JPS62152027A - Voltage control system - Google Patents

Voltage control system

Info

Publication number
JPS62152027A
JPS62152027A JP60292124A JP29212485A JPS62152027A JP S62152027 A JPS62152027 A JP S62152027A JP 60292124 A JP60292124 A JP 60292124A JP 29212485 A JP29212485 A JP 29212485A JP S62152027 A JPS62152027 A JP S62152027A
Authority
JP
Japan
Prior art keywords
reactive power
rotor
voltage
transformer
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60292124A
Other languages
Japanese (ja)
Inventor
Toshihiko Satake
佐竹 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP60292124A priority Critical patent/JPS62152027A/en
Publication of JPS62152027A publication Critical patent/JPS62152027A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PURPOSE:To accurately set and control the received voltage at a set reference voltage level by using a reactive power adjusting device to increase or decrease smoothly the lagging reactive power. CONSTITUTION:A comparison arithmetic unit 10 compares the voltage V1 given from a transformer PT of a lagging reactive power adjusting device 6 with the reference voltage V0 to be set and outputs an error V=V1-V0. While a controller 11 receives the input of the output error voltage V from the unit 10 and gives the ON/OFF control to those switches Sw1-Swn, Sw1'-Swn', S1-Sn, S1'-Sn' and S0 so that the electric signal V is equal to 0. At the same time, the controller 11 drives the rotor of the controller 6 via a driver 12 to control it. Then the control is carried out to apply the reactive power when the error voltage V given from the unit 10 is plus. While the leading reactive power is applied when the voltage V is minus. Thus the error voltage become zero.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、無効電力を調整することによって受電電圧を
制御する電圧制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a voltage control method for controlling received voltage by adjusting reactive power.

従来の技術 無効電力を調整補償することによって受電電圧を制御す
る方式は従来から公知である。これらは、同期調相機や
リアクトルとコンデンサによるものや、ざらにはサイリ
スタにより遅れ無効電力を調整して電圧を制御するもの
であるが、しかし、上記同期調相機は一種の同期電動機
で回転機であるため、起動装置が複面で、保守点検に手
間がかかり、さらに騒音が大きいという欠点がある。ま
た、上記リアクトルとコンデンサによるものは、滑らか
な無効電力の調整ができなく、また切換スイッチが消耗
するという欠点がある。すなわち、リアクトルはそのタ
ップを切換えることによって巻線の巻数を変えることに
よって無効電力の調整をするため、このタップ切換えに
よって無効電力が階段的に調整され、滑らかな電圧の制
御ができない。
BACKGROUND OF THE INVENTION Systems for controlling received voltage by regulating and compensating reactive power are known in the art. These devices use synchronous phase modifiers, reactors and capacitors, or thyristors to adjust the delayed reactive power and control the voltage. As a result, the starting device is multi-faceted, requiring time and effort for maintenance and inspection, and has the disadvantages of being loud. Further, the method using a reactor and a capacitor has the disadvantage that smooth adjustment of reactive power cannot be performed and the changeover switch is worn out. That is, since the reactor adjusts the reactive power by changing the number of turns of the winding by switching the tap, the reactive power is adjusted stepwise by this tap switching, and smooth voltage control is not possible.

さらに、コンデンサはその投入、開放の個数を変えるこ
とによって無効電力を調整するので、電圧調整が階段的
になる。
Furthermore, since reactive power is adjusted by changing the number of capacitors that are turned on and off, voltage adjustment becomes stepwise.

また、サイリスタによる遅れ無効電力調整方式は、リア
クトルに流れる電流をサイリスタで制御するしので、電
圧の滑らかな調整ができるが、高調波が発生して電源に
悪影響を与えるという欠点がある。
Furthermore, the delayed reactive power adjustment method using a thyristor uses a thyristor to control the current flowing through the reactor, so it is possible to smoothly adjust the voltage, but it has the disadvantage that harmonics are generated, which adversely affects the power supply.

一方、出願人は、上記従来の無効電力調“整装置の欠点
を改善した回転子と固定子からなる移相器と変圧器を右
する無効電力調整装置を提案した(特願昭60−189
692号)。
On the other hand, the applicant has proposed a reactive power adjusting device that improves the drawbacks of the conventional reactive power adjusting device and uses a phase shifter consisting of a rotor and a stator, and a transformer (Japanese Patent Application No. 60-189).
No. 692).

発明が解決しようとする問題点 本発明は、上記従来技術が有する欠点を改善し、上記1
2案した無効電力調整装置を利用し、滑らかな受電電圧
の制御ができ、保守をほとんど必要としない電圧制御方
式を提供することにある。
Problems to be Solved by the Invention The present invention improves the drawbacks of the above-mentioned prior art and solves the above-mentioned 1.
It is an object of the present invention to provide a voltage control method that can smoothly control the received power voltage and requires almost no maintenance by using the reactive power adjustment device proposed in the second proposal.

問題点を解決するための手段 第1の発明は、複数のリアクトルを各々第1の開閉器を
介して並列に電源に接続し、回転子と固定子からなる移
相器と変圧器とを有し、上記移相器の回転子及び固定子
には各々巻線が巻装され、巻線型回転子に巻装された巻
線の端子と上記変圧器の2次側端子は接続され、上記回
転子と上記固定子のどちらか一方を相対的に回動させ位
置決めさせる回動手段を有する無効電力調整装置の上記
変圧器の1次側端子と上記固定子に巻装された巻線の端
子及びコンデンサを並列に上記各リアクトルの端子に各
々の第2の開閉器を介して接続し、電a電圧と設定基準
電圧を比較してその差に応じて上記第1.第2の開閉器
及び上記回動手段を制御して遅れ無効電力を調整して電
圧制御を行う。
Means for Solving the Problems The first invention connects a plurality of reactors to a power source in parallel through a first switch, and includes a phase shifter and a transformer consisting of a rotor and a stator. The rotor and stator of the phase shifter are each wound with a winding, and the terminals of the windings wound around the wire-wound rotor are connected to the secondary terminal of the transformer, and the rotation A primary side terminal of the transformer, a terminal of a winding wound around the stator, and Capacitors are connected in parallel to the terminals of each of the reactors through the respective second switches, and the voltage a and the set reference voltage are compared, and the voltage is adjusted according to the difference between them. Voltage control is performed by controlling the second switch and the rotating means to adjust delayed reactive power.

また、第2の発明は、さらに複数のコンデンサを上記複
数のリアクトルと並列に各々第1の開閉器を介して並列
に電源に接続し、また、各コンデンサの端子を各々第2
の開閉器を介して並列に接続された上記変圧器の1次側
の端子及び上記固定子に巻装された巻線の端子に接続し
、電源電圧と設定基準電圧を比較してその差に応じて上
記第1゜第2の開閉器及び回動手段を制御して進み及び
遅れ無効電力を調整し電圧制御を行う。
Further, the second invention further provides a method in which a plurality of capacitors are connected to a power source in parallel with the plurality of reactors, each via a first switch, and a terminal of each capacitor is connected to a power supply in parallel with the plurality of reactors.
Connect to the primary side terminal of the transformer connected in parallel through the switch and the terminal of the winding wound around the stator, compare the power supply voltage and the set reference voltage, and calculate the difference. Accordingly, the first and second switches and rotating means are controlled to adjust lead and lag reactive power and perform voltage control.

作  用 第1の発明においては、第1.第2の開閉器をすべて開
放し、移相器の回転子の回動角を0度とし、次に任意の
上記第2の開閉器をONL、、次に上記第2の開閉器に
対応する第1の開閉器をONし、次に回転子の回動角を
増大し、回動角を電気角で180度に調整し、次に上記
第2の1;■Ill器をOFFすることによって遅れ無
効電力を清らかに増大させることができる。
Effect In the first invention, the first invention. Open all the second switches, set the rotation angle of the rotor of the phase shifter to 0 degrees, then turn any of the second switches ONL, and then turn the second switch corresponding to the above second switch. By turning on the first switch, then increasing the rotation angle of the rotor, adjusting the rotation angle to 180 degrees in electrical angle, and then turning off the second 1; The delayed reactive power can be clearly increased.

また、遅れ無効電力を減少させる場合には第1の開閉器
がすべてONで、第2の開閉器がすべてOFFの状態か
ら出発すると、まず、回転子の回動角を180度として
おぎ、次に任意の第2の開閉器をONとし、回転子を0
度に:gl整し、次に上記ONさせた第2の開閉器に対
応する第1の1?11閉器をO、F Fとし、次いで、
上記第2の開1NA器もOFFとすることにより遅れ無
効電力を次第に減少させることができる。
In addition, when reducing delayed reactive power, start from a state where all the first switches are ON and all the second switches are OFF, first, set the rotation angle of the rotor to 180 degrees, and then Turn on any second switch and set the rotor to zero.
At the same time, adjust the gl, then set the first 1-11 switch corresponding to the second switch turned ON above to O, F F, and then
By also turning off the second open 1NA device, the delayed reactive power can be gradually reduced.

また、第2の発明においては、上記第1の発明で行う遅
れ無効電力の制御と共にコンデンサの第1、第2の開閉
器のON、OFFを制御づると共に、回転子の回動角を
制御することによって、遅れ無効電力から進み無効電力
まで滑らかに増大。
In addition, in the second invention, in addition to the delayed reactive power control performed in the first invention, the ON and OFF of the first and second switches of the capacitor are controlled, and the rotation angle of the rotor is controlled. As a result, the lagging reactive power increases smoothly from the leading reactive power.

減少させることができる。can be reduced.

実施例 第1図は、本発明に使用する無効電力調整装置の一実施
例の原理を示すもので、移相3Mと3相変圧器Tの端子
A、B、Cが3相交流電源A、B。
Embodiment FIG. 1 shows the principle of an embodiment of a reactive power adjustment device used in the present invention, in which terminals A, B, and C of a phase shifter 3M and a three-phase transformer T are connected to a three-phase AC power supply A, B.

Cに接続されている。Connected to C.

上記移相器Mは巻線型の回転子1と固定子2によって構
成され、上記回転子1の回転子軸3にウオーム歯車4が
固着され、該ウオーム歯車4につA−ム5が噛み合って
おり、該ウオーム5を回動させることによって上記回転
子1を回動させ、上記固定子2に対しその静IF位置を
制御できるようになっている。そして、上記固定子2に
は3相の1次巻線が施され、その端子△、B、Cは3相
交流電源に接続され、上記回転子1には3相の2次巻線
が施され、その端子a、b、cは3相変圧器Tの2次側
端子a、b、cに接続され、該3相変圧器Tの1次側端
子A、B、Cは3相交流電源A。
The phase shifter M is composed of a wire-wound rotor 1 and a stator 2. A worm gear 4 is fixed to the rotor shaft 3 of the rotor 1, and an A-m 5 is meshed with the worm gear 4. By rotating the worm 5, the rotor 1 can be rotated, and the static IF position of the stator 2 can be controlled. The stator 2 is provided with a three-phase primary winding, its terminals Δ, B, and C are connected to a three-phase AC power supply, and the rotor 1 is provided with a three-phase secondary winding. The terminals a, b, and c are connected to the secondary terminals a, b, and c of the three-phase transformer T, and the primary terminals A, B, and C of the three-phase transformer T are connected to the three-phase AC power supply. A.

B、Cに接続されている。なお、移相器Mの回転子1の
3相巻線を1次巻線とし、固定子2の3相巻線を2次巻
線としてもよい。また、上記実施例では、移相器Mの回
転子1を固定子2に対し回動できるようにしたが、逆に
回転子1に対し、固定子2を回動さぜるJ:うにしても
よい。また、回転子1または固定子2を相対的に回動さ
せる手段としてウオーム5とつA−ム歯車4を用いたが
、他の構成でもよい。
Connected to B and C. Note that the three-phase winding of the rotor 1 of the phase shifter M may be used as the primary winding, and the three-phase winding of the stator 2 may be used as the secondary winding. Further, in the above embodiment, the rotor 1 of the phase shifter M can be rotated with respect to the stator 2, but conversely, the stator 2 can be rotated with respect to the rotor 1. It's okay. Further, although the worm 5 and the A-me gear 4 are used as means for relatively rotating the rotor 1 or the stator 2, other configurations may be used.

そこで、上記構成よりなる本実施例について移相器Mの
回転子1の位置を上記ウオーム5ににつて回動させて電
気角θだけ回動した位置で静止させ、この状態における
無効電力について解析する。
Therefore, in this embodiment having the above configuration, the rotor 1 of the phase shifter M is rotated relative to the worm 5 and stopped at a position rotated by an electrical angle θ, and the reactive power in this state is analyzed. do.

回転子1の3相巻線のa相に誘起する電圧をelとし、
変圧器Tの2次側a相の誘起電圧をe2とする。そして
、変圧器Tの変圧比は上記回転子1の3相巻線のa相に
誘起する電圧e1の絶対値と変圧器Tの2次側a相の誘
起電圧62の絶対1直が等しくなるように選定する。
Let el be the voltage induced in the a phase of the three-phase winding of rotor 1,
Let e2 be the induced voltage on the secondary side a phase of the transformer T. Then, the transformation ratio of the transformer T is such that the absolute value of the voltage e1 induced in the a phase of the three-phase winding of the rotor 1 is equal to the absolute value of the induced voltage 62 in the a phase of the secondary side of the transformer T. Select as follows.

いま、上記誘起電圧e2を基準にとりe2=Eとすると
、回転子巻線側の誘起電圧d1は回転子1の位置が電気
角でθだけ回動しているから、e+ =EεJOとなる
Now, if we take the above-mentioned induced voltage e2 as a reference and let e2=E, then the induced voltage d1 on the rotor winding side becomes e+=EεJO since the position of the rotor 1 has rotated by θ in electrical angle.

いま、回転子1の巻線と変圧器Tの2次側巻線の1相分
の漏れインピーダンスの総和をZとし、その抵抗力をr
、リアクタンス分を×とすると、回転子1の3相巻線の
a相端子から変圧器Tの2次側のa相端子に向って流れ
る電流Iは次の第(1)式のようになる。
Let Z be the sum of the leakage impedances for one phase of the winding of rotor 1 and the secondary winding of transformer T, and let the resistance be r.
, the reactance is represented by x, then the current I flowing from the a-phase terminal of the three-phase winding of rotor 1 to the a-phase terminal of the secondary side of transformer T is expressed by the following equation (1). .

、   e+−e2E6jO−E   E(6J’−1
>従って電流Iの共役を1とすると、リアクタンス×に
よる無効電力QXは次の第(2)式のようになる。
, e+-e2E6jO-EE E(6J'-1
> Therefore, assuming that the conjugate of current I is 1, reactive power QX due to reactance x is expressed by the following equation (2).

E(ε−θ−1)E(ε−jθ−1) Qx=xll=x−=□ r + jx     r −jx εJθε−JO−εjθ−ε−JO+1= X F2・
□ r2+×2 2−(cosO+j sinθ) −(COSθ−j 
sinθ)=  × 1三9 ・ r2+x’ 2・(1−cosθ) =  y、F2 ・――−−−−−−−−r 2+x 
2 F2    1 =□・□・ 2(1−cosθ) X   (r/x)′2+i            
  ・・・・・・(2)第(2)式かられかるように、
移相器Mの回転子1の位置θを変えれば無効電力Qxを
変化させることかできる。
E(ε-θ-1) E(ε-jθ-1) Qx=xll=x-=□ r + jx r -jx εJθε-JO-εjθ-ε-JO+1= X F2・
□ r2+×2 2−(cosO+j sinθ) −(COSθ−j
sin θ) = × 139 ・r2+x' 2・(1-cos θ) = y, F2 ・---------r 2+x
2 F2 1 =□・□・2(1-cosθ) X (r/x)'2+i
・・・・・・(2) As can be seen from equation (2),
By changing the position θ of the rotor 1 of the phase shifter M, the reactive power Qx can be changed.

この関係を図示すると第2図のようになる。ツなわら、
回転子1の位置θを横軸にとり、無効電力を縦軸にとる
と、リアクタンスXによる無効電力は図示のQxの曲線
となる。
This relationship is illustrated in FIG. 2. Tsunawara,
If the position θ of the rotor 1 is plotted on the horizontal axis and the reactive power is plotted on the vertical axis, the reactive power due to the reactance X becomes a curve of Qx shown in the figure.

この第2図のQXの曲線かられかるように、本発明の無
効電力調整装置に入るA相の無効電力Q×は、移相器M
の回転子1の位置θを0度から180度まで変化させる
と、連続的に遅れ無効電力を変化さけることができる。
As can be seen from the QX curve in FIG.
By changing the position θ of the rotor 1 from 0 degrees to 180 degrees, it is possible to continuously avoid changing the delayed reactive power.

以上の説明においてはA相のみ考えているが、B、C相
についても同様である。また、以上の説明においては、
移相器Mの固定子2と変圧器Tの1次側の漏れリアクタ
ンスと励磁インピーダンスによる無効電力を省略してい
るが、これは説明を簡単にするためで、実際の無効電力
はこれ等を含めたものとなる。
In the above explanation, only the A phase is considered, but the same applies to the B and C phases. Also, in the above explanation,
The reactive power due to the leakage reactance and excitation impedance of the stator 2 of the phase shifter M and the primary side of the transformer T is omitted, but this is to simplify the explanation, and the actual reactive power is It will be included.

そこで、」:記原理に基づいて大幅でしかも連続的な無
効電力調整する場合には、第3図に示すように、開閉器
S1.82 、S3・・・・・・Snを介してr+ll
]のそれぞれのバンクのリアクトルL1.L2 。
Therefore, in the case of large and continuous adjustment of reactive power based on the principle described above, as shown in Fig. 3, r+ll
] of each bank of reactor L1. L2.

L3・・・・・・inを並列して電源に接続し、さらに
、第1図に示す移相器Mと変圧器Tによって形成した搾
れ無効電力調整装置6とコンデンサCoを並列に接続し
たものを、開閉器S1’、S2’。
L3...in were connected in parallel to the power supply, and furthermore, the squeezed reactive power adjustment device 6 formed by the phase shifter M and the transformer T shown in Fig. 1 and the capacitor Co were connected in parallel. The switches S1' and S2'.

83’・・・・・・Sn′を介してn個のバンクのリア
クトルL+ 、L2.L3・・・・・・Lnに並列接続
にする。
83'...N banks of reactors L+, L2 . L3...Connect in parallel to Ln.

なお、n個のそれぞれのバンクのリアクトルl+。Note that the reactor l+ of each of the n banks.

L2.L3・・・・・・しnの容量はすべて等しく、ま
た、遅れ無効電力調整装置6の容量を1個のバンクのリ
アクトルL1の容量に等しくする。また、さらにコンデ
ンサCoの容Rも1個のバンクのリアクトルL1の容量
に等しくする。
L2. The capacities of L3... and n are all equal, and the capacity of the delayed reactive power adjustment device 6 is made equal to the capacity of the reactor L1 of one bank. Furthermore, the capacitance R of the capacitor Co is made equal to the capacitance of the reactor L1 of one bank.

以下に、遅れ無効電力を零から次第に大ぎくしていく場
合についてび2明する。
The case where the delayed reactive power is gradually increased from zero will be explained below.

開閉器S1.82.83・・・・・・Sn及び開閉器S
1’ 、82 ’ 、83 ’ −+++−8n ’を
すべてH’1放しておき、遅れ無効電力調整装@6が取
る遅れ無効電力が零になるように、移相SMの回転子1
の回動角を0度に調整し、次に開閉器81′をONし、
開閉器S1をONする。
Switch S1.82.83...Sn and switch S
1', 82', 83'-+++-8n' are all left at H'1, and the rotor 1 of the phase shift SM is set so that the delayed reactive power taken by the delayed reactive power adjustment device @6 becomes zero.
Adjust the rotation angle to 0 degrees, then turn on the switch 81',
Turn on the switch S1.

この状態においては、リアクトルL1の取る遅れ無効電
力とコンデンサGoの取る進み無効電力が等しく、しか
も遅れ無効電力調整装a6が取る遅れ無効電力は零であ
るから、それらの合計無効電力は零となる。
In this state, the delayed reactive power taken by the reactor L1 and the advanced reactive power taken by the capacitor Go are equal, and the delayed reactive power taken by the delayed reactive power adjustment device a6 is zero, so their total reactive power is zero. .

次に、遅れ無効電力調整装置6の取る遅れ無効電力が大
きくなるように、移相器Mの回転子1の回動角を増大さ
せて回動角を180度(電気角)に調整し、次いで、開
閉器81′を開放すると、電源から取る無効電力は零か
らスタートしてリアクトルし1の取る遅れ無効電力まで
遅れ無効電力を滑らかに増大させたことになる。上記と
同様にしてリアクトルL2.L3・・・・・・l−nに
順次遅れ無効電力を取らせていく。
Next, the rotation angle of the rotor 1 of the phase shifter M is increased to adjust the rotation angle to 180 degrees (electrical angle) so that the delayed reactive power taken by the delayed reactive power adjustment device 6 becomes large. Next, when the switch 81' is opened, the reactive power taken from the power supply starts from zero, and the delayed reactive power is smoothly increased to the delayed reactive power taken by the reactor 1. In the same manner as above, reactor L2. L3...l-n are made to take the delayed reactive power in sequence.

次に、遅れ無効電力を減少させる場合の調整方法につい
て説明する。
Next, an adjustment method for reducing delayed reactive power will be described.

開閉器S+ 、32.83・・・・・・SnがすべてO
Nされ、また、開閉器S1’ 、S2’ 、Ss’・・
・・・・S口′がすべてOFFされている状態、すなわ
ち最大の遅れ無効電力を電源から取っている状態から遅
れ無効電力を次第に減少させる場合では、まず、遅れ無
効電力調整装置6の取る遅れ無効電力が大きくなるよう
に、移相器Mの回転子1の回動角を180度に調整する
と共に開閉器81′をONする。
Switch S+, 32.83... Sn is all O
Also, the switches S1', S2', Ss'...
...When the delayed reactive power is gradually decreased from the state where all S ports are turned off, that is, the maximum delayed reactive power is taken from the power supply, first, the delay taken by the delayed reactive power adjustment device 6 is reduced. In order to increase the reactive power, the rotation angle of the rotor 1 of the phase shifter M is adjusted to 180 degrees, and the switch 81' is turned on.

次に、遅れ無効電力調整装置6のとる遅れ無効電力が小
さくなるよう移相器Mの回転子1の回動角を0度に調整
すると共に開閉器S1を0FFL、次いで開閉器81′
もOFFする。
Next, the rotation angle of the rotor 1 of the phase shifter M is adjusted to 0 degrees so that the delayed reactive power taken by the delayed reactive power adjusting device 6 becomes small, and the switch S1 is set to 0FFL, and then the switch 81'
is also turned off.

上記のようにすると、電源から取っていた遅れ無効電力
が次第に減少し、リアクトルL1の取っていた遅れ無効
電力弁だけ減少したことになる。
By doing the above, the delayed reactive power taken from the power supply is gradually reduced, and the delayed reactive power taken by the reactor L1 is reduced by the delayed reactive power valve.

上記と同様の手順でリアクトルL2.L3・・・・・・
Lnの取っていた遅れ無効電力を逐次減少させていけば
よい。このようにすれば、高価な位相器の容量を最大遅
れ無効電力量の2n分の1に削減できる。
Using the same procedure as above, reactor L2. L3...
What is necessary is to successively reduce the delayed reactive power taken by Ln. In this way, the capacity of the expensive phase shifter can be reduced to 1/2n of the maximum delayed reactive power amount.

次に、進み無効電力から遅れ無効電力まで調整できる方
式について述べる。
Next, a method that can adjust from leading reactive power to lagging reactive power will be described.

進み無効電力の調整については、先の出願特願昭60−
189692号でも述べられているが、第3図のリアク
トルに代えて3相に結線されたコンデンサを接続すると
、このコンデンサによる無効電力Qcは回転子1の位置
とは無関係に一定の進み無効電力Qcとなるから、位相
器Mと変圧器Tよりなる無効電力Q×の和(QX +Q
O)はコンデンサにより無効電力Qcの分だけ第2図中
下方ヘシフトした進み無効電力カーブを1シlることが
できる。
Regarding the adjustment of advanced reactive power, please refer to the earlier patent application filed in 1986-
As stated in No. 189692, if a three-phase capacitor is connected in place of the reactor shown in FIG. Therefore, the sum of reactive power Q× composed of phase shifter M and transformer T (QX +Q
O) can shift the advanced reactive power curve by 1 sill, which is shifted downward in FIG. 2 by the amount of reactive power Qc, by the capacitor.

そこで、第3図に示すリアクトルを複数のバンクに分け
て接続した方法と同じ方法で、第4図に示すJ:うにリ
アクトルを用いたdれ無効電力調整装置と並列にコンデ
ンサを任意の数nのバンクに分けて、それぞれ開閉器S
W+ 、SW2.SW3・・・・・・3wnを介して電
源に接続する。なお、n個のそれぞれのバンクのコンデ
ン’tC1,C2゜C3・・・・・・Cnの容量はすべ
て等しくする。そして、移相器Mと変圧器Tからなる遅
れ無効電力調整装置6を開閉器SW+ ’ 、SW2’
 、SW3’・・・・・・3wn’ を介してr+ll
Jの−それぞれのバンクのコンデン”tc+ 、C2、
C3・・・・・・Cnに並列に接続し、1個のバンクの
コンデンサC1の容ωを遅れ無効電力調整装置6の容量
に等しくする。
Therefore, by using the same method as shown in Fig. 3, in which the reactors are divided into multiple banks and connected, an arbitrary number n of capacitors can be connected in parallel with the reactive power adjustment device using the J reactor shown in Fig. 4. divided into banks of switch S
W+, SW2. SW3...Connect to the power supply via 3wn. Note that the capacitances of the capacitors 'tC1, C2°C3, . . ., Cn of each of the n banks are all made equal. Then, the delayed reactive power adjustment device 6 consisting of a phase shifter M and a transformer T is connected to switches SW+' and SW2'.
, SW3'...3wn' via r+ll
J's - each bank's capacitor "tc+, C2,
C3 . . . are connected in parallel to Cn, and the capacitance ω of the capacitor C1 of one bank is made equal to the capacitance of the delayed reactive power adjustment device 6.

そこで、リアクトルによる遅れ無効電力調整については
すでに述べたので、コンデンサによる進み無効電力調整
について述べる。この場合、リアクトルL1〜l−nに
おけるスイッチ81〜3n。
Therefore, since the lagging reactive power adjustment using the reactor has already been described, the leading reactive power adjustment using the capacitor will be described. In this case, switches 81-3n in reactors L1-l-n.

81′〜3 n I及びSOはすべて開放しているもの
とし、まず、進み無効電力を零から次第に大きくして行
く場合について説明する。開閉器SW+。
81' to 3 n I and SO are all open, and first, a case will be described in which the progressive reactive power is gradually increased from zero. Switch SW+.

3w 2 、 SW 3 +++++Sl n及び開閉
器SW+’。
3w 2 , SW 3 +++++Sl n and switch SW+'.

SW2’、SW3’ ・・・・・・3w n ’ をす
べて開放しておく。
SW2', SW3'...3wn' are all left open.

匠れ無効電力調整装置6が最大の遅れ無効電力を取るよ
うに第1図の移相器Mの回転子1の回動角を180度に
調節する。
The rotation angle of the rotor 1 of the phase shifter M in FIG. 1 is adjusted to 180 degrees so that the reactive power adjustment device 6 obtains the maximum delayed reactive power.

次に、第4図のSW+’の開閉器を投入し、その次に開
閉器SW+を投入でる。この状態においては、コンデン
サC+(D取る進み無効電力と遅れ無効電力調整装置6
の取る遅れ無効電力が等しいから、それらの合計の無効
電力は零となる。次に遅れ無効電力調整装置6の取る遅
れ無効電力が小さくなるように、移相器Mの回転子1の
回動角θを減少させて回動角θを零度にもってくる。そ
して、次に開閉器SW1’を開放する。
Next, the switch SW+' in FIG. 4 is turned on, and then the switch SW+ is turned on. In this state, capacitor C+ (D takes leading reactive power and lagging reactive power adjusting device 6
Since the delayed reactive powers of are equal, their total reactive power is zero. Next, the rotation angle θ of the rotor 1 of the phase shifter M is decreased to bring the rotation angle θ to zero degrees so that the delayed reactive power taken by the delayed reactive power adjustment device 6 becomes small. Then, the switch SW1' is opened.

このようにすると、電源から取る進み無効電力は零から
スタートしてコンデンサC1の取る進み無効電力まで進
み無効電力を滑らかに増大させたことになる。以下、同
様な手順でコンデンサC2゜C3・・・・・・Cnに進
み無効電力を取らせて行く。
In this way, the advanced reactive power taken from the power supply starts from zero and progresses to the advanced reactive power taken by the capacitor C1, thereby smoothly increasing the reactive power. Thereafter, in the same manner, the capacitors C2, C3, . . . , Cn are used to collect reactive power.

以上は、進み無効電力を零から次第に大きくして行く場
合について説明したが、逆に、進み無効電力を減少させ
たい場合には次のように操作する。
The above has described the case where the advanced reactive power is gradually increased from zero, but conversely, when it is desired to decrease the advanced reactive power, the following operation is performed.

nil 開国SW + 、 SW 2 、 Sw 3 
・・・・・−8vt nがすべて投入され、また開閉器
3w1 ’ 、SW2’ 。
nil Opening of the country SW +, SW 2, Sw 3
...-8vtn are all turned on, and switches 3w1' and SW2' are turned on.

3w 3 ’・・・・・・5lll n ’ がすべて
開放された状態、すなわち、最大の進み無効電力を電源
から取っている状態から出発し、この状態から進み無効
電力を次第に減少させて行く操作を説明する。まず、遅
れ無効電力調整装置6の取る遅れ無効電力が小さくなる
ように移相器Mの回転子1の回動角θを零度に調整する
。そして、間I!fl器SW+’を投入する。そして、
次に遅れ無効電力調整装置6の取る遅れ無効電力が大き
くなるように、移相器Mの回転子1の回動角を180度
にもって行く。そして、SWlを開放する。次いで、S
W1’を開放する。このようにすると、電源から取って
0つだ進み無効電力が次第に減少して、コンデンサC1
の取っていた進み無効電力分だけ減少したことになる。
An operation that starts from a state where all 3w 3 '...5llll n' are open, that is, a state where the maximum forward reactive power is taken from the power supply, and proceeds from this state and gradually decreases the reactive power. Explain. First, the rotation angle θ of the rotor 1 of the phase shifter M is adjusted to zero degrees so that the delayed reactive power taken by the delayed reactive power adjustment device 6 becomes small. And between I! Turn on the fl switch SW+'. and,
Next, the rotation angle of the rotor 1 of the phase shifter M is increased to 180 degrees so that the delayed reactive power taken by the delayed reactive power adjusting device 6 becomes large. Then, SWl is opened. Then, S
Open W1'. By doing this, the reactive power gradually decreases after 0 points from the power supply, and the capacitor C1
This means that the amount of lead reactive power that was being consumed has been reduced.

以下、同様な手順でコンデンサC2、C3・・・・・・
Cnの取っていた進み無効電力を減少させて行く。
Following the same procedure, capacitors C2, C3...
The advanced reactive power taken by Cn is reduced.

このようにして、進み無効電力も調整づることができる
ので、第4図に示すように、コンデンサによる無効電力
調整装置とりアク1〜ルによる無効電力調整装置を併用
して用いれば大幅な進み無効電力から大幅な遅れ無効電
力まで調整することができる。このようにすれば、高価
な位相器の容積を最大無効電力調整量の2n分の1に削
減できる。
In this way, the advanced reactive power can also be adjusted, so if a capacitor-based reactive power regulator and an actuator-based reactive power regulator are used together, as shown in Figure 4, the advanced reactive power can be adjusted to a large extent. It can be adjusted from power to significantly delayed reactive power. In this way, the volume of the expensive phase shifter can be reduced to 1/2n of the maximum reactive power adjustment amount.

そこで、上記した無効電力調整方式を利用して本発明の
受電端の電圧制御方式の一実施例を説明する。
Therefore, one embodiment of the voltage control method at the receiving end of the present invention will be described using the above-described reactive power adjustment method.

第4図は本発明の一実施例の回路図で、PTはトランス
、10はトランスPTからの電圧V1と設定しようとす
る基準電圧Voとを比較してその誤差V(=V1 Vo
)を出力する比較演算器、11は制御装置で、比較演算
器10からの出力誤差電圧Vの入力を受け、該電気信号
VがOになるように上記各スイッチSW+〜Swn、S
w+’〜swn’ 、S+−8n 、Sz ’ 〜3n
l 、S。
FIG. 4 is a circuit diagram of an embodiment of the present invention, where PT is a transformer, and 10 is a transformer. The voltage V1 from the transformer PT is compared with the reference voltage Vo to be set, and the error V (=V1 Vo
), and 11 is a control device which receives the input of the output error voltage V from the comparison calculator 10 and controls each of the switches SW+ to Swn, S so that the electric signal V becomes O.
w+'~swn', S+-8n, Sz'~3n
l, S.

(なお、So及びGoは第4図のようにコンデンサとリ
アクトルを用いるときは1つのバンクのコンデンサC1
〜Cn、スイッチSW+’ 〜3w n ’ のいずれ
か1紺を利用してもよい。)を開閉制御し、及び駆vJ
装置12を介して回転子1を回動して制御するもので、
比較演算器10からの誤差電圧■がプラスの場合は遅れ
無効電力をとるように制御し、誤差電圧Vがマイナスの
場合は進み無効電力を取るよう制御し誤差電圧Vが0に
なるよう制御するものである。
(In addition, So and Go are the capacitor C1 of one bank when using a capacitor and reactor as shown in Fig. 4.
-Cn, switches SW+' to 3wn', navy blue may be used. ), and controls the opening and closing of
The rotor 1 is rotated and controlled via a device 12,
When the error voltage (■) from the comparator 10 is positive, control is performed to take the delayed reactive power, and when the error voltage V is negative, the control is performed to take the leading reactive power so that the error voltage V becomes 0. It is something.

それは第5図に示すように、送電端電圧をVs。As shown in Figure 5, the voltage at the sending end is Vs.

線路lのインピーダンスを(R+jX>、受電端電圧を
◇;゛、受電端の複素電力を(P+j Q)とする。こ
こで、受電端には負葡と並列に本発明の無効電力調整装
置が接続されており、受電端の無効電力Qが本発明の無
効電力調整装置によつC調整できるようになっている。
Assume that the impedance of line l is (R + j The reactive power Q at the receiving end can be adjusted by the reactive power adjusting device of the present invention.

いま線路lを流れる電流をItとすると、これは次の第
(3)式のようになる。
Assuming that the current flowing through the line l is It, this is expressed by the following equation (3).

として受電端電圧をVr =yrε−J6とする。ここ
で6は送受電端電圧の相差角である。
Assume that the receiving end voltage is Vr =yrε-J6. Here, 6 is the phase difference angle of the voltage at the power transmitting and receiving end.

上記第(3)式を用いて受電端の複素電力は次式のよう
になる。
Using the above equation (3), the complex power at the receiving end is expressed as follows.

P−)j  Q   =   W  l 1vSvrε
−Jδ−Vr2 =□    ・・・・・・(4) −jX 第(4)式を整理すると次の第(5)式のようになる。
P-)j Q = W l 1vSvrε
-Jδ-Vr2 =□ (4) -jX Equation (4) can be rearranged to form the following equation (5).

(P+jQ) (R−jX)  = VsWε−j6−
vr’・・・・・・(5) 第(5)式の両辺の実数部と虚数部がそれぞれ等しいこ
とから次の第(6)式が成立する。
(P+jQ) (R-jX) = VsWε-j6-
vr' (5) Since the real part and the imaginary part on both sides of equation (5) are equal, the following equation (6) holds true.

RP+XQ+Vr 2−Vr Vs cos 6RQ−
XP=−Vr Vs sinδ ・・・・・・(6) 第(6)式の2つの式の2乗和をとると次式のようにな
る。
RP+XQ+Vr 2-Vr Vs cos 6RQ-
XP=−Vr Vs sin δ (6) When the sum of the squares of the two equations in equation (6) is taken, the following equation is obtained.

(RP+XQ+Vr ’ )’ + (RQ−XP)Q
=Vr 2Vs ’          −・・−” 
(7)いま、受電端の無効電力Qを本発明の無効電力調
整装置によって(Q+ΔQ)に増大させたとする。この
場合の受電端電圧の変動をΔVrとすると、これは次式
のようになる。
(RP+XQ+Vr')' + (RQ-XP)Q
=Vr 2Vs'-...-"
(7) Now, assume that the reactive power Q at the receiving end is increased to (Q+ΔQ) by the reactive power adjustment device of the present invention. If the fluctuation of the receiving end voltage in this case is ΔVr, it is expressed as the following equation.

ΔVr =、(6Vr /8Q)ΔQ    −・−(
8)第(7)式から偏微分(8Vr /8Q)を求めて
第(8)式に代入すると次式が得られる。
ΔVr =, (6Vr / 8Q) ΔQ −・−(
8) By finding the partial differential (8Vr/8Q) from equation (7) and substituting it into equation (8), the following equation is obtained.

Z’Q + XVr2 △vr=−□・ΔQ Vr (2XQ+2RP+2Vr ’ −VS 2)第
(9)式かられかるように、ΔQの係数は負となる。従
って、受電端の無効電力を木1発明の無効電力調整装置
によりΔQだけふやせば、受電端電圧■rがΔ■rだけ
下がることになる。逆に受電端の無効電力を本発明の無
効電力調整装置によって減少させると、受電端電圧Vr
がΔVrだけ高くなることになる。
Z'Q + XVr2 Δvr=-□·ΔQ Vr (2XQ+2RP+2Vr'-VS 2) As can be seen from equation (9), the coefficient of ΔQ is negative. Therefore, if the reactive power at the receiving end is increased by ΔQ using the reactive power adjusting device of the invention, the receiving end voltage ■r will be reduced by Δ■r. Conversely, when the reactive power at the receiving end is reduced by the reactive power adjustment device of the present invention, the receiving end voltage Vr
becomes higher by ΔVr.

このように、本発明は受電端電圧をリアクトルやコンデ
ンサ及び回転子の位置θを変えることによって調整する
ことができる。
In this manner, the present invention can adjust the voltage at the receiving end by changing the position θ of the reactor, capacitor, and rotor.

発明の効果 以上述べたように、第1の本発明は、リアクトルと変圧
器と回転子と固定子、及び該回転子と固定子を相対的に
回動させる手段を有した無効電力調整装置により遅れ無
効電力を滑らかに増大、減少させることにより、受電電
圧を設定基準電圧に正確に設定制御することができる。
Effects of the Invention As described above, the first invention provides a reactive power adjustment device that includes a reactor, a transformer, a rotor, a stator, and means for relatively rotating the rotor and stator. By smoothly increasing and decreasing the delayed reactive power, the received voltage can be accurately set and controlled to the set reference voltage.

また、第2の本発明は、上記第1の発明にコンデンサを
も加えることにより遅れ無効電力から進み無効電力まで
清らかに制御することにより受電電圧を設定基準電圧に
負荷の態様にかかわらず、正確に制御することができる
In addition, the second invention adds a capacitor to the first invention to clearly control the delayed reactive power to the advanced reactive power, thereby accurately adjusting the receiving voltage to the set reference voltage regardless of the load type. can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の本発明の詳細な説明図、第2図は同実施
例による無効電力と回転子の位置との関係を示す図、第
3図は第1の発明の一実施例の説明図、第4図は第2の
発明の一実施例の説明図、第5図は受電端電圧の調整説
明図である。 1・・・回転子、2・・・固定子、3・・・回転子軸、
4・・・ウオーム歯車、5・・・ウオーム、6・・・遅
れ無効電力調整装置、M・・・移相器、T・・・変圧器
、L、L+〜ln・・・リアクトル、 Co 、C+ −Qn ++コンデンサ、力 第2図
FIG. 1 is a detailed explanatory diagram of the first invention, FIG. 2 is a diagram showing the relationship between reactive power and rotor position according to the same embodiment, and FIG. 3 is an illustration of an embodiment of the first invention. FIG. 4 is an explanatory diagram of an embodiment of the second invention, and FIG. 5 is an explanatory diagram of adjusting the receiving end voltage. 1... Rotor, 2... Stator, 3... Rotor shaft,
4... Worm gear, 5... Worm, 6... Delayed reactive power adjustment device, M... Phase shifter, T... Transformer, L, L+ ~ ln... Reactor, Co, C+ -Qn ++Capacitor, force diagram 2

Claims (2)

【特許請求の範囲】[Claims] (1)複数のリアクトルを各々第1の開閉器を介して並
列に電源に接続し、回転子と固定子からなる移相器と変
圧器とを有し、上記移相器の回転子及び固定子には各々
巻線が巻装され、回転子に巻装された巻線の端子と上記
変圧器の2次側端子は接続され、上記回転子と上記固定
子のどちらか一方を相対的に回動させ位置決めさせる回
動手段を有する無効電力調整装置の上記変圧器の1次側
端子と上記固定子に巻装された巻線の端子及びコンデン
サを並列に上記各リアクトルの端子に各々の第2の開閉
器を介して接続し、電源電圧と設定基準電圧を比較し、
その差に応じて上記第1、第2の開閉器及び上記回動手
段を制御して無効電力を調整し電圧制御を行う電圧制御
方式。
(1) A plurality of reactors are each connected to a power source in parallel through a first switch, and have a phase shifter and a transformer consisting of a rotor and a stator, and the rotor and fixed A winding is wound around each child, and the terminal of the winding wound around the rotor is connected to the secondary terminal of the transformer, and one of the rotor and the stator is connected to the other. The primary side terminal of the transformer, the terminal of the winding wound around the stator, and the capacitor of the reactive power regulator, which has a rotating means for rotating and positioning, are connected in parallel to the terminals of each of the reactors. Connect it through switch 2, compare the power supply voltage and the set reference voltage,
A voltage control method that controls the first and second switches and the rotating means according to the difference to adjust reactive power and perform voltage control.
(2)複数のリアクトル及び複数のコンデンサを各々第
1の開閉器を介して電源に接続し、回転子と固定子から
成る移相器と変圧器とを有し、上記移相器の回転子及び
固定子には各々巻線が巻装され、回転子に巻装された巻
線の端子と上記変圧器の2次側端子は接続され、上記回
転子と上記固定子のどちらか一方を相対的に回動させ位
置決めさせる回動手段を有する無効電力調整装置の上記
変圧器の1次側端子と上記固定子に巻装された巻線の端
子を並列に上記各リアクトルの端子及び各コンデンサの
端子に各々の第2の開閉器を介して接続し、電源電圧と
設定基準電圧を比較してその差に応じて上記第1、第2
の開閉器及び上記回動手段を制御して無効電力を調整し
電圧制御を行う電圧制御方式。
(2) A plurality of reactors and a plurality of capacitors are each connected to a power source via a first switch, and the rotor of the phase shifter has a phase shifter and a transformer consisting of a rotor and a stator. A winding is wound around each of the stator and the rotor, and the terminal of the winding wound around the rotor and the secondary terminal of the transformer are connected, and one of the rotor and the stator is connected to the other. The primary side terminal of the transformer and the terminal of the winding wound around the stator are connected in parallel to the terminals of the reactors and the terminals of each capacitor of the reactive power adjusting device, which has a rotating means for rotating and positioning the transformer. Connect to the terminals through each second switch, compare the power supply voltage and the set reference voltage, and adjust the voltage between the first and second switches according to the difference.
A voltage control method that controls the switch and the rotating means to adjust reactive power and control voltage.
JP60292124A 1985-12-26 1985-12-26 Voltage control system Pending JPS62152027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60292124A JPS62152027A (en) 1985-12-26 1985-12-26 Voltage control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292124A JPS62152027A (en) 1985-12-26 1985-12-26 Voltage control system

Publications (1)

Publication Number Publication Date
JPS62152027A true JPS62152027A (en) 1987-07-07

Family

ID=17777852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292124A Pending JPS62152027A (en) 1985-12-26 1985-12-26 Voltage control system

Country Status (1)

Country Link
JP (1) JPS62152027A (en)

Similar Documents

Publication Publication Date Title
US5469044A (en) Transmission line power flow controller with unequal advancement and retardation of transmission angle
Gyugyi Reactive power generation and control by thyristor circuits
US5841267A (en) Power flow control with rotary transformers
KR20020023951A (en) Charge transfer apparatus and method therefor
KR20010052513A (en) Solid State Transformer
US5453643A (en) Controllable compound voltage DC/AC transforming circuit
CN114243761A (en) Control method and system for switching on-grid operation mode and off-grid operation mode of micro-grid vehicle
WO2008073034A1 (en) An induction regulator and use of such regulator
JPS62152027A (en) Voltage control system
US5764499A (en) Direct a.c. converter
CN112821403B (en) Single-phase or three-phase electromagnetic series type transmission line tidal current control topological circuit
US20150365033A1 (en) Grid-connected induction machine with controllable power factor
US4001670A (en) Static reactive power generating apparatus
JPS6250913A (en) Invalid electric power adjusting device
JPS62130415A (en) Reactive power adjustment system
CN113541145B (en) 110kV and above voltage class three-phase electromagnetic series type transmission line current control topological circuit
JP3830753B2 (en) Power flow control device and power flow adjustment method
SU1078558A1 (en) A.c.voltage-to-d.c.voltage converter
JPH09285014A (en) Inverter device
JP2001045663A (en) Series compensating device
SU688969A1 (en) Single-phase to three-phase voltage converter
US2380265A (en) Adjustable transformer regulator
US2366678A (en) Electric control system
SU674170A1 (en) Power-diode single-phase voltage converter
JPH01283061A (en) Control device of multiple pwm converter