.5)
After adjusting the temperature of 750 parts to 5°C, the mixture was placed in a 1M insulation box, and the inside of the reaction system was sufficiently deoxidized with N2 gas. To this aqueous solution, 35 parts of AIBNo dissolved in 7.5 parts of methanol and 0.75 parts of isopropyl alcohol were added, and further 20 parts of AP'SO, 0.02 parts of FAS were added as polymerization initiators.
0.14 parts of O was added and adiabatic polymerization was carried out at a polymerization initiation temperature of 5° C. The reaction was completed in about 40 minutes.
得られた重合体ゲルを実施例1と同様な方法により処理
し、標準粘度(SV値)が約3.8cps/25℃の水
溶液の高分子量重合体を得た。上記のようにして得られ
た重合体を実施例1と同様な方法により高塩濃度下での
水溶液粘度及び機械的剪断安定性について評価した。そ
の結果は、第1表及び第2表の通りである。The obtained polymer gel was treated in the same manner as in Example 1 to obtain an aqueous solution of a high molecular weight polymer having a standard viscosity (SV value) of approximately 3.8 cps/25°C. The polymer obtained as described above was evaluated in the same manner as in Example 1 for aqueous solution viscosity and mechanical shear stability under high salt concentration. The results are shown in Tables 1 and 2.
本発明による機械的剪断に対して安定化された、5〜4
0重量%のメタアクリル酸塩を含有するアクリルアミド
系重合体からなる石油三次回収薬剤は、蒸留水又は市水
は勿論油田において得られる、” f resh wa
ter ”及び°’produced water”等
高塩水中でも機械的剪断に対して従来の7ニオン性アク
リルアミドポリマーに比較して劣化されにくいことが認
められる。メタアクリル酸塩を含有させたアクリルアミ
ド系共重合体の機械的剪断劣化の少ない原因については
明らかでないが、置換基のある主鎖炭素のHの代りにC
H3基のついたメタアクリル酸塩がアクリルアミド系重
合体の中に導入されることにより、重合体中に含まれる
酸化性物質又は溶存酸素の関与するラジカル反応に基づ
く重合体の崩壊や重合体そのものの機械的剪断劣化に対
する抵効力が増大するためと考えられる。5-4 stabilized against mechanical shear according to the invention
A tertiary petroleum recovery agent consisting of an acrylamide polymer containing 0% by weight of methacrylate can be obtained from oil fields as well as from distilled water or city water.
It is recognized that it is less susceptible to mechanical shearing than conventional 7-ionic acrylamide polymers, even in highly saline waters such as ter" and "produced water." The reason for the low mechanical shear deterioration of acrylamide-based copolymers containing methacrylate is not clear, but C
When a methacrylate with an H3 group is introduced into an acrylamide polymer, the polymer collapses due to a radical reaction involving oxidizing substances or dissolved oxygen contained in the polymer, and the polymer itself This is thought to be due to the increased resistance to mechanical shear deterioration.
特許出願人 三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.
Claims (1)
量含有する単位体、 (b)単量体(a)の重量の5〜40%のメタアクリル
酸塩、および (c)単量体(a)の重量の0〜35%の水溶性アニオ
ン性ビニル単量体 を水溶液ラジカル共重合し、必要ならば、得られた共重
合体ゲルを部分加水分解し、得られたアニオン化度が5
〜35モル%の共重合体ゲルを乾燥し、粉末化した共重
合体粉末からなる石油三次回収薬剤。[Scope of Claims] 1. (a) acrylamide or a unit containing a predominant amount of acrylamide, (b) methacrylate in an amount of 5 to 40% by weight of monomer (a), and (c) monomer Aqueous radical copolymerization of 0 to 35% of the weight of body (a) of a water-soluble anionic vinyl monomer is carried out, and if necessary, the resulting copolymer gel is partially hydrolyzed to determine the degree of anionization obtained. is 5
A tertiary petroleum recovery agent consisting of a copolymer powder obtained by drying and powdering ~35 mol% copolymer gel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15432985A JPS6215279A (en) | 1985-07-15 | 1985-07-15 | Chemical for petroleum third recovery use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15432985A JPS6215279A (en) | 1985-07-15 | 1985-07-15 | Chemical for petroleum third recovery use |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6215279A true JPS6215279A (en) | 1987-01-23 |
Family
ID=15581764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15432985A Pending JPS6215279A (en) | 1985-07-15 | 1985-07-15 | Chemical for petroleum third recovery use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6215279A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010270170A (en) * | 2009-05-19 | 2010-12-02 | Toagosei Co Ltd | Oil recovery chemical and method for producing the same, and injection liquid for recovering oil |
-
1985
- 1985-07-15 JP JP15432985A patent/JPS6215279A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010270170A (en) * | 2009-05-19 | 2010-12-02 | Toagosei Co Ltd | Oil recovery chemical and method for producing the same, and injection liquid for recovering oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11814578B2 (en) | Delayed gelling agents | |
CA1166792A (en) | Alkali metal acrylate polymer excellent in salt solution absorbency and process for producing same | |
US9267075B2 (en) | Swellable polymer with anionic sites | |
EP0799364B1 (en) | Oil and gas field chemicals | |
EP0206489B1 (en) | Calcium-tolerant n-substituted acrylamides as thickeners for aqueous systems | |
US4709759A (en) | Enhanced oil recovery with hydrophobically associating polymers containing N-vinyl-pyrrolidone functionality | |
JPH0339119B2 (en) | ||
US4584358A (en) | Calcium-tolerant N-substituted acrylamides as thickeners for aqueous systems | |
JPS6215279A (en) | Chemical for petroleum third recovery use | |
US4481316A (en) | Method for inhibiting the degradation of an aqueous solution of an acrylamide polymer in a petroleum recovery process | |
JPS62283185A (en) | Tertiary recovering chemical for petroleum | |
JPH0560032B2 (en) | ||
JPH0559237B2 (en) | ||
JP4549485B2 (en) | Method for suppressing decrease in viscosity of water-soluble polymer aqueous solution | |
JPS62277407A (en) | Water-soluble polymer composition | |
JPS6215278A (en) | Chemical for petroleum third recovery use | |
JPH04236208A (en) | Production of amphoteric polyelectrolyte | |
JP3066464B2 (en) | Thermosensitive water release agent and method for producing the same | |
JPS60233111A (en) | Production of acrylamide polymer | |
JPS60112806A (en) | Preparation of acrylamide polymer | |
CA1136396A (en) | Gel of diacrylate esters of polyoxyalkene glycol for stabilizing soil | |
JPS62197402A (en) | Preparation of stable water-retentive gel | |
JPH0475937B2 (en) | ||
JPS5946247B2 (en) | Production method of acrylamide water-soluble polymer | |
JPH0545623B2 (en) |