JPS62151732A - Joining structure for diamond body to metal body - Google Patents

Joining structure for diamond body to metal body

Info

Publication number
JPS62151732A
JPS62151732A JP60295813A JP29581385A JPS62151732A JP S62151732 A JPS62151732 A JP S62151732A JP 60295813 A JP60295813 A JP 60295813A JP 29581385 A JP29581385 A JP 29581385A JP S62151732 A JPS62151732 A JP S62151732A
Authority
JP
Japan
Prior art keywords
diamond
single crystal
metal
semiconductor
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60295813A
Other languages
Japanese (ja)
Other versions
JPH0585856B2 (en
Inventor
Tamotsu Hattori
服部 有
Nobue Ito
伊藤 信衛
Kazuhiro Inokuchi
和宏 井ノ口
Tadashi Hattori
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP60295813A priority Critical patent/JPS62151732A/en
Priority to US06/946,478 priority patent/US4768011A/en
Publication of JPS62151732A publication Critical patent/JPS62151732A/en
Publication of JPH0585856B2 publication Critical patent/JPH0585856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To certainly and easily join a diamond body to a metal bodies regardless of a change of atmospheric temperature by joining the diamond single crystal body or a diamond semiconductor to other metal bodies via metal films of titanium, platinum and gold laminated in order. CONSTITUTION:The diamond semiconductor 48 is formed on the top of the diamond single crystal body 47. As to the semiconductor 48, boron and phosphorus are mixed in the diamond as impurities. Then, the monocrystal body 47 and the semiconductor 48 are joined to other metal bodies 31, 52B and 52C respectively via the laminated metal films 61, 62 and 63 of the titanium, the platinum and the gold so that the coefficient of thermal expansion is enlarged in order by these. In this way, a difference in the coefficient of thermal expansion among the single crystal body 47, the semiconductor 48, the respective metal films 61, 62 and 63, and the metal bodies 31, 52B and 52C is made small and the breakage does not take place on a joint even if the atmospheric temperature is changed in a large way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はダイヤモンド休を金属体に接合する接合構造に
関し、特にダイヤモンド半導体の歪ゲージにより構成し
た圧力検出器に使用して好適な接台構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a bonding structure for bonding a diamond core to a metal body, and in particular to a mounting structure suitable for use in a pressure detector constructed from a diamond semiconductor strain gauge. Regarding.

[従来の技術] 半導体としては従来3iの半導体が多用されている。と
ころで、Slはそのバンドギャップが約1.1eVと小
さいため、使用雰囲気が約150°Cを越えると半導体
特性が消失してしまう。一方、ダイヤモンドは上記3i
に比してそのバンドギャップは約5.5eVと非常に大
きく、これを半導体として使用すれば高い雰囲気温度に
耐え得ることか予想される。
[Prior Art] Conventionally, 3i semiconductors have been widely used as semiconductors. By the way, since the band gap of Sl is as small as about 1.1 eV, its semiconductor properties disappear when the operating atmosphere exceeds about 150°C. On the other hand, diamond is 3i above.
Its bandgap is very large, about 5.5 eV, and it is expected that if it is used as a semiconductor, it will be able to withstand high ambient temperatures.

また、ダイヤモンドの単結晶体は電気絶縁性に優れると
ともに、熱伝導率が極めて大きく、半導体基板として優
れた性能を発揮することが期待できる。
In addition, single crystal diamond has excellent electrical insulation properties and extremely high thermal conductivity, so it can be expected to exhibit excellent performance as a semiconductor substrate.

[発明が解決しようとする問題点] ところで上記ダイヤモンドの半導体素子を実装する際の
問題点として、これと金属体との接合が問題となる。と
いうのは、ダイヤモンドの熱膨張率は約2.3x10−
6/’Cと非常に小さく、これと例えばステンレス(熱
膨張率約15X10  ’/°C(100’C))等の
他の金属との接合は、これらの熱膨張率の差が過大で必
るため雰囲気温度の変化により接合部に破損を生じるお
それかおる。
[Problems to be Solved by the Invention] By the way, one of the problems when mounting the above-mentioned diamond semiconductor element is the bonding between it and a metal body. This is because the coefficient of thermal expansion of diamond is approximately 2.3x10-
6/'C, which is very small, and joining this with other metals such as stainless steel (thermal expansion coefficient of approximately 15 x 10'/°C (100'C)) is difficult due to the excessive difference in their thermal expansion coefficients. Therefore, there is a risk of damage to the joint due to changes in ambient temperature.

本発明はかかる問題点に鑑み、ダイヤモンド体と他の金
属体を雰囲気温度の変化に無関係に確実かつ容易に接合
できる接合構造を提供することを目的とする。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide a bonding structure that can reliably and easily bond a diamond body and another metal body regardless of changes in ambient temperature.

[問題点を解決するための手段] 本発明の構成を第1図により説明すると、ダイヤモンド
単結晶体47の上面にはダイヤモンド半導体48が形成
され、上記単結晶体47は少なくともチタン61、金6
3の各金属膜を介して他の金属体31に接合しておる。
[Means for Solving the Problems] The structure of the present invention will be described with reference to FIG.
It is joined to another metal body 31 via each metal film of No. 3.

また、上記半導体48は少なくともチタン61、金63
の各金属膜を介して他の金属体52B、52Cに接合し
ておる。
Further, the semiconductor 48 includes at least titanium 61 and gold 63.
It is joined to other metal bodies 52B and 52C via each metal film.

[作用、効果] 上記構造において、チタン61、金63の熱膨張率はそ
れぞれ8.8x10−6/’C,9,1x10   /
’C114,2x10−6/’C(100°Cにおいて
)であり、ダイヤモンド単結晶体47ないしダイヤモン
ド半導体48の側より順次熱膨張率を大きくして、他の
金属体31.52B、52C(これらの熱膨張率は通常
的1.5x10−6/°C(100°C)である)に接
合しである。これにより、ダイヤモンド体47.48、
各金属膜61.63および金属体31.52B、520
間の熱膨張率の差は小さいものとなり、雰囲気温度が大
きく変化しても接合部に破損を生じることはない。
[Function, Effect] In the above structure, the thermal expansion coefficients of titanium 61 and gold 63 are 8.8x10-6/'C, 9, and 1x10/'C, respectively.
'C114,2x10-6/'C (at 100°C), and the coefficient of thermal expansion is increased sequentially from the side of the diamond single crystal 47 or the diamond semiconductor 48, and the other metal bodies 31.52B, 52C (these The coefficient of thermal expansion is typically 1.5x10-6/°C (100°C). As a result, the diamond body 47.48,
Each metal film 61.63 and metal body 31.52B, 520
The difference in coefficient of thermal expansion between the two is small, and even if the ambient temperature changes significantly, the joint will not be damaged.

[実施例] 以下、本発明の接合構造を圧力検出器の半導体歪ゲージ
に利用した例を説明する。
[Example] Hereinafter, an example in which the bonding structure of the present invention is used in a semiconductor strain gauge of a pressure detector will be described.

第4図において、圧力検出器の筒状ハウジング1には小
径の下端部11外周に取付用ネジ部11aが形成され、
中間部12外周はねじ込み用穴角面としである。上記ハ
ウジング1の上端開口にはコネクタ2かかしめ固定しで
ある。ハウジング1の下端部11内にはセンシングボデ
ー3が設けて必る。センシングボデー3は圧力至Pを形
成する一端閉鎖のステンレス製筒体であり、閉鎖端の大
径ノランジ部31をハウジング1の内周段付面に当接せ
しめ、その開口をハウジング1の下端に位置せしめであ
る。
In FIG. 4, a mounting screw portion 11a is formed on the outer periphery of a small diameter lower end portion 11 of the cylindrical housing 1 of the pressure sensor.
The outer periphery of the intermediate portion 12 has a square surface with a screw hole. A connector 2 is fixed to the upper opening of the housing 1 by caulking. A sensing body 3 is necessarily provided within the lower end portion 11 of the housing 1 . The sensing body 3 is a stainless steel cylindrical body with one end closed and which forms a pressure point P. The large-diameter flange portion 31 at the closed end is brought into contact with the inner peripheral stepped surface of the housing 1, and its opening is connected to the lower end of the housing 1. It is a matter of position.

センシングボデー3のフランジ部31中心は薄肉となし
てダイヤフラム311としておる。そして、該ダイヤフ
ラム311の上面に構造を後述する半導体歪ゲージ4が
設けである。フランジ部31外周にはセラミック基板5
が設けており、該基板5には上面に導電性ペーストを印
刷焼成して信号取出し電極(囲路)を形成するとともに
、取出し電極に導通する金属ポスト51が立設しておる
The center of the flange portion 31 of the sensing body 3 is made thin and serves as a diaphragm 311. A semiconductor strain gauge 4 whose structure will be described later is provided on the upper surface of the diaphragm 311. A ceramic substrate 5 is provided on the outer periphery of the flange portion 31.
A conductive paste is printed and fired on the upper surface of the substrate 5 to form a signal extraction electrode (circuit), and a metal post 51 is erected to be electrically connected to the extraction electrode.

そして、上記半導体歪ゲージ4と上記基板5の取出し電
極をワイヤ52で接続し、金属ボスト51はリード線5
3により上記コネクタ2のピン21に接続しておる。
Then, the semiconductor strain gauge 4 and the lead electrode of the substrate 5 are connected with a wire 52, and the metal boss 51 is connected to the lead wire 5.
3, it is connected to the pin 21 of the connector 2.

歪ゲージ4は、第2図に示す如く、単一の矩形ダイヤモ
ンド単結晶板47上に4つの歪ゲージ4A、4B、4C
14Dを形成してなる。各歪ゲージ4A〜4Dは蛇行す
る線状のダイヤモンド半導体膜48より成り、矩形面状
電4f!41.42.43.44を介して順次互いに接
続されている。上記各電極41〜44にはそれぞれワイ
ヤ52A、52B、52C152Dの一端が接続され、
結局上記歪ゲージ4A〜4Dは、第3図に示す如きブリ
ッジ回路を構成している。
As shown in FIG. 2, the strain gauge 4 includes four strain gauges 4A, 4B, and 4C on a single rectangular diamond single crystal plate 47.
14D is formed. Each of the strain gauges 4A to 4D is made of a meandering linear diamond semiconductor film 48, and has a rectangular surface electrode 4f! They are sequentially connected to each other via 41, 42, 43, and 44. One end of wires 52A, 52B, and 52C152D is connected to each of the electrodes 41 to 44,
After all, the strain gauges 4A to 4D constitute a bridge circuit as shown in FIG.

上記ダイヤモンド単結晶板47は、第1図に示す如く、
センシングボデー3のフランジ部31の中心部上面に位
置しており、上記単結晶板47の下面全面にこれに接す
る側より順次チタン61、白金62、金63の各金属膜
が積層形成されて、上記金膜63をろう材49により上
記フランジ部31に接合しである。この状態で上記歪ゲ
ージ4A〜4Dのうち上記歪ゲージ4A、4Bがダイヤ
フラム311の直上に位置している(第2図)。
As shown in FIG. 1, the diamond single crystal plate 47 is
It is located on the upper surface of the central part of the flange portion 31 of the sensing body 3, and metal films of titanium 61, platinum 62, and gold 63 are laminated sequentially from the side in contact with the entire lower surface of the single crystal plate 47. The gold film 63 is bonded to the flange portion 31 using a brazing material 49. In this state, the strain gauges 4A and 4B among the strain gauges 4A to 4D are located directly above the diaphragm 311 (FIG. 2).

ダイヤモンド単結晶板47上に形成された上記ダイヤモ
ンド半導体膜48は、不純物としてボロン(B)を含む
P型半導体膜である。これら半導体膜48上に形成され
た上記各電極41〜44は、半導体膜48に接する側よ
り順次チタン61、白金62、金63の各金属膜を積層
して構成しである。
The diamond semiconductor film 48 formed on the diamond single crystal plate 47 is a P-type semiconductor film containing boron (B) as an impurity. Each of the electrodes 41 to 44 formed on the semiconductor film 48 is constructed by laminating metal films of titanium 61, platinum 62, and gold 63 in order from the side in contact with the semiconductor film 48.

上記歪ゲージ4は以下の如く製作する。すなわち、半導
体膜48形成部以外をマスキングしてダイヤモンド単結
晶板47をマイクロ波CVD’W置内に置き、これにメ
タン(CH4)、水素、および少量(0,1〜1100
pp>のジホラン(82H6)の混合ガスを供給する。
The strain gauge 4 is manufactured as follows. That is, the diamond single-crystal plate 47 is placed in a microwave CVD'W apparatus with areas other than the area where the semiconductor film 48 is formed masked, and methane (CH4), hydrogen, and a small amount (0.1 to 1100
A mixed gas of diphorane (82H6) of pp> is supplied.

混合ガスはマイクロ波(本実施例では2450MHz)
により分解励起されてプラズマとなり、上記単結晶板4
7上にボロンを含むダイヤモンド半導体膜48として析
出成長ぜしめられる。その後、半導体膜48の上面およ
び単結晶板47の下面に、蒸着ないしスパッタにより上
記各金属膜61〜63を順次形成する。なお、上記各ワ
イヤ52A〜52Dはワイヤボンディング等により各電
極41〜44の金膜63に容易に接続できる。上記ワイ
ヤ52A〜52Dは金製である。
The mixed gas is microwave (2450MHz in this example)
The single crystal plate 4 is decomposed and excited to become plasma, and the single crystal plate 4
A diamond semiconductor film 48 containing boron is deposited and grown on the diamond semiconductor film 7 . Thereafter, the metal films 61 to 63 are sequentially formed on the upper surface of the semiconductor film 48 and the lower surface of the single crystal plate 47 by vapor deposition or sputtering. Note that each of the wires 52A to 52D can be easily connected to the gold film 63 of each electrode 41 to 44 by wire bonding or the like. The wires 52A to 52D are made of gold.

上記構造になる圧力検出器はハウジング1のネジ部1a
によりエンジン気筒壁に取り付けられる。
The pressure sensor having the above structure has a threaded portion 1a of the housing 1.
is attached to the engine cylinder wall.

気筒圧力はセンシングボデー3の筒内へ導入されてその
ダイヤフラム311に印加される。ダイヤフラム311
は印加される圧力に応じて変形し、その直上に位置する
歪ゲージ4A、4Bは歪を生じてその抵抗値が大きく変
化する。この時、他の歪ゲージ4C,4Dは、上記ダイ
ヤフラム31より離れた位置に形成されていることによ
り歪を生じず、その抵抗値は変化しない。しかして、第
3図の端子T1、T2間に電源を供給すると、端子T3
、T4間に上記変形量に応じた、すなわち気筒圧力に応
じた圧力信号が得られる。
Cylinder pressure is introduced into the cylinder of the sensing body 3 and applied to its diaphragm 311 . diaphragm 311
deforms in response to the applied pressure, and the strain gauges 4A and 4B located directly above the strain gauges 4A and 4B are strained and their resistance values change greatly. At this time, the other strain gauges 4C and 4D do not generate strain because they are formed at positions apart from the diaphragm 31, and their resistance values do not change. Therefore, when power is supplied between terminals T1 and T2 in FIG. 3, terminal T3
, T4, a pressure signal corresponding to the above deformation amount, that is, corresponding to the cylinder pressure is obtained.

かかる圧力検出器は約500 ’Cの高温雰囲気でも正
常に作動する。これは従来半導体歪ゲージに使用されて
いた3iのバンドギャップが約1.1eVでおるのに対
して、ダイヤモンドのそれは約5.5eVと非常に大き
く、高温でも半導体特性を失わないことによる。
Such pressure detectors operate normally even in high temperature environments of about 500'C. This is because the band gap of 3i, which has been conventionally used in semiconductor strain gauges, is about 1.1 eV, whereas that of diamond is very large, about 5.5 eV, and it does not lose its semiconductor properties even at high temperatures.

ところで、ダイヤモンドの熱膨張率は約2.3x 10
’/’C(100°C)と極めて小さく、温度変化の大
きい雰囲気中では歪ゲージを構成するダイヤモンド単結
晶板47およびダイヤモンド半導体膜48と他の金属と
の接合が問題となる。ここにおいて、上記歪ゲージにお
いては、単結晶板47および半導体膜48へのメタライ
ズをこれらの側より順次熱膨張率が大きくなるチタン、
白金、金の三層で行なって熱膨張の整合性を維持し、こ
れより例えばエンジン始動時等の急加熱による歪ゲージ
の破壊を防止している。ちなみに、チタン、白金、金の
熱膨張率はそれぞれ8.8X10−6/’C19,1X
10  ”/°C114,2X10−6/°C(100
°C)である。
By the way, the coefficient of thermal expansion of diamond is approximately 2.3x 10
In an atmosphere where the temperature is extremely small at '/'C (100°C) and the temperature changes are large, bonding between the diamond single crystal plate 47 and the diamond semiconductor film 48 constituting the strain gauge and other metals becomes a problem. Here, in the above-mentioned strain gauge, the single crystal plate 47 and the semiconductor film 48 are metallized with titanium, which has a coefficient of thermal expansion that increases sequentially from these sides.
The three layers of platinum and gold maintain consistency in thermal expansion, thereby preventing the strain gauge from being destroyed by sudden heating, such as when starting an engine. By the way, the thermal expansion coefficients of titanium, platinum, and gold are 8.8X10-6/'C19 and 1X, respectively.
10”/°C114, 2X10-6/°C (100
°C).

またステンレスの熱膨張率は約15X10−6/’C(
100’C)で必り、これは金属一般の熱膨張率を代表
している。
Also, the thermal expansion coefficient of stainless steel is approximately 15X10-6/'C (
100'C), which is representative of the coefficient of thermal expansion of metals in general.

上記ダイヤモンド単結晶板47をダイヤフラムとして使
用することもできる。これを第5図、第6図に示す。第
6図において、センシングボデー3のフランジ部31中
心には開口31aが形成してあり、これに上記、構造の
歪ゲージ4が覆着して必る。すなわち、第5図において
、開口31aの周縁に対向する単結晶板47の下面には
、これに接する側より順次チタン61、白金62、金6
3の各金属膜が形成してあり、金膜63をろう材49に
より上記開口318周縁に接合しておる。しかして、測
定圧が導入されると、その圧力に応じてダイヤモンド単
結晶板47が変形するのである。
The diamond single crystal plate 47 can also be used as a diaphragm. This is shown in FIGS. 5 and 6. In FIG. 6, an opening 31a is formed at the center of the flange portion 31 of the sensing body 3, and the strain gauge 4 having the above-mentioned structure is covered with the opening 31a. That is, in FIG. 5, titanium 61, platinum 62, and gold 6 are sequentially deposited on the lower surface of the single crystal plate 47 facing the periphery of the opening 31a from the side in contact with this.
3 are formed, and a gold film 63 is bonded to the periphery of the opening 318 using a brazing material 49. Thus, when a measurement pressure is introduced, the diamond single crystal plate 47 deforms in accordance with the pressure.

かかる構造としても上記実施例と同様の効果がおる。Such a structure also has the same effect as the above embodiment.

なあ、上記三層の金属膜は、圧力検出器を比較的低湿(
約400’C)で使用する場合には白金膜を省略するこ
とができる。また、電極は必ずしも三層@造とする必要
はなく、チタン膜のみでも良いが、ワイヤの接続を容易
に行なう為には最外層を金膜とした上記三層構造が優れ
ている。
By the way, the above three-layer metal membrane protects the pressure sensor from relatively low humidity (
When used at temperatures of about 400'C), the platinum film can be omitted. Further, the electrode does not necessarily have to have a three-layer structure, and may use only a titanium film, but the above-mentioned three-layer structure in which the outermost layer is a gold film is preferable in order to easily connect wires.

上記各実施例におけるダイヤモンド半導体膜48として
は、ダイヤモンドに例えばリン(P)をドープしてn型
半導体としたものでも良い。
The diamond semiconductor film 48 in each of the above embodiments may be made of diamond doped with, for example, phosphorus (P) to make it an n-type semiconductor.

また、チタン、白金、金の金属膜は、各金属粉末をチル
ビオネール等の溶剤と混合してペーストとなし、これを
パターン印刷した後、水素、窒素、あるいは水蒸気雰囲
気中で焼成する方法、または溶射等の方法によっても形
成できる。
Metal films of titanium, platinum, and gold can be produced by mixing each metal powder with a solvent such as Chilbionel to form a paste, printing a pattern on it, and then baking it in a hydrogen, nitrogen, or steam atmosphere, or by thermal spraying. It can also be formed by a method such as

以上の如く、本発明の接合構造によれば、ダイヤモンド
体と他の金属を容易かつ確実に接合することができ、例
えば高温かつ温度変化の大きい雰囲気で良好に作動する
生導体歪ゲージを実現することができる。
As described above, according to the bonding structure of the present invention, a diamond body and another metal can be easily and reliably bonded, and a live conductor strain gauge that operates well in an atmosphere of high temperatures and large temperature changes, for example, can be realized. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の一実施例を示し、第1図
は歪ゲージの全体断面図、第2図はその全体平面図、第
3図は各歪ゲージの接続図、第4図は圧力検出器の全体
断面図、第5図、第6図は本発明の他の例を示すそれぞ
れ歪ゲージの全体断面図および圧力検出器の全体断面図
である。 1・・・・・・圧力検出器ハウジング 3・・・・・・センシングポデー 31・・・・・・フランシン部(他の金属体)31a・
・・・・・開口 311・・・・・・ダイヤフラム 4.4A、4B、4C,4D・・・・・・歪ゲージ41
.42.43.44・・・・・・電極47・・・・・・
ダイヤモンド単結晶板48・・・・・・ダイヤモンド半
導体膜49・・・・・・ろう材 52.52A、52B、52C152D・・・・・・ワ
イヤ(他の金属体) χ2図 第5図 第63
1 to 4 show one embodiment of the present invention, in which FIG. 1 is an overall sectional view of the strain gauge, FIG. 2 is an overall plan view thereof, FIG. 3 is a connection diagram of each strain gauge, and FIG. The figure is an overall sectional view of a pressure detector, and FIGS. 5 and 6 are an overall sectional view of a strain gauge and a pressure detector, respectively, showing other examples of the present invention. 1... Pressure detector housing 3... Sensing body 31... Francine part (other metal body) 31a.
...Opening 311...Diaphragm 4.4A, 4B, 4C, 4D...Strain gauge 41
.. 42.43.44... Electrode 47...
Diamond single crystal plate 48...Diamond semiconductor film 49...Brazing material 52.52A, 52B, 52C152D...Wire (other metal body) χ2 diagram Figure 5 Figure 63

Claims (7)

【特許請求の範囲】[Claims] (1)ダイヤモンド単結晶体ないしダイヤモンドに不純
物を混入せしめてなるダイヤモンド半導体を、これら単
結晶体ないし半導体側より順次積層した少なくともチタ
ン、金の各金属膜を介して他の金属体に接合したことを
特徴とするダイヤモンド体と金属体の接合構造。
(1) A diamond single crystal or a diamond semiconductor made of diamond mixed with impurities is bonded to another metal body through at least titanium and gold metal films sequentially laminated from the single crystal or semiconductor side. A bonded structure between a diamond body and a metal body.
(2)上記ダイヤモンド半導体は、ダイヤモンドにボロ
ン(B)ないしリン(P)を混入せしめてなる特許請求
の範囲第1項記載のダイヤモンド体と金属体の接合構造
(2) A bonding structure between a diamond body and a metal body according to claim 1, wherein the diamond semiconductor is formed by mixing boron (B) or phosphorus (P) into diamond.
(3)上記チタン膜と金膜の間に白金膜を介在せしめた
特許請求の範囲第1項記載のダイヤモンド体と金属体の
接合構造。
(3) A bonding structure between a diamond body and a metal body according to claim 1, wherein a platinum film is interposed between the titanium film and the gold film.
(4)上記各金属膜を蒸着ないしスパッタにより形成し
た特許請求の範囲第1項または第3項記載のダイヤモン
ド体と金属体の接合構造。
(4) A bonding structure between a diamond body and a metal body according to claim 1 or 3, wherein each of the metal films is formed by vapor deposition or sputtering.
(5)上記金膜を他の金属体にろう付けないしワイヤボ
ンディングにより接合した特許請求の範囲第1項記載の
ダイヤモンド体と金属体の接合構造。
(5) A bonding structure of a diamond body and a metal body according to claim 1, wherein the gold film is bonded to another metal body by brazing or wire bonding.
(6)上記ダイヤモンド半導体は上記ダイヤモンド単結
晶体上に形成した歪ゲージであり、上記単結晶体を圧力
検出器の圧力室壁の一部を構成するステンレス製ダイヤ
フラムに上記各金属膜を介して接合した特許請求の範囲
第1項記載のダイヤモンド体と金属体の接合構造。
(6) The above-mentioned diamond semiconductor is a strain gauge formed on the above-mentioned single crystal diamond, and the above-mentioned single crystal is attached to a stainless steel diaphragm that constitutes a part of the pressure chamber wall of the pressure sensor via each of the above metal films. A bonded structure of a diamond body and a metal body according to claim 1.
(7)上記ダイヤモンド半導体は上記ダイヤモンド単結
晶体上に形成した歪ゲージであり、上記単結晶体を圧力
検出器のステンレス製圧力室壁の一部に設けた間口を覆
うように、上記各金属膜を介して上記開口縁に接合した
特許請求の範囲第1項記載のダイヤモンド体と金属体の
接合構造。
(7) The above-mentioned diamond semiconductor is a strain gauge formed on the above-mentioned single crystal diamond, and the above-mentioned single crystal is arranged so as to cover the opening provided in a part of the stainless steel pressure chamber wall of the pressure sensor. The bonding structure of a diamond body and a metal body according to claim 1, wherein the diamond body and the metal body are bonded to the edge of the opening via a film.
JP60295813A 1985-12-24 1985-12-26 Joining structure for diamond body to metal body Granted JPS62151732A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60295813A JPS62151732A (en) 1985-12-26 1985-12-26 Joining structure for diamond body to metal body
US06/946,478 US4768011A (en) 1985-12-24 1986-12-24 Joint structure for diamond body and metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295813A JPS62151732A (en) 1985-12-26 1985-12-26 Joining structure for diamond body to metal body

Publications (2)

Publication Number Publication Date
JPS62151732A true JPS62151732A (en) 1987-07-06
JPH0585856B2 JPH0585856B2 (en) 1993-12-09

Family

ID=17825494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295813A Granted JPS62151732A (en) 1985-12-24 1985-12-26 Joining structure for diamond body to metal body

Country Status (1)

Country Link
JP (1) JPS62151732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261628A (en) * 1990-03-12 1991-11-21 Fujitsu Ltd Method for forming green sheet
WO2010150302A1 (en) * 2009-06-22 2010-12-29 トヨタ自動車株式会社 Pressure sensor and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261628A (en) * 1990-03-12 1991-11-21 Fujitsu Ltd Method for forming green sheet
WO2010150302A1 (en) * 2009-06-22 2010-12-29 トヨタ自動車株式会社 Pressure sensor and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0585856B2 (en) 1993-12-09

Similar Documents

Publication Publication Date Title
US3800264A (en) High temperature transducers and housing including fabrication methods
US8460961B2 (en) Method for forming a transducer
US6058782A (en) Hermetically sealed ultra high temperature silicon carbide pressure transducers and method for fabricating same
JPS6122874B2 (en)
US3930823A (en) High temperature transducers and housing including fabrication methods
CN111707404A (en) High-temperature-resistant silicon carbide pressure sensor and preparation method thereof
US4768011A (en) Joint structure for diamond body and metallic body
JPH049727A (en) Capacity type pressure sensor
JPS58731A (en) Electrostatic capacity type pressure sensor
JPS62151732A (en) Joining structure for diamond body to metal body
JPS5828876A (en) Semiconductor pressure sensor
JPS594868B2 (en) semiconductor equipment
JPS62148829A (en) Pressure detector
US4106349A (en) Transducer structures for high pressure application
JPS62148830A (en) Pressure detector
JPS6272178A (en) Semiconductor pressure detecting device and manufacture of the same
JPS5930035A (en) Semiconductor pressure sensor
JPS633234A (en) Pressure detector
JPS5828754B2 (en) Pressure-electric conversion device
JPS62291073A (en) Semiconductor distortion detector
JPS5936835B2 (en) Semiconductor pressure/differential pressure transmitter
JPS62291534A (en) Pressure detector
JP3596935B2 (en) Semiconductor pressure sensor
JPS6312178A (en) Pressure detector
JPS5940252B2 (en) semiconductor pressure sensor